Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Toxicol Sci ; 198(2): 288-302, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38290791

RESUMO

Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIß has recently been identified as a plausible target of anthracyclines in cardiomyocytes. We examined the putative topoisomerase IIß selective agent XK469 as a potential cardioprotective and designed several new analogs. In our experiments, XK469 inhibited both topoisomerase isoforms (α and ß) and did not induce topoisomerase II covalent complexes in isolated cardiomyocytes and HL-60, but induced proteasomal degradation of topoisomerase II in these cell types. The cardioprotective potential of XK469 was studied on rat neonatal cardiomyocytes, where dexrazoxane (ICRF-187), the only clinically approved cardioprotective, was effective. Initially, XK469 prevented daunorubicin-induced toxicity and p53 phosphorylation in cardiomyocytes. However, it only partially prevented the phosphorylation of H2AX and did not affect DNA damage measured by Comet Assay. It also did not compromise the daunorubicin antiproliferative effect in HL-60 leukemic cells. When administered to rabbits to evaluate its cardioprotective potential in vivo, XK469 failed to prevent the daunorubicin-induced cardiac toxicity in either acute or chronic settings. In the following in vitro analysis, we found that prolonged and continuous exposure of rat neonatal cardiomyocytes to XK469 led to significant toxicity. In conclusion, this study provides important evidence on the effects of XK469 and its combination with daunorubicin in clinically relevant doses in cardiomyocytes. Despite its promising characteristics, long-term treatments and in vivo experiments have not confirmed its cardioprotective potential.


Assuntos
Antraciclinas , Quinoxalinas , Inibidores da Topoisomerase II , Ratos , Animais , Coelhos , Inibidores da Topoisomerase II/toxicidade , Inibidores da Topoisomerase II/uso terapêutico , Antraciclinas/toxicidade , Antraciclinas/uso terapêutico , Cardiotoxicidade , Daunorrubicina/toxicidade , Daunorrubicina/uso terapêutico , Doxorrubicina/toxicidade , Antibióticos Antineoplásicos/toxicidade , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/uso terapêutico , Dano ao DNA
2.
Sci Rep ; 13(1): 21054, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030645

RESUMO

Liposomal formulations are hypothesized to alleviate anthracycline cardiotoxicity, although this has only been documented clinically for doxorubicin. We developed an in vitro multiparametric model using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) to assess the relative toxicity of anthracyclines across formulations. Proof of concept was established by treating hiPSC-CM with equivalent concentrations of free and liposomal doxorubicin. The study was then repeated with free daunorubicin plus cytarabine and CPX-351, a dual-drug liposomal encapsulation of daunorubicin/cytarabine. hiPSC-CM were treated with free-drug or liposomal formulations for 24 h on Days 1, 3, and 5 at equivalent concentrations ranging from 0 to 1000 ng/mL and assessed on subsequent days. Free-drug treatment resulted in concentration-dependent cumulative cytotoxicity (microscopy), more profound decrease in ATP levels, and significant time- and concentration-dependent decreases in oxygen consumption versus liposomal formulations (p < 0.01). Repeated free-drug exposure also resulted in greater release of biomarkers (cardiac troponin I, FABP3) and lactate dehydrogenase, as well as in a biphasic rhythmicity response (initial increase followed by slowing/quiescence of beating) indicating significant injury, which was not observed after repeated exposure to liposomal formulations. Overall, liposomal formulations were considerably less toxic to hiPSC-CM than their free-drug counterparts. Clinical data will be needed to confirm findings for CPX-351.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Cardiotoxicidade , Miócitos Cardíacos , Daunorrubicina/toxicidade , Citarabina/toxicidade , Antraciclinas , Antibióticos Antineoplásicos/toxicidade , Inibidores da Topoisomerase II , Combinação de Medicamentos , Lipossomos
3.
ACS Appl Mater Interfaces ; 13(36): 42382-42395, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34473471

RESUMO

Anthracycline-induced liver injury (AILI) is becoming an increasingly serious and potential clinical complication and is linked to reactive oxygen species (ROS) production and subsequent inflammatory response. Herein, we demonstrated that artificial Prussian blue nanozymes (PBZs) prevented daunorubicin-induced liver injury, a prototype of AILI, by attenuating ROS production and regulating inflammation. PBZs exhibited multienzyme activity and could scavenge ROS and free radicals. At the cellular level, PBZs could effectively eliminate ROS, suppress hepatocyte apoptosis, reduce deoxyribonucleic acid damage, and decrease the levels of inflammatory cytokines and chemokines. According to the results of the in vivo study, pretreatment with PBZs also resulted in a desirable protective effect against AILI, as indicated by both a decrease in biochemical indicator levels and hepatocyte necrosis. PBZs upregulated antioxidative genes by activating the Nrf2 pathway to reduce oxidative stress. Meanwhile, PBZs counteracted the inflammatory response based on the decreased expression levels of myeloperoxidase and F4/80 in the liver. Collectively, our findings indicate that PBZ-based nanotherapy is a novel strategy for protecting against AILI.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Daunorrubicina/toxicidade , Sequestradores de Radicais Livres/uso terapêutico , Inflamação/tratamento farmacológico , Nanopartículas/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/toxicidade , Apoptose/efeitos dos fármacos , Catálise , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Quimiocinas/metabolismo , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Ferrocianetos/química , Ferrocianetos/uso terapêutico , Ferrocianetos/toxicidade , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Povidona/química , Povidona/toxicidade , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
4.
J Med Chem ; 64(7): 3997-4019, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33750129

RESUMO

Cardioprotective activity of dexrazoxane (ICRF-187), the only clinically approved drug against anthracycline-induced cardiotoxicity, has traditionally been attributed to its iron-chelating metabolite. However, recent experimental evidence suggested that the inhibition and/or depletion of topoisomerase IIß (TOP2B) by dexrazoxane could be cardioprotective. Hence, we evaluated a series of dexrazoxane analogues and found that their cardioprotective activity strongly correlated with their interaction with TOP2B in cardiomyocytes, but was independent of their iron chelation ability. Very tight structure-activity relationships were demonstrated on stereoisomeric forms of 4,4'-(butane-2,3-diyl)bis(piperazine-2,6-dione). In contrast to its rac-form 12, meso-derivative 11 (ICRF-193) showed a favorable binding mode to topoisomerase II in silico, inhibited and depleted TOP2B in cardiomyocytes more efficiently than dexrazoxane, and showed the highest cardioprotective efficiency. Importantly, the observed ICRF-193 cardioprotection did not interfere with the antiproliferative activity of anthracycline. Hence, this study identifies ICRF-193 as the new lead compound in the development of efficient cardioprotective agents.


Assuntos
Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores da Topoisomerase II/uso terapêutico , Animais , Animais Recém-Nascidos , Cardiotônicos/síntese química , Cardiotônicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Daunorrubicina/toxicidade , Dicetopiperazinas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Piperazinas/síntese química , Piperazinas/metabolismo , Ligação Proteica , Ratos Wistar , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo
5.
Cardiovasc Toxicol ; 21(2): 142-151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32880787

RESUMO

Cardiotoxicity is a major limitation for anthracycline chemotherapy although anthracyclines are potent antitumor agents. The precise mechanism underlying clinical heart failure due to anthracycline treatment is not fully understood, but is believed to be due, in part, to lipid peroxidation and the generation of free radicals by anthracycline-iron complexes. Thioredoxin (Trx) is a small redox-active antioxidant protein with potent disulfide reductase properties. Here, we present evidence that cancer cells overexpressing Trx undergo enhanced apoptosis in response to daunomycin. In contrast, cells overexpressing redox-inactive mutant Trx were not effectively killed. However, rat embryonic cardiomyocytes (H9c2 cells) overexpressing Trx were protected against daunomycin-mediated apoptosis, but H9c2 cells with decreased levels of active Trx showed enhanced apoptosis in response to daunomycin. We further demonstrate that increased level of Trx is specifically effective in anthracycline toxicity, but not with other topoisomerase II inhibitors such as etoposide. Collectively these data demonstrate that whereas high levels of Trx protect cardiomyocytes against anthracycline toxicity, it potentiates toxicity of anthracyclines in cancer cells.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Daunorrubicina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Tiorredoxinas/metabolismo , Animais , Cardiotoxicidade , Células HCT116 , Humanos , Células MCF-7 , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Tiorredoxinas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Células U937
6.
J Ethnopharmacol ; 261: 113118, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32621953

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Green tea is the most ancient and popular beverage worldwide and its main constituent epigallocatechin-3-gallate (EGCG) has a potential role in the management of cancer through the modulation of cell signaling pathways. However, EGCG is frangible to oxidation and exhibits low lipid solubility and bioavailability, and we synthesized a derivative of EGCG in an attempt to overcome these limitations. AIM OF THE STUDY: The anthracycline antibiotic daunorubicin (DNR) is a potent anticancer agent. However, its severe cardiotoxic limits its clinical efficacy. Human carbonyl reductase 1 (CBR1) is one of the most effective human reductases for producing hydroxyl metabolites and thus may be involved in increasing the cardiotoxicity and decreasing the antineoplastic effect of anthracycline antibiotics. Accordingly, in this study, we investigated the co-therapeutic effect of Y6, a novel and potent adjuvant obtained by optimization of the structure of EGCG. MATERIAL AND METHODS: The cellular concentrations of DNR and its metabolite DNRol were measured by HPLC to determine the effects of EGCG and Y6 on the inhibition of DNRol formation. The cytotoxic effects of EGCG and Y6 were tested by MTT assay in order to identify non-toxic concentrations of them. To understand their antitumor and cardioprotective mechanisms, hypoxia-inducible factor-1α (HIF-1α) and CBR1 protein expression was measured via Western blotting and immunohistochemical staining while gene expression was analyzed using RT-PCR. Moreover, PI3K/AKT and MEK/ERK signaling pathways were analyzed via Western blotting. HepG2 xenograft model was used to detect the effects of EGCG and Y6 on the antitumor activity and cardiotoxicity of DNR in vivo. Finally, to obtain further insight into the interactions of Y6 and EGCG with HIF-1α and CBR1, we performed a molecular modeling. RESULTS: Y6(10 µg/ml or 55 mg/kg) decreased the expression of HIF-1α and CBR1 at both the mRNA and protein levels during combined drug therapy in vitro as well as in vivo, thereby inhibiting formation of the metabolite DNRol from DNR, with the mechanisms being related to PI3K/AKT and MEK/ERK signaling inhibition. In a human carcinoma xenograft model established with subcutaneous HepG2 cells, Y6(55 mg/kg) enhanced the antitumor effect and reduced the cardiotoxicity of DNR more effectively than EGCG(40 mg/kg). CONCLUSIONS: Y6 has the ability to inhibit CBR1 expression through the coordinate inhibition of PI3K/AKT and MEK/ERK signaling, then synergistically enhances the antitumor effect and reduces the cardiotoxicity of DNR.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Arritmias Cardíacas/prevenção & controle , Carcinoma Hepatocelular/tratamento farmacológico , Catequina/análogos & derivados , Daunorrubicina/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Cardiotoxicidade , Catequina/farmacologia , Proliferação de Células/efeitos dos fármacos , Daunorrubicina/toxicidade , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica , Frequência Cardíaca/efeitos dos fármacos , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Clin Sci (Lond) ; 133(16): 1827-1844, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31409729

RESUMO

Although proteasome inhibitors (PIs) are modern targeted anticancer drugs, they have been associated with a certain risk of cardiotoxicity and heart failure (HF). Recently, PIs have been combined with anthracyclines (ANTs) to further boost their anticancer efficacy. However, this raised concerns regarding cardiac safety, which were further supported by several in vitro studies on immature cardiomyocytes. In the present study, we investigated the toxicity of clinically used PIs alone (bortezomib (BTZ), carfilzomib (CFZ)) as well as their combinations with an ANT (daunorubicin (DAU)) in both neonatal and adult ventricular cardiomyocytes (NVCMs and AVCMs) and in a chronic rabbit model of DAU-induced HF. Using NVCMs, we found significant cytotoxicity of both PIs around their maximum plasma concentration (cmax) as well as significant augmentation of DAU cytotoxicity. In AVCMs, BTZ did not induce significant cytotoxicity in therapeutic concentrations, whereas the toxicity of CFZ was significant and more profound. Importantly, neither PI significantly augmented the cardiotoxicity of DAU despite even more profound proteasome-inhibitory activity in AVCMs compared with NVCMs. Furthermore, in young adult rabbits, no significant augmentation of chronic ANT cardiotoxicity was noted with respect to any functional, morphological, biochemical or molecular parameter under study, despite significant inhibition of myocardial proteasome activity. Our experimental data show that combination of PIs with ANTs is not accompanied by an exaggerated risk of cardiotoxicity and HF in young adult animal cardiomyocytes and hearts.


Assuntos
Antraciclinas/toxicidade , Antineoplásicos/toxicidade , Cardiotoxicidade/etiologia , Inibidores de Proteassoma/toxicidade , Animais , Antraciclinas/administração & dosagem , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Bortezomib/administração & dosagem , Bortezomib/toxicidade , Daunorrubicina/administração & dosagem , Daunorrubicina/toxicidade , Relação Dose-Resposta a Droga , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/toxicidade , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/administração & dosagem , Coelhos , Ratos , Ratos Wistar
8.
Nanomedicine ; 20: 102004, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31055076

RESUMO

Patients with acute myeloid leukemia have a very poor prognosis related to a high rate of relapse and drug-related toxicity. The ability of leukemia stem cells (LSCs) to survive chemotherapy is primarily responsible for relapse, and eliminating LSCs is ultimately essential for cure. We developed novel disulfide-crosslinked CLL1-targeting micelles (DC-CTM), which can deliver high concentrations of daunorubicin (DNR) into both bulk leukemia cells and LSCs. Compared to free DNR, DC-CTM-DNR had a longer half-life, increased DNR area under the curve concentration by 11-fold, and exhibited a superior toxicity profile. In patient-derived AML xenograft models, DC-CTM-DNR treatment led to significant decreases in AML engraftment and impairment of secondary transplantation compared to control groups. Collectively, we demonstrate superior anti-LSC/AML efficacy, and preferable pharmacokinetic and toxicity profiles of DC-CTM-DNR compared to free DNR. DC-CTM-DNR has the potential to significantly improve treatment outcomes and reduce therapy-related morbidity and mortality for patients with AML.


Assuntos
Daunorrubicina/uso terapêutico , Lectinas Tipo C/química , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Micelas , Nanopartículas/química , Células-Tronco Neoplásicas/patologia , Animais , Reagentes de Ligações Cruzadas/química , Daunorrubicina/farmacocinética , Daunorrubicina/toxicidade , Dissulfetos/química , Humanos , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Células-Tronco Neoplásicas/efeitos dos fármacos , Ratos Sprague-Dawley
9.
Toxicology ; 411: 81-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339824

RESUMO

In the present study, the molecular docking mechanism based on pharmacodynamic interactions between the ligands AZD1208 and recognized chemotherapy agents (Vincristine and Daunorubicin) with human ATP-binding cassette (ABC) transporters (ABCB1) was investigated. For the first time, were combined an in silico approaches like molecular docking and ab initio computational simulation based on Density Functional Theory (DFT) to explain the drug-drug interaction mechanism of aforementioned chemotherapy ligands with the transmembrane ligand extrusion binding domains (TMDs) of ABCB1. In this regard, the theoretical pharmacodynamic interactions were characterized by using the Gibbs free energy (FEB, kcal/mol) from the best ABCB1-ligand docking complexes. The molecular docking results pointing that for the three chemotherapy ABCB1-ligand complexes are mainly based in non-covalent hydrophobic and hydrogen-bond interactions showing a similar toxicodynamic behavior in terms of strength of interaction (FEB, kcal/mol) and very close free binding energies when compared with the FEB-values of the ABCB1 specific-inhibitor (Rhodamine B) = -6.0 kcal/mol used as theoretical docking control to compare with FEB (AZD1208-ABCB1) ∼ FEB (Vincristine-ABCB1) ∼ FEB (Daunorubicin-ABCB1) -6.2 kcal/mol as average. Ramachandran plot suggests that the 3D-crystallographic structure from ABCB1 transporter can be efficiently-modeled with conformationally-favored Psi versus Phi dihedral angles for all key TMDs-residues. Though, the results of DFT-simulation corroborate the existence of drug-drug interaction between (AZD1208/Vincristine) > (AZD1208/Daunorubicin). These theoretical pieces of evidence have preclinical relevance potential in the design of the new drugs to understand the polypharmacology influence in the molecular mechanism of multiple-drugs resistance, contributing with a higher success in chemotherapy and prognosis of cancer patients.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Antineoplásicos Fitogênicos/toxicidade , Compostos de Bifenilo/toxicidade , Daunorrubicina/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Transporte Proteico/efeitos dos fármacos , Tiazolidinas/toxicidade , Vincristina/toxicidade , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Interações Medicamentosas , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular
10.
Toxicology ; 392: 1-10, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28941780

RESUMO

Novel dexrazoxane derivative JR-311 was prepared to investigate structure-activity relationships and mechanism(s) of protection against anthracycline cardiotoxicity. Its cardioprotective, antiproliferative, iron (Fe) chelation and inhibitory and/or depletory activities on topoisomerase IIbeta (TOP2B) were examined and compared with dexrazoxane. While in standard assay, JR-311 failed in both cardioprotection and depletion of TOP2B, its repeated administration to cell culture media led to depletion of TOP2B and significant protection of isolated rat neonatal ventricular cardiomyocytes from daunorubicin-induced damage. This effect was explained by a focused analytical investigation that revealed rapid JR-311 decomposition, resulting in negligible intracellular concentrations of the parent compound but high exposure of cells to the decomposition products, including Fe-chelating JR-H2. Although chemical instability is an obstacle for the development of JR-311, this study identified a novel dexrazoxane analogue with preserved pharmacodynamic properties, contributed to the investigation of structure-activity relationships and suggested that the cardioprotection of bis-dioxopiperazines is likely attributed to TOP2B activity of the parent compound rather than Fe chelation of their hydrolytic metabolites/degradation products. Moreover, this study highlights the importance of early stability testing during future development of novel dexrazoxane analogues.


Assuntos
Cardiotônicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Dexrazoxano/farmacologia , Quelantes de Ferro/farmacologia , Animais , Animais Recém-Nascidos , Antraciclinas/toxicidade , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Daunorrubicina/toxicidade , Dexrazoxano/análogos & derivados , Dicetopiperazinas/farmacologia , Ferro/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar , Relação Estrutura-Atividade
11.
Toxicology ; 372: 52-63, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27816693

RESUMO

Chronic anthracycline (ANT) cardiotoxicity is a serious complication of cancer chemotherapy. Molsidomine, a NO-releasing drug, has been found cardioprotective in different models of I/R injury and recently in acute high-dose ANT cardiotoxicity. Hence, we examined whether its cardioprotective effects are translatable to chronic ANT cardiotoxicity settings without induction of nitrosative stress and interference with antiproliferative action of ANTs. The effects of molsidomine (0.025 and 0.5mg/kg, i.v.) were studied on the well-established model of chronic ANT cardiotoxicity in rabbits (daunorubicin/DAU/3mg/kg/week for 10 weeks). Molsidomine was unable to significantly attenuate mortality, development of heart failure and morphological damage induced by DAU. Molsidomine did not alter DAU-induced myocardial lipoperoxidation, MnSOD down-regulation, up-regulation of HO-1, IL-6, and molecular markers of cardiac remodeling. Although molsidomine increased 3-nitrotyrosine in the myocardium, this event had no impact on cardiotoxicity development. Using H9c2 myoblasts and isolated cardiomyocytes, it was found that SIN-1 (an active metabolite of molsidomine) induces significant protection against ANT toxicity, but only at high concentrations. In leukemic HL-60 cells, SIN-1 initially augmented ANT cytotoxicity (in low and clinically achievable concentrations), but it protected these cells against ANT in the high concentrations. UHPLC-MS/MS investigation demonstrated that the loss of ANT cytotoxicity after co-incubation of the cells in vitro with high concentrations of SIN-1 is caused by unexpected chemical depletion of DAU molecule. The present study demonstrates that cardioprotective effects of molsidomine are not translatable to clinically relevant chronic form of ANT cardiotoxicity. The augmentation of antineoplastic effects of ANT in low (nM) concentrations may deserve further study.


Assuntos
Antraciclinas/toxicidade , Antibióticos Antineoplásicos/toxicidade , Cardiotônicos/farmacologia , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Molsidomina/farmacologia , Doadores de Óxido Nítrico/farmacologia , Animais , Cardiotoxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doença Crônica , Daunorrubicina/toxicidade , Doxorrubicina/toxicidade , Insuficiência Cardíaca/prevenção & controle , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Remodelação Ventricular/efeitos dos fármacos
12.
PLoS One ; 11(10): e0163885, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741251

RESUMO

A regulatory program involving hundreds of genes is coordinated by p53 to prevent carcinogenesis in response to stress. Given the importance of chromatin loops in gene regulation, we investigated whether DNA interactions participate in the p53 stress response. To shed light on this issue, we measured the binding dynamics of cohesin in response to stress. We reveal that cohesin is remodeled at specific loci during the stress response and that its binding within genes negatively correlates with transcription. At p53 target genes, stress-induced eviction of cohesin from gene bodies is concomitant to spatial reorganization of loci through the disruption of functional chromatin loops. These findings demonstrate that chromatin loops can be remodeled upon stress and contribute to the p53-driven stress response. Additionally, we also propose a mechanism whereby transcription-coupled eviction of cohesin from CDKN1A might act as a molecular switch to control spatial interactions between regulatory elements.


Assuntos
Montagem e Desmontagem da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA , Daunorrubicina/toxicidade , Genes Reporter , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Células HCT116 , Humanos , Proteínas Nucleares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Ativação Transcricional/efeitos dos fármacos , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Coesinas
13.
Invest New Drugs ; 34(4): 416-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27146514

RESUMO

Compared to classical chemotherapy, peptide-based drug targeting is a promising therapeutic approach for cancer, which can provide increased selectivity and decreased side effects to anticancer drugs. Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety, in particular in the treatment of hormone independent tumors that highly express GnRH receptors (e.g. colon carcinoma). We have previously shown that GnRH-III[(4)Lys(Ac),(8)Lys(Dau = Aoa)] bioconjugate, in which daunorubicin was attached via oxime linkage to the (8)Lys of a GnRH-III derivative, exerted significant in vivo antitumor effect on subcutaneously developed HT-29 colon tumor. In contrast, results of the study reported here indicated that this compound was not active on an orthotopically developed tumor. However, if Lys in position 4 was acylated with butyric acid instead of acetic acid, the resulting bioconjugate GnRH-III[(4)Lys(Bu),(8)Lys(Dau = Aoa)] had significant tumor growth inhibitory effect. Furthermore, it prevented tumor neovascularization, without detectable side effects. Nevertheless, the development of metastases could not be inhibited by the bioconjugate; therefore, its application in combination with a metastasis preventive agent might be necessary in order to achieve complete tumor remission. In spite of this result, the treatment with GnRH-III[(4)Lys(Bu),(8)Lys(Dau = Aoa)] bioconjugate proved to have significant benefits over the administration of free daunorubicin, which was used at the maximum tolerated dose.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Ácido Butírico/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Daunorrubicina/uso terapêutico , Hormônio Liberador de Gonadotropina/uso terapêutico , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/toxicidade , Ácido Butírico/química , Ácido Butírico/toxicidade , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Daunorrubicina/química , Daunorrubicina/toxicidade , Feminino , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/toxicidade , Células HT29 , Coração/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Ácido Pirrolidonocarboxílico/química , Ácido Pirrolidonocarboxílico/uso terapêutico , Ácido Pirrolidonocarboxílico/toxicidade , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mater Sci Eng C Mater Biol Appl ; 61: 753-61, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838906

RESUMO

Clinical use of daunorubicin (Dau) in treatment of leukemia has been restricted because of its cardiotoxicity. Targeted delivery of anticancer drugs could decrease their off-target effects and enhance their efficacy. In this study a modified polyvalent aptamers (PA)-Daunorubicin (Dau)-Gold nanoparticles (AuNPs) complex was designed and its efficacy was assessed in Molt-4 cells (human acute lymphoblastic leukemia T-cell, target). Dau was efficiently loaded (10.5 µM) onto 1mL of PA-modified AuNPs. Dau was released from the PA-Dau-AuNPs complex in a pH-sensitive manner (faster release at pH5.5). The results of flow cytometry analysis indicated that the PA-Dau-AuNPs complex was efficiently internalized into target cells, but not into nontarget cells. The results of MTT assay were consistent with the internalization data. PA-Dau-AuNPs complex had less cytotoxicity in U266 cells compared to Dau alone and even Apt-Dau-AuNPs complex. The PA-Dau-AuNPs complex had more cytotoxicity in Molt-4 cells compared to Dau alone and even Apt-Dau-AuNPs complex. Cytotoxicity of PA-Dau-AuNPs complex was effectively antagonized using antisense of polyvalent aptamers. In conclusion, the designed drug delivery system inherited the properties of efficient drug loading, tumor targeting, pH-dependent drug release and controllable delivery of Dau to tumor cells.


Assuntos
Antineoplásicos/química , Aptâmeros de Nucleotídeos/química , Daunorrubicina/química , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Leucemia/metabolismo , Leucemia/patologia , Oligonucleotídeos Antissenso/metabolismo
15.
Int J Cardiol ; 201: 358-67, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26310978

RESUMO

BACKGROUND: Cardiac troponins (cTns) seem to be more sensitive for the detection of anthracycline cardiotoxicity than the currently recommended method of monitoring LV systolic function. However, the optimal timing of blood sampling remains unknown. Hence, the aims of the present study were to determine the precise diagnostic window for cTns during the development of chronic anthracycline cardiotoxicity and to evaluate their predictive value. METHODS: Cardiotoxicity was induced in rabbits with daunorubicin (3mg/kg, weekly, for 8 weeks). Blood samples were collected 2-168 h after the 1st, 5th and 8th drug administrations, and concentrations of cTns were determined using highly sensitive assays: hs cTnT (Roche) and hs cTnI (Abbott). RESULTS: The plasma levels of cTns progressively increased with the rising number of chemotherapy cycles. While only a mild non-significant increase in both cTn levels occurred after the first daunorubicin dose, a significant rise was observed after the 5th and 8th administrations. Two hours after these administrations, a significant increase occurred with a peak between 4-6h and a decline until 24h. Discrete cTn release continued even after cessation of the therapy. While greater variability of cTn levels was observed around the peak concentrations, the values did not correspond well with the severity of LV systolic dysfunction. Unlike AMI in cardiotoxicity, cTn elevations may be better associated with cumulative dose and concentrations at steady state than cmax. CONCLUSIONS: To the best of our knowledge, this is the first study to precisely describe the diagnostic window and predictive value of cTns in anthracycline cardiotoxicity.


Assuntos
Antraciclinas/toxicidade , Cardiotoxicidade/sangue , Troponina I/sangue , Troponina T/sangue , Animais , Antibióticos Antineoplásicos/toxicidade , Biomarcadores/sangue , Biomarcadores/metabolismo , Cardiomiopatias/sangue , Cardiomiopatias/induzido quimicamente , Cardiotoxicidade/diagnóstico por imagem , Daunorrubicina/toxicidade , Modelos Animais de Doenças , Ecocardiografia , Coração/efeitos dos fármacos , Coração/fisiologia , Masculino , Valor Preditivo dos Testes , Coelhos , Análise de Regressão , Sístole/efeitos dos fármacos , Sístole/fisiologia
16.
Int Immunopharmacol ; 28(1): 154-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26072060

RESUMO

Inflammation and oxidative stress play important roles in the progression of renal damage. The natural polyphenol naringenin is known to exert potent antioxidant and anti-inflammatory effects. In this study, we have investigated the effect of naringenin on kidney dysfunction, fibrosis, endoplasmic reticulum (ER) stress, angiotensin II type I receptor (AT1R) expression and inflammation in daunorubicin (DNR) induced nephrotoxicity model. Nephrotoxicity was induced in rats by intravenous injection of DNR at a cumulative dose of 9 mg/kg. After 1 week, naringenin (20mg/kg/day. p.o) was administered daily for 6 weeks. Biochemical studies were performed to evaluate renal function. Western blotting was performed to measure the protein levels of AT1R, endothelin (ET)1, ET receptor type A (ETAR), extracellular signal-regulated kinase (ERK)1/2, nuclear factor (NF)κB p65, peroxisome proliferator activated receptor (PPAR)γ, oxidative/ER stress, apoptosis, and inflammatory markers in the kidney of DNR treated rats. Histopathological analysis was done using hemotoxylin eosin and Masson trichrome stained renal sections to investigate the structural abnormalities and fibrosis. DNR treated rats suffered from nephrotoxicity as evidenced by worsened renal function, increased blood urea nitrogen, serum creatinine levels in renal tissues and histopathogical abnormalities. Treatment with naringenin mitigated these changes. Furthermore, naringenin up regulated PPARγ and down regulated AT1R, ET1, ETAR, p-ERK1/2, p-NFκB p65, ER stress, apoptosis, and inflammatory markers. Our results suggest that naringenin has an ability to improve renal function and attenuates AT1R, ERK1/2-NFκB p65 signaling pathway in DNR induced nephrotoxicity in rats.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antibióticos Antineoplásicos/toxicidade , Daunorrubicina/antagonistas & inibidores , Daunorrubicina/toxicidade , Flavanonas/farmacologia , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Fármacos Renais/farmacologia , Fator de Transcrição RelA/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Injeções Intravenosas , Nefropatias/patologia , Masculino , PPAR gama/biossíntese , Ratos , Ratos Sprague-Dawley
17.
Bol. latinoam. Caribe plantas med. aromát ; 13(5): 437-457, sept.2014. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-786492

RESUMO

Dragon ́s blood root (Jatropha dioica) underwent a phytochemical screening showing the presence of flavonoids and terpenes responsible for the antioxidant potential observed in DPPH model for the decoction, aqueous and methanolic extracts. The chemoprotective effect of the root decoction was evaluated in liver, kidney and bone marrow cells of mice using the comet assay. Mutagens were administered via IP: cyclophosphamide (CCF) 50 mg/kg, daunorubicin (DAU) 10 mg/kg, and metyl metanesulfonate (MMS) 40 mg/kg, were co-administered with three doses of decoction 3.72 ml/kg, 10.71 ml/kg, and 21.42 ml/kg orally. Animals were sacrificed at 3, 9, 15 and 21 h after inoculation. The chemoprotective effect decreased DNA breaks at 3 hours in all organs, and longer against CCF and DAU, this effect probably being related to the antioxidant capacity of the decoction.


La raíz de Sangre de Drago (Jatropha dioica) se sometió a un tamizaje fitoquímico destacando la presencia de flavonoides y terpenos, posibles responsables del efecto antioxidante observado en el modelo de DPPH para la decocción, extracto acuoso y metanólico de la raíz. El efecto quimioprotector de la decocción, se evaluó en células hepáticas, renales y de médula ósea de ratón, mediante el ensayo cometa. Los mutágenos administrados vía I.P.: ciclofosfamida (CCF) 50 mg/kg, daunorrubicina (DAU) 10 mg/kg y metilmetanosulfonato (MMS) 40 mg/kg, se co-administraron con tres dosis de decocción 3,72 ml/kg, 10,71 ml/kg y 21,42 ml/kg, vía oral. Los animales fueron sacrificados a las 3, 9, 15 y 21 h posteriores a la aplicación. El efecto quimioprotector disminuyó las rupturas del DNA a las 3 horas en todos los órganos con los tres mutágenos, y permaneció por más tiempo frente a CCF y DAU, dicho efecto está relacionado con la capacidad antioxidante de la decocción.


Assuntos
Animais , Camundongos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Genotoxicidade/prevenção & controle , Jatropha/química , Substâncias Protetoras/farmacologia , Compostos de Bifenilo , Ensaio Cometa , Ciclofosfamida/toxicidade , Daunorrubicina/toxicidade , Metanossulfonato de Metila/toxicidade , Picratos
18.
J Pharm Pharmacol ; 66(12): 1698-709, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25131262

RESUMO

OBJECTIVES: To test the toxicity and antitumoral activity of the compound N-oleyl-daunorubicin (oDNR) with a cholesterol-rich nanoemulsion (LDE) formulation. METHODS: LDE-oDNR was prepared by high-pressure homogenisation of lipid mixtures. B16F10 melanoma cells and NIH/3T3 fibroblasts were used for cytotoxicity tests. The maximum tolerated dose (MTD) of both commercial and LDE-oDNR was determined in mice, and melanoma-bearing mice were used for the antitumoral activity tests. KEY FINDINGS: CC50 for LDE-oDNR and DNR in melanoma cells were 200 µm and 15 µm, respectively, but LDE-oDNR was less toxic against fibroblasts than DNR. MTD for LDE-oDNR was 65-fold higher than commercial DNR. In tumour-bearing mice, LDE-oDNR (7.5 µmol/kg) reduced tumour growth by 59 ± 2%, whereas the reduction by DNR was only 23 ± 2%. LDE-oDNR increased survival rates (P < 0.05), which was not achieved by DNR treatment. The number of mice with metastasis was only 30% in LDE-oDNR-treated mice, compared with 82% under DNR treatment. By flow cytometry, there were 9% viable cells in tumours of animals treated with LDE-oDNR compared with 27% in DNR-treated animals. Less haematological toxicity was observed in LDE-oDNR-treated mice. CONCLUSIONS: Compared with DNR, LDE-oDNR improved tumour growth inhibition and survival rates with pronouncedly less toxicity, and thus may become a new tool for cancer treatment.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Colesterol/química , Daunorrubicina/análogos & derivados , Daunorrubicina/uso terapêutico , Portadores de Fármacos/química , Melanoma Experimental/tratamento farmacológico , Nanoestruturas/química , Ácidos Oleicos/uso terapêutico , Receptores de LDL/metabolismo , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/administração & dosagem , Daunorrubicina/toxicidade , Estabilidade de Medicamentos , Emulsões , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Estrutura Molecular , Transplante de Neoplasias , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/toxicidade , Tamanho da Partícula , Ligação Proteica , Testes de Toxicidade Aguda
19.
Mater Sci Eng C Mater Biol Appl ; 37: 271-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24582249

RESUMO

Polymeric pH- and thermo-sensitive microcontainers (MCs) were developed as a potential drug delivery system for cancer therapy. It is well known that cancer cells exhibit notable characteristics such as acidic pH due to glycolytic cycle and higher temperature due to their higher proliferation rate. Based on these characteristics, we constructed a dual pH- and thermo-sensitive material for specific drug release on the pathological tissue. The MC's fabrication is based on a two-step procedure, in which, the first step involves the core synthesis and the second one is related to the shell formation. The core consists of poly(methyl methacrylate (PMMA), while the shell consists of PMMA, poly(isopropylacrylamide), poly(acrylic acid) and poly(divinylbenzene). Three different types of MCs were synthesized based on the seed polymerization method. The synthesized MCs were characterized structurally by Fourier transform infrared and morphologically by scanning electron microscopy. Dynamic light scattering was also used to study their behavior in aqueous solution under different pH and temperature conditions. For the loading and release study, the anthracycline drug daunorubicin (DNR) was used as a model drug, and its release properties were evaluated under different pH and thermo-conditions. Cytotoxicity studies were also carried out against MCF-7 breast cancer and 3T3 mouse embryonic fibroblast cells. According to our results, the synthesized microcontainers present desired pH and thermo behavior and can be applied in drug delivery systems. It is worth mentioning that the synthesized microcontainers which incorporated the drug DNR exhibit higher toxicity than the free drug.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Polímeros/química , Células 3T3 , Resinas Acrílicas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/administração & dosagem , Daunorrubicina/química , Daunorrubicina/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Polimetil Metacrilato/química , Estirenos/química , Temperatura
20.
Nanomedicine (Lond) ; 9(12): 1807-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24628688

RESUMO

BACKGROUND: Treatment with daunorubicin (DNR) in acute myeloid leukemia is moderately effective and associated with significant side effects, including cardiac toxicity. We recently developed a nanomicellar formulation of DNR that specifically targets acute myeloid leukemia stem cells. MATERIALS & METHODS: Pharmacokinetics analysis of free DNR, DNR in nanomicellar formulations was performed in Balb/c mice and Sprague-Dawley rats. Histochemical staining, caspase 3/7, troponin and creatine kinase MB isoenzyme were used to assess toxicity. RESULTS: Compared with free DNR, the nanomicellar formulations of DNR had less cardiotoxicity as evidenced by milder histopathological changes, lower caspase 3/7 activity in heart tissue (p = 0.002), lower plasma creatine kinase MB isoenzyme (p = 0.002) and troponin concentrations (p = 0.001) postinjection. The area under curve concentration of DNR in micelles increased by 31.9-fold in mice (p < 0.0001) and 22.0-fold higher in rats (p < 0.001). CONCLUSION: Leukemia stem cell-targeting micelles dramatically change the pharmacokinetics and reduce the cardiac toxicity of DNR, which may enable improved DNR-based treatment of acute myeloid leukemia.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Daunorrubicina/administração & dosagem , Daunorrubicina/farmacocinética , Animais , Antibióticos Antineoplásicos/toxicidade , Caspases/metabolismo , Química Farmacêutica , Daunorrubicina/toxicidade , Dendrímeros/química , Sistemas de Liberação de Medicamentos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Miocárdio/metabolismo , Miocárdio/patologia , Nanomedicina , Células-Tronco Neoplásicas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA