Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(9): 209, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115578

RESUMO

KEY MESSAGE: The C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the terpenoid indole alkaloid pathway when highly expressed. Catharanthus roseus is the sole known producer of the anti-cancer terpenoid indole alkaloids (TIAs), vinblastine and vincristine. While the enzymatic steps of the pathway have been elucidated, an understanding of its regulation is still emerging. The present study characterizes an important subgroup of Cys2-His2 zinc finger transcription factors known as Zinc finger Catharanthus Transcription factors (ZCTs). We identified three new ZCT members (named ZCT4, ZCT5, and ZCT6) that clustered with the putative repressors of the TIA pathway, ZCT1, ZCT2, and ZCT3. We characterized the role of these six ZCTs as potential redundant regulators of the TIA pathway, and their tissue-specific and jasmonate-responsive expression. These ZCTs share high sequence conservation in their two Cys2-His2 zinc finger domains but differ in the spacer length and sequence between these zinc fingers. The transient overexpression of ZCTs in seedlings significantly repressed the promoters of the terpenoid (pLAMT) and condensation branch (pSTR1) of the TIA pathway, consistent with that previously reported for ZCT1, ZCT2, and ZCT3. In addition, ZCTs significantly repressed and indirectly activated several promoters of the vindoline pathway (not previously studied). The ZCTs differed in their tissue-specific expression but similarly increased with jasmonate in a dosage-dependent manner (except for ZCT5). We showed significant activation of the pZCT1 and pZCT3 promoters by the de-repressed CrMYC2a, suggesting that the jasmonate-responsive expression of the ZCTs can be mediated by CrMYC2a. In summary, the C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the TIA pathway when highly expressed.


Assuntos
Catharanthus , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Proteínas de Plantas , Fatores de Transcrição , Catharanthus/genética , Catharanthus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Dedos de Zinco CYS2-HIS2/genética , Plantas Geneticamente Modificadas , Alcaloides de Triptamina e Secologanina/metabolismo , Filogenia , Dedos de Zinco
2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894862

RESUMO

Q-type C2H2 zinc finger proteins (ZFPs), the largest family of transcription factors, have been extensively studied in plant genomes. However, the genes encoding this transcription factor family have not been explored in grapevine genomes. Therefore, in this study, we conducted a genome-wide identification of ZFP genes in three species of grapevine, namely Vitis vinifera, Vitis riparia, and Vitis amurensis, based on the sequence databases and phylogenetic and their conserved domains. We identified 52, 54, and 55 members of Q-type C2H2 ZFPs in V. vinifera, V. riparia, and V. amurensis, respectively. The physical and chemical properties of VvZFPs, VrZFPs, and VaZFPs were examined. The results showed that these proteins exhibited differences in the physical and chemical properties and that they all were hydrophobic proteins; the instability index showed that the four proteins were stable. The subcellular location of the ZFPs in the grapevine was predicted mainly in the nucleus. The phylogenetic tree analysis of the amino acid sequences of VvZFP, VaZFP, VrZFP, and AtZFP proteins showed that they were closely related and were divided into six subgroups. Chromosome mapping analysis showed that VvZFPs, VrZFPs, and VaZFPs were unevenly distributed on different chromosomes. The clustered gene analysis showed that the motif distribution was similar and the sequence of genes was highly conserved. Exon and intron structure analysis showed that 118 genes of ZFPs were intron deletion types, and the remaining genes had variable numbers of introns, ranging from 2 to 15. Cis-element analysis showed that the promoter of VvZFPs contained multiple cis-elements related to plant hormone response, stress resistance, and growth, among which the stress resistance elements were the predominant elements. Finally, the expression of VvZFP genes was determined using real-time quantitative PCR, which confirmed that the identified genes were involved in response to methyl jasmonate (MeJA), abscisic acid (ABA), salicylic acid (SA), and low-temperature (4 °C) stress. VvZFP10-GFP and VvZFP46-GFP fusion proteins were localized in the nucleus of tobacco cells, and VvZFP10 is the most responsive gene among all VvZFPs with the highest relative expression level to MeJA, ABA, SA and low-temperature (4 °C) stress. The present study provides a theoretical basis for exploring the mechanism of response to exogenous hormones and low-temperature tolerance in grapes and its molecular breeding in the future.


Assuntos
Dedos de Zinco CYS2-HIS2 , Dedos de Zinco CYS2-HIS2/genética , Filogenia , Proteínas de Plantas/metabolismo , Genoma de Planta , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Dedos de Zinco/genética
3.
BMC Plant Biol ; 20(1): 359, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727369

RESUMO

BACKGROUNDS: C2H2-type zinc finger protein (ZFPs) form a relatively large family of transcriptional regulators in plants, and play many roles in plant growth, development, and stress response. However, the comprehensive analysis of C2H2 ZFPs in cucumber (CsZFPs) and their regulation function in cucumber are still lacking. RESULTS: In the current study, the whole genome identification and characterization of CsZFPs, including the gene structure, genome localization, phylogenetic relationship, and gene expression were performed. Functional analysis of 4 selected genes by transient transformation were also conducted. A total of 129 full-length CsZFPs were identified, which could be classified into four groups according to the phylogenetic analysis. The 129 CsZFPs unequally distributed on 7 chromosomes. Promoter cis-element analysis showed that the CsZFPs might involve in the regulation of phytohormone and/or abiotic stress response, and 93 CsZFPs were predicted to be targeted by one to 20 miRNAs. Moreover, the subcellular localization analysis indicated that 10 tested CsZFPs located in the nucleus and the transcriptome profiling analysis of CsZFPs demonstrated that these genes are involved in root and floral development, pollination and fruit spine. Furthermore, the transient overexpression of Csa1G085390 and Csa7G071440 into Nicotiana benthamiana plants revealed that they could decrease and induce leave necrosis in response to pathogen attack, respectively, and they could enhance salt and drought stresses through the initial induction of H2O2. In addition, Csa4G642460 and Csa6G303740 could induce cell death after 5 days transformation. CONCLUSIONS: The identification and function analysis of CsZFPs demonstrated that some key individual CsZFPs might play essential roles in response to biotic and abiotic stresses. These results could lay the foundation for understanding the role of CsZFPs in cucumber development for future genetic engineering studies.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Cucumis sativus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Morte Celular/genética , Mapeamento Cromossômico , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Secas , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Peróxido de Hidrogênio/metabolismo , MicroRNAs , Filogenia , Células Vegetais , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Nicotiana/genética , Nicotiana/microbiologia
4.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326652

RESUMO

Aluminum (Al) toxicity limits plant growth and has a major impact on the agricultural productivity in acidic soils. The zinc-finger protein (ZFP) family plays multiple roles in plant development and abiotic stresses. Although previous reports have confirmed the function of these genes, their transcriptional mechanisms in wild soybean (Glycine soja) are unclear. In this study, GsGIS3 was isolated from Al-tolerant wild soybean gene expression profiles to be functionally characterized in Arabidopsis. Laser confocal microscopic observations demonstrated that GsGIS3 is a nuclear protein, containing one C2H2 zinc-finger structure. Our results show that the expression of GsGIS3 was of a much higher level in the stem than in the leaf and root and was upregulated under AlCl3, NaCl or GA3 treatment. Compared to the control, overexpression of GsGIS3 in Arabidopsis improved Al tolerance in transgenic lines with more root growth, higher proline and lower Malondialdehyde (MDA) accumulation under concentrations of AlCl3. Analysis of hematoxylin staining indicated that GsGIS3 enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. Moreover, GsGIS3 expression in Arabidopsis enhanced the expression of Al-tolerance-related genes. Taken together, our findings indicate that GsGIS3, as a C2H2 ZFP, may enhance tolerance to Al toxicity through positive regulation of Al-tolerance-related genes.


Assuntos
Alumínio/toxicidade , Arabidopsis/metabolismo , Dedos de Zinco CYS2-HIS2/genética , Glycine max/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Cloreto de Alumínio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/farmacologia , Microscopia Confocal , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Regulação para Cima
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117401, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31394393

RESUMO

Polypeptides with finger-like structures can often intercalate into the grooves of DNA, thereby affecting DNA repair or activating gene transcription, both of which are crucial for the regulation of physiological processes. Their conserved amino acid sequence and simple structure have provided useful elements for the design and assembly of functional molecules. In this paper, using the C2H2 zinc finger domain and the PEP-FOLD3 online simulation platform 11 polypeptides containing 22 amino acid residues were designed. In addition, the CD spectroscopy was combined with the fluorescence spectroscopy to study the polypeptide structures and their interaction with DNA. Results showed that although addition of zinc ions affected the polypeptide structure, particularly of the polypeptides A4, B1, and B3, zinc ion was not an essential factor for increasing polypeptide-DNA interactions. Our study revealed an increase in the interaction strength between mutated polypeptides and DNA, suggesting that mutations disrupt polypeptide structure, and polypeptides interact with DNA by groove and electrostatic binding. Mutations at the 12th and 15th amino acid residues had the greatest effect. The stronger binding between A2 or B2 and DNA indicates that the polypeptide has a spatial structure that can stably interact with DNA. The structure and characteristics of these polypeptide domains can provide information for the design and development of new polypeptide functional molecules, which could have potential significance and applications. However, this information also suggests that there are many challenges facing polypeptide design due to the synergistic effects between the side chains of amino acid residues.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Peptídeos , Engenharia de Proteínas/métodos , Software , Sequência de Aminoácidos , Sequência Conservada/genética , DNA/química , DNA/metabolismo , Modelos Moleculares , Mutação/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína
6.
Electron. j. biotechnol ; Electron. j. biotechnol;34: 76-82, july. 2018. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1047373

RESUMO

Background: Jatropha curcas L., as an important strategic biofuel resource with considerable economic potential, has attracted worldwide attention. However, J. curcas has yet to be domesticated. Plant height, an important agronomic trait of J. curcas, has not been sufficiently improved, and the genetic regulation of this trait in J. curcas is not fully understood. Zinc finger proteins (ZFPs), a class of transcription factors, have previously been shown to play critical roles in regulating multiple aspects of plant growth and development and may accordingly be implicated in the genetic regulation of plant height in J. curcas. Results: In this study, we cloned JcZFP8, a C2H2 ZFP gene in J. curcas. We found that the JcZFP8 protein was localized in the nucleus and contained a conserved QALGGH motif in its C2H2 structure. Furthermore, ectopic expression of JcZFP8 under the control of the 35S promoter in transgenic tobacco resulted in dwarf plants with malformed leaves. However, when JcZFP8 was knocked out, the transgenic tobacco did not show the dwarf phenotype. After treatment with the gibberellic acid (GA) biosynthesis inhibitor paclobutrazol (PAC), the dwarf phenotype was more severe than plants that did not receive the PAC treatment, whereas application of exogenous gibberellin3 (GA3) reduced the dwarf phenotype in transgenic plants. Conclusions: The results of this study indicate that JcZFP8 may play a role in J. curcas plant phenotype through GA-related pathways. Our findings may help us to understand the genetic regulation of plant development in J. curcas and to accelerate breeding progress through engineering of the GA metabolic pathway in this plant. How to cite: Shi X,Wu Y, Dai T, et al. JcZFP8, a C2H2 zinc-finger protein gene from Jatropha curcas, influences plant development in transgenic tobacco.


Assuntos
Nicotiana/genética , Jatropha , Desenvolvimento Vegetal , Dedos de Zinco CYS2-HIS2/genética , Reguladores de Crescimento de Plantas/genética , Fatores de Transcrição , Triazóis , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Reação em Cadeia da Polimerase em Tempo Real , Giberelinas
7.
PLoS Comput Biol ; 14(6): e1006290, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29953437

RESUMO

A major goal of cancer genomics is to identify somatic mutations that play a role in tumor initiation or progression. Somatic mutations within transcription factors are of particular interest, as gene expression dysregulation is widespread in cancers. The substantial gene expression variation evident across tumors suggests that numerous regulatory factors are likely to be involved and that somatic mutations within them may not occur at high frequencies across patient cohorts, thereby complicating efforts to uncover which ones are cancer-relevant. Here we analyze somatic mutations within the largest family of human transcription factors, namely those that bind DNA via Cys2His2 zinc finger domains. Specifically, to hone in on important mutations within these genes, we aggregated somatic mutations across all of them by their positions within Cys2His2 zinc finger domains. Remarkably, we found that for three classes of cancers profiled by The Cancer Genome Atlas (TCGA)-Uterine Corpus Endometrial Carcinoma, Colon and Rectal Adenocarcinomas, and Skin Cutaneous Melanoma-two specific, functionally important positions within zinc finger domains are mutated significantly more often than expected by chance, with alterations in 18%, 10% and 43% of tumors, respectively. Numerous zinc finger genes are affected, with those containing Krüppel-associated box (KRAB) repressor domains preferentially targeted by these mutations. Further, the genes with these mutations also have high overall missense mutation rates, are expressed at levels comparable to those of known cancer genes, and together have biological process annotations that are consistent with roles in cancers. Altogether, we introduce evidence broadly implicating mutations within a diverse set of zinc finger proteins as relevant for cancer, and propose that they contribute to the widespread transcriptional dysregulation observed in cancer cells.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Dedos de Zinco/genética , Polipose Adenomatosa do Colo/genética , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Dedos de Zinco CYS2-HIS2/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Neoplasias/genética , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Uterinas/genética , Dedos de Zinco/fisiologia
8.
BMC Res Notes ; 11(1): 398, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921330

RESUMO

OBJECTIVE: Q-type C2H2 transcription factors (TF) play crucial roles in the plant response to stress, often leading to regulation of downstream genes required for tolerance to these challenges. An infestation-responsive Q-type C2H2 TF (StZFP2) is induced by wounding and infestation in potato. While mining the Solanum tuberosum Group Phureja genome for additional members of this family of proteins, five StZFP2-like genes were found on a portion of chromosome 11. The objective of this work was to differentiate these genes in tissue specificity and expression upon infestation. RESULTS: Examination of different tissues showed that young roots had the highest amounts of transcripts for five of the genes. Expression of their transcripts upon excision or infestation by Manduca sexta, showed that all six genes were induced. Overall, each gene showed variations in its response to infestation and specificity for tissue expression. The six genes encode very similar proteins but most likely play unique roles in the plant response to infestation. In contrast, only two homologs have been identified in Arabidopsis and tomato. Overexpression of similar genes has led to enhanced tolerance to, for example, salinity, drought and pathogen stress. Discovery of these new StZFP2 homologs could provide additional resources for potato breeders.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Expressão Gênica/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitologia , Animais , Manduca
9.
Gene ; 658: 47-53, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518550

RESUMO

Trichomes are epidermal outgrowths of plant tissues that can secrete or store large quantities of secondary metabolites, which contribute to plant defense responses against stress. The use of bioengineering methods for regulating the development of trichomes and metabolism is a widely researched topic. In the present study, we demonstrate that JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L., can regulate trichome development in transgenic tobacco. To understand the underlying mechanisms, we performed transcriptome profiling of overexpression JcZFP8 transgenic plants and wild-type tobacco. Based on the analysis of differentially expressed genes, we determined that genes of the plant hormone signal transduction pathway was significantly enriched, suggesting that these pathways were modulated in the transgenic plants. In addition, the transcript levels of the known trichome-related genes in Arabidopsis were not significantly changed, whereas CycB2 and MYB genes were differentially expressed in the transgenic plants. Despite tobacco and Arabidopsis have different types of trichomes, all the pathways were associated with C2H2 zinc finger protein genes. Our findings help us to understand the regulation of multicellular trichome formation and suggest a new metabolic engineering method for the improvement of plants.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Jatropha/genética , Nicotiana/genética , Tricomas/genética , Proteínas de Arabidopsis/genética , Dedos de Zinco CYS2-HIS2/fisiologia , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais/genética
10.
Physiol Plant ; 158(3): 297-311, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27194419

RESUMO

Transcription factors (TFs) play critical roles in mediating defense of plants to abiotic stresses through regulating downstream defensive genes. In this study, a wheat C2H2-ZFP (zinc finger protein) type TF gene designated as TaZAT8 was functionally characterized in mediating tolerance to the inorganic phosphate (Pi)-starvation stress. TaZAT8 bears conserved motifs harboring in the C2H2-ZFP type counterparts across vascular plant species. The expression of TaZAT8 was shown to be induced in roots upon Pi deprivation, with a Pi concentration- and temporal-dependent manner. Overexpression of TaZAT8 in tobacco conferred plants improved tolerance to Pi deprivation; the transgenic lines exhibited enlarged phenotype and elevated biomass and phosphorus (P) accumulation relative to wild-type (WT) after Pi-starvation treatment. NtPT1 and NtPT2, the tobacco phosphate transporter (PT) genes, showed increased transcripts in the Pi-deprived transgenic lines, indicative of their transcriptional regulation by TaZAT8. Overexpression analysis of these PT genes validated their function in mediating Pi acquisition under the Pi deprivation conditions. Additionally, the TaZAT8-overexpressing lines also behaved enhanced antioxidant enzyme (AE) activities and enlarged root system architecture (RSA) with respect to WT. Evaluation of the transcript abundance of tobacco genes encoding AE and PIN proteins, including NtMnSOD1, NtSOD1, NtPOD1;2, NtPOD1;5, NtPOD1;6, and NtPOD1;9, and NtPIN1 and NtPIN4 are upregulated in the TaZAT8-overexpressing lines. Overexpression of NtPIN1 and NtPIN4 conferred plants to enlarged RSA and elevated biomass under the Pi-starvation stress conditions. Our investigation provides insights into plant adaptation to the Pi-starvation stress mediated by distinct ZFP TFs through modulation of Pi acquisition and cellular ROS detoxicity.


Assuntos
Dedos de Zinco CYS2-HIS2/fisiologia , Fosfatos/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/fisiologia , Triticum/fisiologia , Dedos de Zinco CYS2-HIS2/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Homeostase , Fosfatos/deficiência , Fosfatos/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Triticum/genética , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA