Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.289
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bull Exp Biol Med ; 176(5): 612-616, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38730106

RESUMO

We experimentally demonstrated that chronic social stress during the development of a depression-like state enhances lung metastasis and modifies the expression of many carcinogenesis- and apoptosis-related genes in the hypothalamus of mice, including genes involved in lung cancer pathogenesis in humans. Analysis of the expression of genes encoding the major clinical markers of lung cancer in the hypothalamus of mice with depression-like behavior revealed increased expression of the Eno2 gene encoding neuron-specific enolase, a blood marker of lung cancer progression in humans. It was shown that the expression of this gene in the hypothalamus correlated with the expression of many carcinogenesis- and apoptosis-related genes. The discovered phenomenon may have a fundamental significance and requires further studies.


Assuntos
Apoptose , Carcinogênese , Depressão , Hipotálamo , Neoplasias Pulmonares , Fosfopiruvato Hidratase , Animais , Camundongos , Hipotálamo/metabolismo , Hipotálamo/patologia , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Apoptose/genética , Depressão/genética , Depressão/metabolismo , Depressão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinogênese/genética , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo
2.
Age Ageing ; 53(Supplement_2): ii47-ii59, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38745492

RESUMO

Hippocampal neurogenesis (HN) occurs throughout the life course and is important for memory and mood. Declining with age, HN plays a pivotal role in cognitive decline (CD), dementia, and late-life depression, such that altered HN could represent a neurobiological susceptibility to these conditions. Pertinently, dietary patterns (e.g., Mediterranean diet) and/or individual nutrients (e.g., vitamin D, omega 3) can modify HN, but also modify risk for CD, dementia, and depression. Therefore, the interaction between diet/nutrition and HN may alter risk trajectories for these ageing-related brain conditions. Using a subsample (n = 371) of the Three-City cohort-where older adults provided information on diet and blood biobanking at baseline and were assessed for CD, dementia, and depressive symptomatology across 12 years-we tested for interactions between food consumption, nutrient intake, and nutritional biomarker concentrations and neurogenesis-centred susceptibility status (defined by baseline readouts of hippocampal progenitor cell integrity, cell death, and differentiation) on CD, Alzheimer's disease (AD), vascular and other dementias (VoD), and depressive symptomatology, using multivariable-adjusted logistic regression models. Increased plasma lycopene concentrations (OR [95% CI] = 1.07 [1.01, 1.14]), higher red meat (OR [95% CI] = 1.10 [1.03, 1.19]), and lower poultry consumption (OR [95% CI] = 0.93 [0.87, 0.99]) were associated with an increased risk for AD in individuals with a neurogenesis-centred susceptibility. Increased vitamin D consumption (OR [95% CI] = 1.05 [1.01, 1.11]) and plasma γ-tocopherol concentrations (OR [95% CI] = 1.08 [1.01, 1.18]) were associated with increased risk for VoD and depressive symptomatology, respectively, but only in susceptible individuals. This research highlights an important role for diet/nutrition in modifying dementia and depression risk in individuals with a neurogenesis-centred susceptibility.


Assuntos
Disfunção Cognitiva , Demência , Depressão , Hipocampo , Neurogênese , Estado Nutricional , Humanos , Idoso , Masculino , Feminino , Depressão/psicologia , Depressão/metabolismo , Depressão/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/epidemiologia , Demência/psicologia , Demência/epidemiologia , Demência/sangue , Demência/etiologia , Fatores de Risco , Hipocampo/metabolismo , Envelhecimento/psicologia , Idoso de 80 Anos ou mais , Cognição , Fatores Etários , Dieta/efeitos adversos , Envelhecimento Cognitivo/psicologia , Biomarcadores/sangue
3.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773146

RESUMO

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Astrócitos , Transtorno Depressivo Maior , Camundongos Knockout , Animais , Astrócitos/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Camundongos , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Masculino , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Comportamento Animal , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Depressão/metabolismo , Depressão/genética , Adulto , Transmissão Sináptica , Pessoa de Meia-Idade
4.
Behav Brain Res ; 467: 115005, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641178

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) refers to a chronic impairing psychiatric disorder occurring after exposure to the severe traumatic event. Studies have demonstrated that medicinal cannabis oil plays an important role in neuroprotection, but the mechanism by which it exerts anti-PTSD effects remains unclear. METHODS: The chronic complex stress (CCS) simulating the conditions of long voyage stress for 4 weeks was used to establish the PTSD mice model. After that, behavioral tests were used to evaluate PTSD-like behaviors in mice. Mouse brain tissue index was detected and hematoxylin-eosin staining was used to assess pathological changes in the hippocampus. The indicators of cell apoptosis and the BDNF/TRPC6 signaling activation in the mice hippocampus were detected by western blotting or real-time quantitative reverse transcription PCR experiments. RESULTS: We established the PTSD mice model induced by CCS, which exhibited significant PTSD-like phenotypes, including increased anxiety-like and depression-like behaviors. Medicinal cannabis oil treatment significantly ameliorated PTSD-like behaviors and improved brain histomorphological abnormalities in CCS mice. Mechanistically, medicinal cannabis oil reduced CCS-induced cell apoptosis and enhanced the activation of BDNF/TRPC6 signaling pathway. CONCLUSIONS: We constructed a PTSD model with CCS and medicinal cannabis oil that significantly improved anxiety-like and depressive-like behaviors in CCS mice, which may play an anti-PTSD role by stimulating the BDNF/TRPC6 signaling pathway.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Depressão , Modelos Animais de Doenças , Hipocampo , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos , Canal de Cátion TRPC6 , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Masculino , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Canal de Cátion TRPC6/metabolismo , Comportamento Animal/efeitos dos fármacos , Maconha Medicinal/farmacologia , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
5.
Behav Brain Res ; 466: 114995, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38599251

RESUMO

Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.


Assuntos
Acetilcolina , Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Doenças Neuroinflamatórias , Óxido Nítrico , Sepse , Fator de Necrose Tumoral alfa , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Masculino , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Adalimumab/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Modelos Animais de Doenças , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/etiologia , Homeostase/efeitos dos fármacos , Depressão/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Comportamento Animal/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/farmacologia
6.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565927

RESUMO

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Assuntos
Derivados de Alilbenzenos , Anisóis , Antioxidantes , Transtorno Depressivo Maior , Humanos , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Nitritos/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Privação Materna , Solução Salina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Estresse Oxidativo , Hipocampo/metabolismo , Modelos Animais de Doenças , Comportamento Animal
7.
Pharmacol Biochem Behav ; 239: 173757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574898

RESUMO

Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.


Assuntos
Conexina 43 , Inflamação , Córtex Pré-Frontal , Estresse Psicológico , Animais , Córtex Pré-Frontal/metabolismo , Conexina 43/metabolismo , Camundongos , Estresse Psicológico/metabolismo , Masculino , Inflamação/metabolismo , Resiliência Psicológica , Camundongos Endogâmicos C57BL , Depressão/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças , Comportamento Animal
8.
Brain Res ; 1834: 148913, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580046

RESUMO

Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is linked to the pathophysiology of depression. Although exogenous adrenocorticotropic hormone (ACTH) is associated with a depressive-like phenotype in rodents, comprehensive neurobehavioral and mechanistic evidence to support these findings are limited. Sprague-Dawley rats (male, n = 30; female, n = 10) were randomly assigned to the control (male, n = 10) or ACTH (male, n = 20; female n = 10) groups that received saline (0.1 ml, sc.) or ACTH (100 µg/day, sc.), respectively, for two weeks. Thereafter, rats in the ACTH group were subdivided to receive ACTH plus saline (ACTH_S; male, n = 10; female, n = 5; 0.2 ml, ip.) or ACTH plus imipramine (ACTH_I; male, n = 10; female, n = 5;10 mg/kg, ip.) for a further four weeks. Neurobehavioral changes were assessed using the forced swim test (FST), the sucrose preference test (SPT), and the open field test (OFT). Following termination, the brain regional mRNA expression of BDNF and CREB was determined using RT-PCR. After two-weeks, ACTH administration significantly increased immobility in the FST (p = 0.03), decreased interaction with the center of the OFT (p < 0.01), and increased sucrose consumption (p = 0.03) in male, but not female rats. ACTH administration significantly increased the expression of BDNF in the hippocampus and CREB in all brain regions in males (p < 0.05), but not in female rats. Imipramine treatment did not ameliorate these ACTH-induced neurobehavioral or molecular changes. In conclusion, ACTH administration resulted in a sex-specific onset of depressive-like symptoms and changes in brain regional expression of neurotrophic factors. These results suggest sex-specific mechanisms underlying the development of depressive-like behavior in a model of ACTH-induced HPA axis dysregulation.


Assuntos
Hormônio Adrenocorticotrópico , Fator Neurotrófico Derivado do Encéfalo , Modelos Animais de Doenças , Sistema Hipotálamo-Hipofisário , Imipramina , Sistema Hipófise-Suprarrenal , Ratos Sprague-Dawley , Animais , Masculino , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imipramina/farmacologia , Ratos , Depressão/metabolismo , Comportamento Animal/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
9.
J Agric Food Chem ; 72(18): 10376-10390, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661058

RESUMO

20(S)-Protopanaxadiol (PPD) is one of the bioactive ingredients in ginseng and possesses neuroprotective properties. Brain-type creatine kinase (CK-BB) is an enzyme involved in brain energy homeostasis via the phosphocreatine-creatine kinase system. We previously identified PPD as directly bound to CK-BB and activated its activity in vitro. In this study, we explored the antidepressive effects of PPD that target CK-BB. First, we conducted time course studies on brain CK-BB, behaviors, and hippocampal structural plasticity responses to corticosterone (CORT) administration. Five weeks of CORT injection reduced CK-BB activity and protein levels and induced depression-like behaviors and hippocampal structural plasticity impairment. Next, a CK inhibitor and an adeno-associated virus-targeting CKB were used to diminish CK-BB activity or its expression in the brain. The loss of CK-BB in the brain led to depressive behaviors and morphological damage to spines in the hippocampus. Then, a polyclonal antibody against PPD was used to determine the distribution of PPD in the brain tissues. PPD was detected in the hippocampus and cortex and observed in astrocytes, neurons, and vascular endotheliocytes. Finally, different PPD doses were used in the chronic CORT-induced depression model. Treatment with a high dose of PPD significantly increased the activity and expression of CK-BB after long-term CORT injection. In addition, PPD alleviated the damage to depressive-like behaviors and structural plasticity induced by repeated CORT injection. Overall, our study revealed the critical role of CK-BB in mediating structural plasticity in CORT-induced depression and identified CK-BB as a therapeutic target for PPD, allowing us to treat stress-related mood disorders.


Assuntos
Antidepressivos , Corticosterona , Creatina Quinase Forma BB , Depressão , Modelos Animais de Doenças , Hipocampo , Sapogeninas , Animais , Sapogeninas/farmacologia , Corticosterona/efeitos adversos , Masculino , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Camundongos , Humanos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Creatina Quinase Forma BB/metabolismo , Creatina Quinase Forma BB/genética , Panax/química , Ratos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
10.
J Integr Neurosci ; 23(4): 82, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682225

RESUMO

BACKGROUND: Comorbid chronic neuropathic pain (NPP) and anxio-depressive disorders (ADD) have become a serious global public-health problem. The SLIT and NTRK-like 1 (SLITRK1) protein is important for synaptic remodeling and is highly expressed in the amygdala, an important brain region involved in various emotional behaviors. We examined whether SLITRK1 protein in the amygdala participates in NPP and comorbid ADD. METHODS: A chronic NPP mouse model was constructed by L5 spinal nerve ligation; changes in chronic pain and ADD-like behaviors were measured in behavioral tests. Changes in SLITRK1 protein and excitatory synaptic functional proteins in the amygdala were measured by immunofluorescence and Western blot. Adeno-associated virus was transfected into excitatory synaptic neurons in the amygdala to up-regulate the expression of SLITRK1. RESULTS: Chronic NPP-related ADD-like behavior was successfully produced in mice by L5 ligation. We found that chronic NPP and related ADD decreased amygdalar expression of SLITRK1 and proteins important for excitatory synaptic function, including Homer1, postsynaptic density protein 95 (PSD95), and synaptophysin. Virally-mediated SLITRK1 overexpression in the amygdala produced a significant easing of chronic NPP and ADD, and restored the expression levels of Homer1, PSD95, and synaptophysin. CONCLUSION: Our findings indicated that SLITRK1 in the amygdala plays an important role in chronic pain and related ADD, and may prove to be a potential therapeutic target for chronic NPP-ADD comorbidity.


Assuntos
Tonsila do Cerebelo , Comportamento Animal , Dor Crônica , Proteína 4 Homóloga a Disks-Large , Proteínas do Tecido Nervoso , Neuralgia , Animais , Masculino , Camundongos , Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Depressão/metabolismo , Depressão/etiologia , Depressão/fisiopatologia , Transtorno Depressivo/metabolismo , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas de Arcabouço Homer/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Sinaptofisina/metabolismo
11.
J Ethnopharmacol ; 329: 118098, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582152

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Major Depressive Disorder (MDD) emerges as a complex psychosomatic condition, notable for its considerable suicidality and mortality rates. Increasing evidence suggests the efficacy of Chinese herbal medicine in mitigating depression symptoms and offsetting the adverse effects associated with conventional Western therapeutics. Notably, clinical trials have revealed the adjunctive antidepressant potential of Kaiyu Zhishen Decoction (KZD) alongside Western medication. However, the standalone antidepressant efficacy of KZD and its underlying mechanisms merit in-depth investigation. AIM OF THE STUDY: This research aims to elucidate the impact of KZD on MDD and delineate its mechanistic pathways through integrated network pharmacological assessments and empirical in vitro and in vivo analyses. MATERIALS AND METHODS: To ascertain the optimal antidepressant dosage and mechanism of KZD, a Chronic Unpredictable Mild Stress (CUMS)-induced depression model in mice was established to evaluate depressive behaviors. High-Performance Liquid Chromatography (HPLC) and network pharmacological approaches were employed to predict KZD's antidepressant mechanisms. Subsequently, hippocampal samples were subjected to 4D-DIA proteomic sequencing and validated through Western blot, immunofluorescence, Nissl staining, and pathway antagonist applications. Additionally, cortisol-stimulated PC12 cells were utilized to simulate neuronal damage, analyzing protein and mRNA levels of MAPK-related signals and cell proliferation markers. RESULTS: The integration of network pharmacology and HPLC identified kaempferol and quercetin as KZD's principal active compounds for MDD treatment. Proteomic and network pharmacological KEGG pathway analyses indicated the MAPK signaling pathway as a critical regulatory mechanism for KZD's therapeutic effect on MDD. KZD was observed to mitigate CUMS-induced upregulation of p-ERK/ERK, CREB, and BDNF protein expressions in hippocampal cells by attenuating oxidative stress, thereby ameliorating neuronal damage and exerting antidepressant effects. The administration of PD98059 counteracted KZD's improvements in depression-like behaviors and downregulated p-ERK/ERK and BDNF protein expressions in the hippocampus. CONCLUSIONS: This investigation corroborates KZD's pivotal, dose-dependent role in antidepressant activity. Both in vivo and in vitro experiments demonstrate KZD's capacity to modulate the ERK-CREB-BDNF signaling pathway by diminishing ROS expression induced by oxidative stress, enhancing neuronal repair, and thus, manifesting antidepressant properties. Accordingly, KZD represents a promising herbal candidate for further antidepressant research.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Transdução de Sinais , Animais , Antidepressivos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Células PC12 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Transtorno Depressivo Maior/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Comportamento Animal/efeitos dos fármacos
12.
Neurochem Int ; 175: 105723, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490486

RESUMO

Impaired olfactory function may be associated with the development of psychiatric disorders such as depression and anxiety; however, knowledge on the mechanisms underlying psychiatric disorders is incomplete. A reversible model of olfactory dysfunction, zinc sulfate (ZnSO4) nasal-treated mice, exhibit depression-like behavior accompanying olfactory dysfunction. Therefore, we investigated olfactory function and depression-like behaviors in ZnSO4-treated mice using the buried food finding test and tail suspension test, respectively; investigated the changes in the hippocampal microglial activity and neurogenesis in the dentate gyrus by immunohistochemistry; and evaluated the inflammation and microglial polarity related-proteins in the hippocampus using western blot study. On day 14 after treatment, ZnSO4-treated mice showed depression-like behavior in the tail suspension test and recovery of the olfactory function in the buried food finding test. In the hippocampus of ZnSO4-treated mice, expression levels of ionized calcium-binding adapter molecule 1 (Iba1), cluster of differentiation 40, inducible nitric oxide synthase, interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, cleaved caspase-3, as well as the number of Iba1-positive cells and cell body size increased, and arginase-1 expression and neurogenesis decreased. Except for the increased IL-6, these changes were prevented by a microglia activation inhibitor, minocycline. The findings suggest that neuroinflammation due to polarization of M1-type hippocampal microglia is involved in depression accompanied with olfactory dysfunction.


Assuntos
Depressão , Transtornos do Olfato , Humanos , Camundongos , Animais , Depressão/metabolismo , Microglia/metabolismo , Interleucina-6/metabolismo , Hipocampo/metabolismo
13.
J Physiol ; 602(7): 1427-1442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468384

RESUMO

Fibroblast growth factor-2 (FGF2) is involved in the regulation of affective behaviour and shows antidepressant effects through the Akt and extracellular signal regulated kinase (ERK) 1/2 pathways. Nudix hydrolase 6 (NUDT6) protein is encoded from FGF2 gene's antisense strand and its role in the regulation of affective behaviour is unknown. Here, we overexpressed NUDT6 in the hippocampus and investigated its behavioural effects and the underlying molecular mechanisms affecting the behaviour. We showed that increasing hippocampal NUDT6 results in depression-like behaviour in rats without changing FGF2 levels or activating its downstream effectors, Akt and ERK1/2. Instead, NUDT6 acted by inducing inflammatory signalling, specifically by increasing S100 calcium binding protein A9 (S100A9) levels, activating nuclear factor-kappa B-p65 (NF-κB-p65), and elevating microglia numbers along with a reduction in neurogenesis. Our results suggest that NUDT6 could play a role in major depression by inducing a proinflammatory state. This is the first report of an antisense protein acting through a different mechanism of action than regulation of its sense protein. The opposite effects of NUDT6 and FGF2 on depression-like behaviour may serve as a mechanism to fine-tune affective behaviour. Our findings open up new venues for studying the differential regulation and functional interactions of sense and antisense proteins in neural function and behaviour, as well as in neuropsychiatric disorders. KEY POINTS: Hippocampal overexpression of nudix hydrolase 6 (NUDT6), the antisense protein of fibroblast growth factor-2 (FGF2), increases depression-like behaviour in rats. Hippocampal NUDT6 overexpression triggers a neuroinflammatory cascade by increasing S100 calcium binding proteinA9 (S100A9) expression and nuclear NF-κB-p65 translocation in neurons, in addition to microglial recruitment and activation. Hippocampal NUDT6 overexpression suppresses neurogenesis. NUDT6 exerts its actions without altering the levels or downstream signalling pathways of FGF2.


Assuntos
Depressão , Fator 2 de Crescimento de Fibroblastos , NF-kappa B , Animais , Ratos , Fator 2 de Crescimento de Fibroblastos/genética , Inflamação/genética , Neurogênese/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Proteínas Proto-Oncogênicas c-akt , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Depressão/genética , Depressão/metabolismo
14.
J Cell Mol Med ; 28(8): e18178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553964

RESUMO

Bergamot essential oil (BEO) is an extract of the bergamot fruit with significant neuroprotective effect. This study was to investigate the effects and the underlying mechanism of BEO in mitigating depression. GC-MS were used to identify its constituents. Antidepressive properties of BEO were evaluated by sucrose preference test (SPT), force swimming test (FST) and open field test (OFT). Nissl staining was used to determine the number of Nissl bodies in hippocampus (HIPP) of rats. Changes in HIPP dendritic length and dendritic spine density were detected by Golgi-Cox staining. Immunohistochemistry and Western blot were used to detect the postsynaptic density protein-95 (PSD-95) and synaptophysin (SYP) in the HIPP of rats. The enzyme-linked immunosorbent assay was used to determine the 5-hydroxytryptamine (5-HT), insulin-like growth factor 1 (IGF-1) and interleukin-1ß (IL-1ß) in the HIPP, serum and cerebrospinal fluid (CSF) of rats. Inhaled BEO significantly improved depressive behaviour in chronic unpredictable mild stress (CUMS) rats. BEO increased Nissl bodies, dendritic length and spine density, PSD-95 and SYP protein in the HIPP. Additionally, BEO upregulated serum 5-HT, serum and CSF IGF-1, while downregulating serum IL-1ß. Collectively, inhaled BEO mitigates depression by protecting the plasticity of hippocampal neurons, hence, providing novel insights into treatment of depression.


Assuntos
Depressão , Óleos Voláteis , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Serotonina/metabolismo , Hipocampo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Animal
15.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492791

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Assuntos
Rosa , Ratos , Animais , Serotonina/metabolismo , Irã (Geográfico) , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
16.
Biochem Biophys Res Commun ; 704: 149706, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38432144

RESUMO

Glioma patients often undertake psychiatric disorders such as depression and anxiety. There are several clinical epidemiological studies on glioma-associated depression, but basic research and corresponding animal experiments are still lacking. Here, we observed that glioma-bearing mice exhibited atypical depression-like behaviors in orthotopic glioma mouse models. The concentrations of monoamine neurotransmitters were detected by enzyme-linked immunosorbent assay (ELISA), revealing a decrease in 5-hydroxytryptamine (5-HT) levels in para-glioma tissues. The related gene expression levels also altered, detected by quantitative RT-PCR. Then, we developed a glioma-depression comorbidity mouse model. Through sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST) and other tests, we found that the occurrence of glioma could lead to changes in depression-like behaviors in a chronic unpredictable mild stress (CUMS) mouse model. The results of RNA sequencing (RNA-seq) indicated that the altered expression of glutamatergic synapse related genes in the paratumor tissues might be one of the main molecular features of the comorbidity model. Our findings suggested that the presence of glioma caused and altered depression-like behaviors, which was potentially related to the 5-HT and glutamatergic synapse pathways.


Assuntos
Depressão , Serotonina , Humanos , Camundongos , Animais , Depressão/metabolismo , Serotonina/metabolismo , Antidepressivos/farmacologia , Comportamento Animal , Natação , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo
17.
Behav Brain Res ; 464: 114929, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38428646

RESUMO

This study evaluated the effects of citicoline and silymarin nanomicelles (SMnm) in repeated restraint stress (RRS). METHOD: Mice were exposed to RRS for four consecutive days, 2 hrs. daily. On day 5 of the study, SMnm (25 and 50 mg/kg, i.p.) and citicoline (25 and 75 mg/kg), and a combination of them (25 mg/kg, i.p.) were initiated. On day 18, anxiety-like behavior, behavioral despair, and exploratory behavior were evaluated. The prefrontal cortex (PFC) and the hippocampus were dissected measuring brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and tumor necrosis factor-alpha (TNF-α) through Western Blot and ELISA, respectively. RESULTS: In RR-exposed mice, anxiety-like behavior in the elevated plus maze (EPM) was enhanced by reductions in open arm time (OAT%) P < 0.001, and open arm entry (OAE%) P < 0.001. In the forced swimming test (FST), the immobility increased P < 0.001 while the swimming and climbing reduced P < 0.001. In the open field test (OFT), general motor activity was raised P < 0.05. Further, body weights reduced P < 0.001, and tissue BDNF and pCREB expressions decreased P < 0.001 while TNF-α increased P < 0.001. Conversely, SMnm, citicoline and their combination could reduce anxiety-like behavior P < 0.001. The combination group reduced the depressive-like behaviors P < 0.001. Moreover, body weights were restored P < 0.001. Besides, BDNF and pCREB expressions increased while TNF-α reduced, P < 0.001. CONCLUSION: The combination synergistically improved emotion-like behaviors, alleviating the inflammation and upregulating the hippocampal BDNF-mediated CREB signaling pathway.


Assuntos
Antidepressivos , Silimarina , Camundongos , Animais , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citidina Difosfato Colina/metabolismo , Citidina Difosfato Colina/farmacologia , Silimarina/farmacologia , Silimarina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hipocampo/metabolismo , Peso Corporal , Depressão/metabolismo
18.
Neurosci Lett ; 825: 137709, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38431038

RESUMO

Wistar-Kyoto (WKY) rats subjected to chronic mild stress (CMS) represent a valid model of treatment-resistant depression (TRD). Considering that depression is more prevalent in women than in men, in the present study, female rats were used. We investigated the effect of CMS on behavior and different factors involved in neuroinflammatory processes and neuroplasticity in the hippocampus and medial prefrontal cortex (mPFC) of WKY female rats. The results show that unstressed WKY females exhibited hypolocomotion, decreased exploratory behavior, and an increase in the total grooming time. After exposure to CMS, WKY females displayed intensified grooming. To investigate potential neural mechanisms underlying these behavioral changes, we analyzed signaling and inflammatory pathways in the hippocampus and mPFC. The findings indicate reduced BDNF and elevated levels levels of IL-1ß in both brain structures and NLRP3 in the mPFC of unstressed WKY female rats. WKY rats subjected to CMS showed a further decrease in BDNF levels and increased IL-1ß and NLRP3 in these brain structures. WKY showed reduced pERK1/2 and increased pp38 levels in both brain structures, while CMS revealed a further increase of pp38 in WKY in these brain structures. Expressions of p110ß and pAKT were decreased in the hippocampus and mPFC of WKY rats. The CMS further suppressed p110 and the downstream AKT phosphorylation in the hippocampus, but did not affect the p110 and pAKT in the mPFC. Our findings indicate behavioral and molecular differences in genetically vulnerable WKY female rats and in their response to CMS that may be involved in TRD.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Masculino , Ratos , Feminino , Animais , Ratos Endogâmicos WKY , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Depressão/metabolismo , Estresse Psicológico , Modelos Animais de Doenças
19.
J Ethnopharmacol ; 325: 117891, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38331122

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Parishin C (Par), a prominent bioactive compound in Gastrodia elata Blume with little toxicity and shown neuroprotective effects. However, its impact on depression remains largely unexplored. AIM OF THE STUDY: This study aims to investigate the antidepressant effects of Par using a chronic social defeat stress (CSDS) mouse model and elucidate its molecular mechanisms. MATERIALS AND METHODS: The CSDS-induced depression mouse model was used to evaluate the therapeutic efficacy of Par. The social interaction test (SIT) and sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were conducted to assess the effects of Par on depressive-like behaviours. The levels of corticosterone, neurotransmitters (5-HT, DA and NE) and inflammatory cytokines (IL-1ß, TNF-α, and IL-6) were evaluated by enzyme-linked immunosorbent assay (ELISA). Activation of a microglia was assessed by immunofluorescence labeling Iba-1. The protein expressions of NLRP3, ASC, caspase-1, and IL-6 verified by Western blot. RESULT: Oral administration of Par (4 and 8 mg/kg) and fluoxetine (10 mg/kg, administration significantly ameliorate depression-like behaviors induced by CSDS, as shown by the increase social interaction in SIT, increase sucrose preference in SPT and the decrease immobility in TST and FST. Par administration decreased serum corticosterone level and increased the 5-HT, DA and NE concentration in the hippocampus and prefrontal cortex. Furthermore, Par treatment suppressed microglial activation (Iba1) as well as reduced levels of IL-1ß, TNF-α, and IL-6) with decreased protein expressions of NLRP3, ASC, caspase-1, and IL-6. CONCLUSIONS: our study provides the first evidence that Par exerts antidepressant-like effects in mice with CSDS-induced depression. This effect appears to be mediated by the normalization of neurotransmitter and corticosterone levels, inhibition of NLRP3 inflammasome activation. This newfound antidepressant property of Par offers a novel perspective on its pharmacological effects, providing valuable insights into its potential therapeutic and preventive applications in depression treatment.


Assuntos
Glucosídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Necrose Tumoral alfa , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Derrota Social , Corticosterona , Serotonina/metabolismo , Comportamento Animal , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo , Sacarose/metabolismo , Caspases/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
20.
Neurochem Res ; 49(5): 1239-1253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38383879

RESUMO

Neuroinflammation plays crucial role in the development and progression of depression. Large conductance calcium- and voltage-dependent potassium (BK) channels mediate the activation of microglia. Herein, we investigated whether BK channels could serve as a target for the treatment of inflammation-associated depression. Lipopolysaccharide (LPS, 0.83 mg/kg) was injected intraperitoneally (i.p.) to induce neuroinflammation and depressive-like behavior in 6-8 week ICR mice. Adeno-associated virus (AAV) constructs (AAV9-Iba1p-BK shRNA-EGFP (BK shRNA-AAV) or AAV9-Iba1p-NC shRNA-EGFP (NC shRNA-AAV)) were unilaterally injected intracerebroventricularly to selectively knock down BK channels in microglia. The tail suspension test (TST) and forced-swim test (FST) were used to evaluate depressive-like behavior in mice 24 h after LPS challenge. The morphology of microglia, expression of BK channels, levels of cytokines, and expression and activity of indoleamine 2,3-dioxygenase (IDO) were measured by immunohistochemistry, western blot, quantitative real time PCR, and enzyme-linked immunosorbent assay (ELISA), respectively. Either paxilline (i.p.), a specific BK channel blocker, or BK shRNA-AAV effectively inhibited the activation of microglia, reduced the production of IL-1ß in the hippocampus and suppressed the expression and activity of IDO in the hippocampus and prefrontal cortex, resulting in the amelioration of depressive-like behavior in mice. These data suggest for the first time that BK channels are involved in LPS-induced depressive-like behaviors. Thus, microglia BK channels may be a potential drug target for the depression treatment.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , Camundongos Endogâmicos ICR , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA