Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.363
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Methods Mol Biol ; 2831: 39-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134842

RESUMO

Dendritic arborization is a critical determinant of neuronal connectivity. The structure of a neuron's dendritic arbor determines the number of synaptic inputs a neuron can receive and how it processes synaptic input from other neurons. Here, we describe methods for visualizing and quantifying the dendritic arbor in primary cell cultures and in the intact rodent brain. These techniques can be used to answer significant scientific questions, such as the effects of disease processes, drugs, growth factors, and diverse environmental stressors on dendritogenesis in both in vitro and in vivo rodent models.


Assuntos
Dendritos , Animais , Dendritos/metabolismo , Camundongos , Ratos , Células Cultivadas , Neurônios/metabolismo , Neurônios/citologia , Roedores , Encéfalo/citologia , Encéfalo/metabolismo
2.
PLoS Genet ; 20(8): e1011388, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186815

RESUMO

Most neurons are not replaced after injury and thus possess robust intrinsic mechanisms for repair after damage. Axon injury triggers a calcium wave, and calcium and cAMP can augment axon regeneration. In comparison to axon regeneration, dendrite regeneration is poorly understood. To test whether calcium and cAMP might also be involved in dendrite injury signaling, we tracked the responses of Drosophila dendritic arborization neurons to laser severing of axons and dendrites. We found that calcium and subsequently cAMP accumulate in the cell body after both dendrite and axon injury. Two voltage-gated calcium channels (VGCCs), L-Type and T-Type, are required for the calcium influx in response to dendrite injury and play a role in rapid initiation of dendrite regeneration. The AC8 family adenylyl cyclase, Ac78C, is required for cAMP production after dendrite injury and timely initiation of regeneration. Injury-induced cAMP production is sensitive to VGCC reduction, placing calcium upstream of cAMP generation. We propose that two VGCCs initiate global calcium influx in response to dendrite injury followed by production of cAMP by Ac78C. This signaling pathway promotes timely initiation of dendrite regrowth several hours after dendrite damage.


Assuntos
Adenilil Ciclases , Canais de Cálcio Tipo L , Cálcio , AMP Cíclico , Dendritos , Animais , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Axônios/metabolismo , Axônios/fisiologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/genética , Sinalização do Cálcio/genética , AMP Cíclico/metabolismo , Dendritos/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regeneração Nervosa/fisiologia , Regeneração Nervosa/genética , Neurônios/metabolismo , Regeneração/genética , Regeneração/fisiologia , Transdução de Sinais
3.
Cells ; 13(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38920658

RESUMO

The development of cell-type-specific dendritic arbors is integral to the proper functioning of neurons within their circuit networks. In this study, we examine the regulatory relationship between the cytosolic chaperonin CCT, key insulin pathway genes, and an E3 ubiquitin ligase (Cullin1) in dendritic development. CCT loss of function (LOF) results in dendritic hypotrophy in Drosophila Class IV (CIV) multi-dendritic larval sensory neurons, and CCT has recently been shown to fold components of the TOR (Target of Rapamycin) complex 1 (TORC1) in vitro. Through targeted genetic manipulations, we confirm that an LOF of CCT and the TORC1 pathway reduces dendritic complexity, while overexpression of key TORC1 pathway genes increases the dendritic complexity in CIV neurons. Furthermore, both CCT and TORC1 LOF significantly reduce microtubule (MT) stability. CCT has been previously implicated in regulating proteinopathic aggregation, thus, we examine CIV dendritic development in disease conditions as well. The expression of mutant Huntingtin leads to dendritic hypotrophy in a repeat-length-dependent manner, which can be rescued by Cullin1 LOF. Together, our data suggest that Cullin1 and CCT influence dendritic arborization through the regulation of TORC1 in both health and disease.


Assuntos
Proteínas Culina , Dendritos , Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas Culina/metabolismo , Proteínas Culina/genética , Dendritos/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Larva/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Microtúbulos/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Fatores de Transcrição , Chaperonina com TCP-1
4.
Environ Int ; 186: 108643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615544

RESUMO

Exposure to bisphenol S (BPS) is known to adversely affect neuronal development. As pivotal components of neuronal polarization, axons and dendrites are indispensable structures within neurons, crucial for the maintenance of nervous system function. Here, we investigated the impact of BPS exposure on axonal and dendritic development both in vivo and in vitro. Our results revealed that exposure to BPS during pregnancy and lactation led to a reduction in the complexity, density, and length of axons and dendrites in the prefrontal cortex (PFC) of offspring. Employing RNA sequencing technology to elucidate the underlying mechanisms of axonal and dendritic damage induced by BPS, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted a significant alteration in the oxidative phosphorylation (OXPHOS) pathway, essential for mitochondrial function. Subsequent experiments demonstrate BPS-induced impairment in mitochondrial function, including damaged morphology, decreased adenosine triphosphate (ATP) and superoxide dismutase (SOD) levels, and increased reactive oxygen species and malondialdehyde (MDA). These alterations coincided with the downregulated expression of OXPHOS pathway-related genes (ATP6V1B1, ATP5K, NDUFC1, NDUFC2, NDUFA3, COX6B1) and Myosin 19 (Myo19). Notably, Myo19 overexpression restored the BPS-induced mitochondrial dysfunction by alleviating the inhibition of OXPHOS pathway. Consequently, this amelioration was associated with a reduction in BPS-induced axonal and dendritic injury observed in cultured neurons of the PFC.


Assuntos
Axônios , Dendritos , Mitocôndrias , Fosforilação Oxidativa , Fenóis , Sulfonas , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fenóis/toxicidade , Dendritos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Feminino , Sulfonas/toxicidade , Axônios/efeitos dos fármacos , Gravidez , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Camundongos
5.
Mol Ther ; 32(6): 1721-1738, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38566414

RESUMO

Recombinant adeno-associated viruses (AAVs) allow rapid and efficient gene delivery to the nervous system, are widely used in neuroscience research, and are the basis of FDA-approved neuron-targeting gene therapies. Here we find that an innate immune response to the AAV genome reduces dendritic length and complexity and disrupts synaptic transmission in mouse somatosensory cortex. Dendritic loss is apparent 3 weeks after injection of experimentally relevant viral titers, is not restricted to a particular capsid serotype, transgene, promoter, or production facility, and cannot be explained by responses to surgery or transgene expression. AAV-associated dendritic loss is accompanied by a decrease in the frequency and amplitude of miniature excitatory postsynaptic currents and an increase in the proportion of GluA2-lacking, calcium-permeable AMPA receptors. The AAV genome is rich in unmethylated CpG DNA, which is recognized by the innate immunoreceptor Toll-like receptor 9 (TLR9), and acutely blocking TLR9 preserves dendritic complexity and AMPA receptor subunit composition in AAV-injected mice. These results reveal unexpected impacts of an immune response to the AAV genome on neuronal structure and function and identify approaches to improve the safety and efficacy of AAV-mediated gene delivery in the nervous system.


Assuntos
Dendritos , Dependovirus , Vetores Genéticos , Imunidade Inata , Transmissão Sináptica , Receptor Toll-Like 9 , Animais , Dependovirus/genética , Camundongos , Dendritos/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/imunologia , Genoma Viral
6.
Nature ; 628(8009): 818-825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658687

RESUMO

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Assuntos
Transtorno Autístico , Síndrome do QT Longo , Oligonucleotídeos Antissenso , Sindactilia , Animais , Feminino , Humanos , Masculino , Camundongos , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Movimento Celular/efeitos dos fármacos , Dendritos/metabolismo , Éxons/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Organoides/efeitos dos fármacos , Organoides/metabolismo , Prosencéfalo/metabolismo , Prosencéfalo/citologia , Sindactilia/tratamento farmacológico , Sindactilia/genética , Interneurônios/citologia , Interneurônios/efeitos dos fármacos
7.
Mol Autism ; 15(1): 10, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383466

RESUMO

BACKGROUND: A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS: To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS: Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS: The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS: Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.


Assuntos
Transtorno do Espectro Autista , Citocinas , Feminino , Masculino , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Leucócitos Mononucleares/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1alfa/farmacologia , Transtorno do Espectro Autista/metabolismo , Células Cultivadas , Sexismo , Macrófagos/metabolismo , Granulócitos/metabolismo , Dendritos/metabolismo
8.
Neurotoxicology ; 101: 82-92, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346645

RESUMO

Recent evidence showed that general anesthesia produces long-term neurotoxicity and cognitive dysfunction. However, it remains unclear whether maternal non-obstetric surgery under ketamine anesthesia during second trimester causes cognitive impairment in offspring. The present study assigned pregnant rats into three groups: 1) normal control group receiving no anesthesia and no surgery, 2) ketamine group receiving ketamine anesthesia for 2 h on the 14th day of gestation but no surgery, and 3) surgery group receiving abdominal surgery under ketamine anesthesia on the 14th day of gestation. On postnatal day 1, the offspring rats in Ketamine group and surgery group were assigned to receive intra-peritoneal injection of Senegenin (15 mg/kg), once per day for consecutive 14 days. The offspring's spatial perception, anxiety-like behavior, and learning and memory were evaluated. Then the offspring's hippocampal tissues were collected. The offspring of the surgery group were impaired in the spatial perception in the cliff avoidance test and the spatial learning and memory in the Morris water maze test. Accordingly, the activity of histone deacetylases increased, the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 decreased, and the density of dendritic spines reduced in the hippocampus of the offspring of the surgery group, and such effects were not seen in the offspring of the ketamine group, neither in the offspring of control group. Senegenin alleviated the learning and memory impairment, and increased the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 and the density of dendritic spines in the offspring of the surgery group. ketamine anesthesia plus surgery during second trimester impairs hippocampus-dependent learning and memory, and the deficits could be rescued by treatment with Senegenin.


Assuntos
Anestesia , Ketamina , Gravidez , Feminino , Ratos , Animais , Ketamina/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem Espacial , Hipocampo , Dendritos , Aprendizagem em Labirinto
9.
J Psychiatr Res ; 171: 99-107, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262166

RESUMO

BACKGROUND: Autoimmunity plays an important role in schizophrenia (SCZ). Autoantibodies against SFT2D2 have been reported in patients with SCZ; however, the specific mechanism remains unclear. This study aimed to describe an autoimmune model, namely, mice immunized against SFT2D2-peptides. METHODS: ApoE-/- and WT mice (C57BL/6) were immunized four times (day 0, day 14, day 21, day 35) with SFT2D2 peptide or KLH via subcutaneous injection. Behavioral tests were conducted after the third immunization, and immunochemistry of brain tissue were performed after the sacrifice of the mice. RESULTS: Active immunization with KLH-coupled SFT2D2-derived peptides in both WT and ApoE-/- (compromised blood-brain barrier) mice led to high circulating levels of anti-SFT2D2 IgG. While there was no detectable deficit in WT mice, impaired pre-pulse inhibition, motor impairments, and reduced cognition in ApoE-/- mice, without signs of anxiety and depression were observed. In addition, immunohistochemical assays demonstrated that activated microglia and astrocytes were increased but neuronal dendritic spine densities were decreased, accompanied by increased expression of complement molecule C4 across brain regions in ApoE-/- mice. CONCLUSIONS: In model mice with compromised blood-brain barrier, endogenous anti-SFT2D2 IgG can activate glial cells and modulate synaptic plasticity, and induce a series of psychosis-like changes. These antibodies may reveal valuable therapeutic targets, which may improve the treatment strategies for a subgroup of SCZ patients.


Assuntos
Autoanticorpos , Imunoglobulina G , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Imunoglobulina G/metabolismo , Apolipoproteínas E , Peptídeos , Dendritos/metabolismo
10.
Purinergic Signal ; 20(2): 115-125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37246192

RESUMO

During the establishment of neuronal circuits, axons and dendrites grow and branch to establish specific synaptic connections. This complex process is highly regulated by positive and negative extracellular cues guiding the axons and dendrites. Our group was pioneer in describing that one of these signals are the extracellular purines. We found that extracellular ATP, through its selective ionotropic P2X7 receptor (P2X7R), negatively regulates axonal growth and branching. Here, we evaluate if other purinergic compounds, such as the diadenosine pentaphosphate (Ap5A), may module the dynamics of dendritic or axonal growth and branching in cultured hippocampal neurons. Our results show that Ap5A negatively modulates the dendrite's growth and number by inducing transient intracellular calcium increases in the dendrites' growth cone. Interestingly, phenol red, commonly used as a pH indicator in culture media, also blocks the P2X1 receptors, avoided the negative modulation of Ap5A on dendrites. Subsequent pharmacological studies using a battery of selective P2X1R antagonists confirmed the involvement of this subunit. In agreement with pharmacological studies, P2X1R overexpression caused a similar reduction in dendritic length and number as that induced by Ap5A. This effect was reverted when neurons were co-transfected with the vector expressing the interference RNA for P2X1R. Despite small hairpin RNAs reverting the reduction in the number of dendrites caused by Ap5A, it did not avoid the dendritic length decrease induced by the polyphosphate, suggesting, therefore, the involvement of a heteromeric P2X receptor. Our results are indicating that Ap5A exerts a negative influence on dendritic growth.


Assuntos
Trifosfato de Adenosina , Fosfatos de Dinucleosídeos , Receptores Purinérgicos P2 , Trifosfato de Adenosina/farmacologia , Receptores Purinérgicos P2/metabolismo , Neurônios/metabolismo , Dendritos/metabolismo , Hipocampo/metabolismo
11.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902086

RESUMO

Neuronal differentiation is regulated by neuronal activity. Here, we analyzed dendritic and axonal growth of Basket cells (BCs) and non-Basket cells (non-BCs) using sparse transfection of channelrhodopsin-YFP and repetitive optogenetic stimulation in slice cultures of rat visual cortex. Neocortical interneurons often display axon-carrying dendrites (AcDs). We found that the AcDs of BCs and non-BCs were, on average, the most complex dendrites. Further, the AcD configuration had an influence on BC axonal development. Axons originating from an AcD formed denser arborizations with more terminal endings within the dendritic field of the parent cell. Intriguingly, this occurred already in unstimulated BCs, and complexity was not increased further by optogenetic stimulation. However, optogenetic stimulation exerted a growth-promoting effect on axons emerging from BC somata. The axons of non-BCs neither responded to the AcD configuration nor to the optogenetic stimulation. The results suggest that the formation of locally dense BC plexuses is regulated by spontaneous activity. Moreover, in the AcD configuration, the AcD and the axon it carries mutually support each other's growth.


Assuntos
Axônios , Interneurônios , Animais , Ratos , Células Epiteliais , Células Musculares , Dendritos
12.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903257

RESUMO

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Assuntos
Doença de Alzheimer , Esclerose Tuberosa , Animais , Camundongos , Doença de Alzheimer/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Dendritos/metabolismo , Mamíferos/metabolismo , Esclerose Tuberosa/genética
13.
J Biol Chem ; 299(7): 104916, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315786

RESUMO

In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. To test if the dynein adapter RAB-interacting lysosomal protein (RILP) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents previously validated in non-neuronal cells. Striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of staining. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. It would be interesting to identify the actual target for this neuronal Golgi phenotype. Cell type-specific off-target phenotypes therefore likely occur in neurons, necessitating revalidation of reagents that were previously validated in other cell types.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo de Golgi , Neurônios , RNA Interferente Pequeno , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Células HeLa , Lisossomos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Complexo de Golgi/metabolismo , proteínas de unión al GTP Rab7/metabolismo , Proteínas Nucleares/metabolismo , Biomarcadores/metabolismo , Dendritos/metabolismo , Reprodutibilidade dos Testes
14.
Cell Rep ; 42(7): 112692, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37355986

RESUMO

The complex cytoarchitecture of neurons poses significant challenges for the maturation of synaptic membrane proteins. It is currently unclear whether locally secreted synaptic proteins bypass the Golgi or whether they traffic through Golgi satellites (GSs). Here, we create a transgenic GS reporter mouse line and show that GSs are widely distributed along dendrites and are capable of mature glycosylation, in particular sialylation. We find that polysialylation of locally secreted NCAM takes place at GSs. Accordingly, in mice lacking a component of trans-Golgi network-to-plasma membrane trafficking, we find fewer GSs and significantly reduced PSA-NCAM levels in distal dendrites of CA1 neurons that receive input from the temporoammonic pathway. Induction of long-term potentiation at those, but not more proximal, synapses is severely impaired. We conclude that GSs serve the need for local mature glycosylation of synaptic membrane proteins in distal dendrites and thereby contribute to rapid changes in synaptic strength.


Assuntos
Potenciação de Longa Duração , Sinapses , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Sinapses/metabolismo , Neurônios/metabolismo , Dendritos/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo
15.
Genes Cells ; 28(8): 563-572, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37170756

RESUMO

Methotrexate (MTX) is an anti-metabolite that has been used for the treatment of patients of acute lymphocytic leukemia or non-Hodgikin lymphoma for decades. In some cases, MTX-treated patients suffer from neurological side effects, including seizures and cognitive dysfunctions. While most patients are at developmental stages, information of the mechanisms of the side effects of MTX treatment on the developing neurons has been limited. Neurons develop in five steps in the human brain: neurogenesis, polarity formation, dendrite and axon development, synapse formation, and neuronal death. Except for neurogenesis, these processes can be recapitulated in the primary culture system of cortical neurons. Using primary cultured cortical neurons, we studied the impact of MTX treatment on dendrite development, synapse formation, and neuronal death in the present report. MTX treatment impaired neuronal survival, dendrite development, and synapse formation. Interestingly, half maximal effective concentrations (EC50 s) of MTX for all three processes are at the similar range and lower than the MTX concentration in the cerebrospinal fluid in treated patients. Our results provide possible mechanisms of neurological side effects in treated patients.


Assuntos
Metotrexato , Neurônios , Humanos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Neurônios/fisiologia , Neurogênese , Dendritos , Sinapses
16.
Sci Rep ; 13(1): 7488, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160938

RESUMO

Dendrites receive and process signals from other neurons. The range of signal intensities that can be robustly distinguished by dendrites is quantified by the dynamic range. We investigate the dynamic range and information transmission efficiency of dendrites in relation to dendritic morphology. We model dendrites in a neuron as multiple excitable binary trees connected to the soma where each node in a tree can be excited by external stimulus or by receiving signals transmitted from adjacent excited nodes. It has been known that larger dendritic trees have a higher dynamic range. We show that for dendritic tress of the same number of nodes, the dynamic range increases with the number of somatic branches and decreases with the asymmetry of dendrites, and the information transmission is more efficient for dendrites with more somatic branches. Moreover, our simulated data suggest that there is an exponential association (decay resp.) of overall relative energy consumption (dynamic range resp.) in relation to the number of somatic branches. This indicates that further increasing the number of somatic branches (e.g. beyond 10 somatic branches) has limited ability to improve the transmission efficiency. With brain-wide neuron digital reconstructions of the pyramidal cells, 90% of neurons have no more than 10 dendrites. These suggest that actual brain-wide dendritic morphology is near optimal in terms of both dynamic range and information transmission.


Assuntos
Encéfalo , Procedimentos de Cirurgia Plástica , Neurônios , Corpo Celular , Dendritos
17.
J Exp Med ; 220(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36917028

RESUMO

Tingible body macrophages in lymph node are involved in cleaning up debris from apoptotic B cells. Gurwisz et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20222173) and Grootveld et al. (2023. Cell.https://doi.org/10.1016/j.cell.2023.02.004) report how tingible body macrophages, originating from tissue-resident macrophages, clear apoptotic B cells in the germinal center using a "stand-hunting" strategy.


Assuntos
Centro Germinativo , Linfonodos , Macrófagos , Linfócitos B , Dendritos
18.
J Neurosci ; 43(7): 1125-1142, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36732073

RESUMO

At high levels, extracellular ATP operates as a "danger" molecule under pathologic conditions through purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Its endogenous activation is associated with neurodevelopmental disorders; however, its function during early embryonic stages remains largely unclear. Our objective was to determine the role of P2X7R in the regulation of neuronal outgrowth. For this purpose, we performed Sholl analysis of dendritic branches on primary hippocampal neurons and in acute hippocampal slices from WT mice and mice with genetic deficiency or pharmacological blockade of P2X7R. Because abnormal dendritic branching is a hallmark of certain neurodevelopmental disorders, such as schizophrenia, a model of maternal immune activation (MIA)-induced schizophrenia, was used for further morphologic investigations. Subsequently, we studied MIA-induced behavioral deficits in young adult mice females and males. Genetic deficiency or pharmacological blockade of P2X7R led to branching deficits under physiological conditions. Moreover, pathologic activation of the receptor led to deficits in dendritic outgrowth on primary neurons from WT mice but not those from P2X7R KO mice exposed to MIA. Likewise, only MIA-exposed WT mice displayed schizophrenia-like behavioral and cognitive deficits. Therefore, we conclude that P2X7R has different roles in the development of hippocampal dendritic arborization under physiological and pathologic conditions.SIGNIFICANCE STATEMENT Our main finding is a novel role for P2X7R in neuronal branching in the early stages of development under physiological conditions. We show how a decrease in the expression of P2X7R during brain development causes the receptor to play pathologic roles in adulthood. Moreover, we studied a neurodevelopmental model of schizophrenia and found that, at higher ATP concentrations, endogenous activation of P2X7R is necessary and sufficient for the development of positive and cognitive symptoms.


Assuntos
Neurônios , Receptores Purinérgicos P2X7 , Animais , Feminino , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X7/genética , Dendritos
19.
Cell Rep ; 42(1): 111946, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640331

RESUMO

Neuronal hyperactivity induces memory deficits in Alzheimer's disease. However, how hyperactivity disrupts memory is unclear. Using in vivo synaptic imaging in the mouse visual cortex, we show that structural excitatory-inhibitory synapse imbalance in the apical dendrites favors hyperactivity in early amyloidosis. Consistent with this, natural images elicit neuronal hyperactivity in these mice. Compensatory changes that maintain activity homeostasis disrupt functional connectivity and increase population sparseness such that a small fraction of neurons dominates population activity. These properties reduce the selectivity of neural response to natural images and render visual recognition memory vulnerable to interference. Deprivation of non-specific visual experiences improves the neural representation and behavioral expression of visual familiarity. In contrast, in non-pathological conditions, deprivation of non-specific visual experiences induces disinhibition, increases excitability, and disrupts visual familiarity. We show that disrupted familiarity occurs when the fraction of high-responsive neurons and the persistence of neural representation of a memory-associated stimulus are not constrained.


Assuntos
Doença de Alzheimer , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Dendritos , Doença de Alzheimer/metabolismo , Homeostase/fisiologia , Reconhecimento Psicológico , Proteínas Amiloidogênicas/metabolismo
20.
J Exp Med ; 220(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36705667

RESUMO

Antibody affinity maturation depends on the formation of germinal centers (GCs) in lymph nodes. This process generates a massive number of apoptotic B cells, which are removed by a specialized subset of phagocytes, known as tingible body macrophages (TBMs). Although defects in these cells are associated with pathological conditions, the identity of their precursors and the dynamics of dying GC B cell disposal remained unknown. Here, we demonstrate that TBMs originate from pre-existing lymph node-resident precursors that enter the lymph node follicles in a GC-dependent manner. Intravital imaging shows that TBMs are stationary cells that selectively phagocytose GC B cells via highly dynamic protrusions and accommodate the final stages of B cell apoptosis. Cell-specific depletion and chimeric mouse models revealed that GC B cells drive TBM formation from bone marrow-derived precursors stationed within lymphoid organs prior to the immune challenge. Understanding TBM dynamics and function may explain the emergence of various antibody-mediated autoimmune conditions.


Assuntos
Linfonodos , Macrófagos , Camundongos , Animais , Linfonodos/patologia , Centro Germinativo , Linfócitos B , Dendritos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA