Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230481, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853546

RESUMO

Group I metabotropic glutamate receptors (Gp1-mGluRs) exert a host of effects on cellular functions, including enhancement of protein synthesis and the associated facilitation of long-term potentiation (LTP) and induction of long-term depression (LTD). However, the complete cascades of events mediating these events are not fully understood. Gp1-mGluRs trigger α-secretase cleavage of amyloid precursor protein, producing soluble amyloid precursor protein-α (sAPPα), a known regulator of LTP. However, the α-cleavage of APP has not previously been linked to Gp1-mGluR's actions. Using rat hippocampal slices, we found that the α-secretase inhibitor tumour necrosis factor-alpha protease inhibitor-1, which inhibits both disintegrin and metalloprotease 10 (ADAM10) and 17 (ADAM17) activity, blocked or reduced the ability of the Gp1-mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) to stimulate protein synthesis, metaplastically prime future LTP and elicit sub-maximal LTD. In contrast, the specific ADAM10 antagonist GI254023X did not affect the regulation of plasticity, suggesting that ADAM17 but not ADAM10 is involved in mediating these effects of DHPG. However, neither drug affected LTD that was strongly induced by either high-concentration DHPG or paired-pulse synaptic stimulation. Our data suggest that moderate Gp1-mGluR activation triggers α-secretase sheddase activity targeting APP or other membrane-bound proteins as part of a more complex signalling cascade than previously envisioned. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Secretases da Proteína Precursora do Amiloide , Hipocampo , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Biossíntese de Proteínas , Receptores de Glutamato Metabotrópico , Animais , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Hipocampo/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM10/metabolismo , Ratos Sprague-Dawley , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Proteínas de Membrana/metabolismo
2.
Neurosci Lett ; 826: 137733, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492880

RESUMO

Etomidate (ET) is a widely used intravenous imidazole general anesthetic, which depresses the cerebellar neuronal activity by modulating various receptors activity and synaptic transmission. In this study, we investigated the effects of ET on the cerebellar climbing fiber-Purkinje cells (CF-PC) plasticity in vitro in mice using whole-cell recording technique and pharmacological methods. Our results demonstrated that CF tetanic stimulation produced a mGluR1-dependent long-term depression (LTD) of CF-PC excitatory postsynaptic currents (EPSCs), which was enhanced by bath application of ET (10 µM). Blockade of mGluR1 receptor with JNJ16259685, ET triggered the tetanic stimulation to induce a CF-PC LTD accompanied with an increase in paired-pulse ratio (PPR). The ET-triggered CF-PC LTD was abolished by extracellular administration of an N-methyl-(D)-aspartate (NMDA) receptor antagonist, D-APV, as well as by intracellular blockade of NMDA receptors activity with MK801. Furthermore, blocking cannabinoids 1 (CB1) receptor with AM251 or chelating intracellular Ca2+ with BAPTA, ET failed to trigger the CF-PC LTD. Moreover, the ET-triggered CF-PC LTD was abolished by inhibition of protein kinase A (PKA), but not by inhibition of protein kinase C inhibiter. The present results suggest that ET acts on postsynaptic NMDA receptor resulting in an enhancement of the cerebellar CF-PC LTD through CB1 receptor/PKA cascade in vitro in mice. These results provide new evidence and possible mechanism for ET anesthesia to affect motor learning and motor coordination by regulating cerebellar CF-PC LTD.


Assuntos
Etomidato , Camundongos , Animais , Etomidato/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Cerebelo/fisiologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica , Anestésicos Intravenosos/farmacologia
3.
J Physiol ; 602(9): 2019-2045, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488688

RESUMO

Activation of the cAMP pathway is one of the common mechanisms underlying long-term potentiation (LTP). In the Drosophila mushroom body, simultaneous activation of odour-coding Kenyon cells (KCs) and reinforcement-coding dopaminergic neurons activates adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity underlying olfactory associative learning. However, learning induces long-term depression (LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of transmission. Here, we developed a system to electrophysiologically monitor both short-term and long-term synaptic plasticity at KC output synapses and demonstrated that they are indeed an exception in which activation of the cAMP-protein kinase A pathway induces LTD. Contrary to the prevailing model, our cAMP imaging found no evidence for synergistic action of dopamine and KC activity on cAMP synthesis. Furthermore, we found that forskolin-induced cAMP increase alone was insufficient for plasticity induction; it additionally required simultaneous KC activation to replicate the presynaptic LTD induced by pairing with dopamine. On the other hand, activation of the cGMP pathway paired with KC activation induced slowly developing LTP, proving antagonistic actions of the two second-messenger pathways predicted by behavioural study. Finally, KC subtype-specific interrogation of synapses revealed that different KC subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering the unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes the methods to address physiological mechanisms of synaptic plasticity in this important model. KEY POINTS: Although presynaptic cAMP increase generally facilitates synapses, olfactory associative learning in Drosophila, which depends on dopamine and cAMP signalling genes, induces long-term depression (LTD) at the mushroom body output synapses. By combining electrophysiology, pharmacology and optogenetics, we directly demonstrate that these synapses are an exception where activation of the cAMP-protein kinase A pathway leads to presynaptic LTD. Dopamine- or forskolin-induced cAMP increase alone is not sufficient for LTD induction; neuronal activity, which has been believed to trigger cAMP synthesis in synergy with dopamine input, is required in the downstream pathway of cAMP. In contrast to cAMP, activation of the cGMP pathway paired with neuronal activity induces presynaptic long-term potentiation, which explains behaviourally observed opposing actions of transmitters co-released by dopaminergic neurons. Our work not only revises the role of cAMP in synaptic plasticity, but also provides essential methods to address physiological mechanisms of synaptic plasticity in this important model system.


Assuntos
AMP Cíclico , Corpos Pedunculados , Plasticidade Neuronal , Animais , Corpos Pedunculados/fisiologia , AMP Cíclico/metabolismo , Plasticidade Neuronal/fisiologia , Dopamina , Potenciação de Longa Duração/fisiologia , Drosophila melanogaster/fisiologia , GMP Cíclico/metabolismo , Sinapses/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(45): e2210645119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322758

RESUMO

Thyroid hormones (THs) regulate gene expression by binding to nuclear TH receptors (TRs) in the cell. THs are indispensable for brain development. However, we have little knowledge about how congenital hypothyroidism in neurons affects functions of the central nervous system in adulthood. Here, we report specific TH effects on functional development of the cerebellum by using transgenic mice overexpressing a dominant-negative TR (Mf-1) specifically in cerebellar Purkinje cells (PCs). Adult Mf-1 mice displayed impairments in motor coordination and motor learning. Surprisingly, long-term depression (LTD)-inductive stimulation caused long-term potentiation (LTP) at parallel fiber (PF)-PC synapses in adult Mf-1 mice, although there was no abnormality in morphology or basal properties of PF-PC synapses. The LTP phenotype was turned to LTD in Mf-1 mice when the inductive stimulation was applied in an extracellular high-Ca2+ condition. Confocal calcium imaging revealed that dendritic Ca2+ elevation evoked by LTD-inductive stimulation is significantly reduced in Mf-1 PCs but not by PC depolarization only. Single PC messenger RNA quantitative analysis showed reduced expression of SERCA2 and IP3 receptor type 1 in Mf-1 PCs, which are essential for mGluR1-mediated internal calcium release from endoplasmic reticulum in cerebellar PCs. These abnormal changes were not observed in adult-onset PC-specific TH deficiency mice created by adeno-associated virus vectors. Thus, we propose the importance of TH action during neural development in establishing proper cerebellar function in adulthood, independent of its morphology. The present study gives insight into the cellular and molecular mechanisms underlying congenital hypothyroidism-induced dysfunctions of central nervous system and cerebellum.


Assuntos
Hipotireoidismo Congênito , Células de Purkinje , Camundongos , Animais , Células de Purkinje/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Cálcio/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Depressão , Hipotireoidismo Congênito/metabolismo , Sinapses/metabolismo , Cerebelo/fisiologia
5.
Cell Rep ; 37(1): 109786, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610314

RESUMO

Regulated insertion and removal of postsynaptic AMPA glutamate receptors (AMPARs) mediates hippocampal long-term potentiation (LTP) and long-term depression (LTD) synaptic plasticity underlying learning and memory. In Alzheimer's disease ß-amyloid (Aß) oligomers may impair learning and memory by altering AMPAR trafficking and LTP/LTD balance. Importantly, Ca2+-permeable AMPARs (CP-AMPARs) assembled from GluA1 subunits are excluded from hippocampal synapses basally but can be recruited rapidly during LTP and LTD to modify synaptic strength and signaling. By employing mouse knockin mutations that disrupt anchoring of the kinase PKA or phosphatase Calcineurin (CaN) to the postsynaptic scaffold protein AKAP150, we find that local AKAP-PKA signaling is required for CP-AMPAR recruitment, which can facilitate LTP but also, paradoxically, prime synapses for Aß impairment of LTP mediated by local AKAP-CaN LTD signaling that promotes subsequent CP-AMPAR removal. These findings highlight the importance of PKA/CaN signaling balance and CP-AMPARs in normal plasticity and aberrant plasticity linked to disease.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Peptídeos beta-Amiloides/farmacologia , Calcineurina/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Receptores de AMPA/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de AMPA/antagonistas & inibidores , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermina/análogos & derivados , Espermina/farmacologia , Sinapses/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
6.
Elife ; 102021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34612814

RESUMO

Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about changes including synaptic long-term depression (LTD). AKAP79 supports signaling of this type by anchoring PKA and calcineurin in tandem. In this study, we discovered that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic modeling, show how AKAP79-enhanced calcineurin activity enables suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. Experiments with hippocampal neurons indicate that this mechanism contributes toward LTD. This non-canonical mode of PKA regulation may underlie many other cellular processes.


Assuntos
Proteínas de Ancoragem à Quinase A , Calcineurina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Escherichia coli , Células HEK293 , Hipocampo/metabolismo , Humanos , Depressão Sináptica de Longo Prazo , Ratos Sprague-Dawley , Transdução de Sinais
7.
Mol Neurobiol ; 58(12): 6222-6231, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34476673

RESUMO

Huntington disease (HD) is the most common neurogenetic disorder caused by expansion of the CAG repeat in the HTT gene; nevertheless, the molecular bases of the disease are not fully understood. Non-coding RNAs have demonstrated to be involved in the physiopathology of HD. However, the role of circRNAs has not been investigated. The aim of this study was to identify the circRNAs with differential expression in a murine cell line model of HD and to identify the biological pathways regulated by the differentially expressed circRNAs. CircRNA expression was analyzed through a microarray, which specifically detects circular species of RNA. The expression patterns between a murine cell line expressing mutant Huntingtin and cells expressing wild-type Huntingtin were compared. We predicted the miRNAs with binding sites for the differentially expressed circRNAs and the corresponding target genes for those miRNAs. Using the target genes, we performed a function enrichment analysis. We identified 23 circRNAs differentially expressed, 19 downregulated and four upregulated. Most of the downregulated circRNAs derive from the Rere gene. The dopaminergic synapse, MAPK, and long-term depression pathways were significantly enriched. The three identified pathways have been previously associated with the physiopathology of HD. The understanding of the circRNA-miRNA-mRNA network involved in the molecular mechanisms driving HD can lead us to identify novel biomarkers and potential therapeutic targets. To the best of our knowledge, this is the first study analyzing circRNAs in a model of Huntington disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Doença de Huntington/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , RNA Circular/metabolismo , Sinapses/metabolismo , Animais , Regulação para Baixo , Perfilação da Expressão Gênica , Doença de Huntington/fisiopatologia , MicroRNAs/metabolismo , Células PC12 , RNA Mensageiro/metabolismo , Ratos
8.
STAR Protoc ; 2(3): 100679, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34337444

RESUMO

Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) occurs in diverse brain regions and contributes to the plasticity of behavior, learning, and memory. mGluR-LTD relies on rapid (in minutes) local protein synthesis. Here, we describe a detailed protocol for delivering an interfering peptide into the adult mouse hippocampus. The delivered peptide disrupts the interaction between polyglutamine binding protein 1 and eukaryotic elongation factor 2, resulting in impaired hippocampal mGluR-LTD and mGluR-LTD-associated behaviors. For complete details on the use and execution of this protocol, please refer to Shen et al. (2021).


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Infusões Intraventriculares , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Plasticidade Neuronal , Fator 2 de Elongação de Peptídeos/antagonistas & inibidores , Peptídeos/farmacologia , Biossíntese de Proteínas/fisiologia , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
9.
Cell Rep ; 36(5): 109499, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348158

RESUMO

The synaptic removal of AMPA-type glutamate receptors (AMPARs) is a core mechanism for hippocampal long-term depression (LTD). In this study, we address the role of microtubule-dependent transport of AMPARs as a driver for vesicular trafficking and sorting during LTD. Here, we show that the kinesin-1 motor KIF5A/C is strictly required for LTD expression in CA3-to-CA1 hippocampal synapses. Specifically, we find that KIF5 is required for an efficient internalization of AMPARs after NMDA receptor activation. We show that the KIF5/AMPAR complex is assembled in an activity-dependent manner and associates with microsomal membranes upon LTD induction. This interaction is facilitated by the vesicular adaptor protrudin, which is also required for LTD expression. We propose that protrudin links KIF5-dependent transport to endosomal sorting, preventing AMPAR recycling to synapses after LTD induction. Therefore, this work identifies an activity-dependent molecular motor and the vesicular adaptor protein that executes AMPAR synaptic removal during LTD.


Assuntos
Cinesinas/metabolismo , Depressão Sináptica de Longo Prazo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Membrana Celular/metabolismo , Dineínas/metabolismo , Feminino , Masculino , Transporte Proteico , Ratos Wistar
10.
J Neurosci ; 41(34): 7278-7299, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34272314

RESUMO

Comorbid anxiety and depressive symptoms in chronic pain are a common health problem, but the underlying mechanisms remain unclear. Previously, we have demonstrated that sensitization of the CeA neurons via decreased GABAergic inhibition contributes to anxiety-like behaviors in neuropathic pain rats. In this study, by using male Sprague Dawley rats, we reported that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain. Bilateral electrolytic lesions of CeA, but not lateral/basolateral nucleus of the amygdala (LA/BLA), abrogated both pain hypersensitivity and aversive and depressive symptoms of neuropathic rats induced by spinal nerve ligation (SNL). Moreover, SNL rats showed structural and functional neuroplasticity manifested as reduced dendritic spines on the CeA neurons and enhanced LTD at the LA/BLA-CeA synapse. Disruption of GluA2-containing AMPAR trafficking and endocytosis from synapses using synthetic peptides, either pep2-EVKI or Tat-GluA2(3Y), restored the enhanced LTD at the LA/BLA-CeA synapse, and alleviated the mechanical allodynia and comorbid aversive and depressive symptoms in neuropathic rats, indicating that the endocytosis of GluA2-containing AMPARs from synapses is probably involved in the LTD at the LA/BLA-CeA synapse and the comorbid aversive and depressive symptoms in neuropathic pain in SNL-operated rats. These data provide a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlight that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.SIGNIFICANCE STATEMENT Several studies have demonstrated the high comorbidity of negative affective disorders in patients with chronic pain. Understanding the affective aspects related to chronic pain may facilitate the development of novel therapies for more effective management. Here, we unravel that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain, and LTD at the amygdaloid LA/BLA-CeA synapse mediated by GluA2-containing AMPAR endocytosis underlies the comorbid aversive and depressive symptoms in neuropathic pain. This study provides a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlights that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.


Assuntos
Ansiedade/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Núcleo Central da Amígdala/fisiopatologia , Depressão/fisiopatologia , Hiperalgesia/fisiopatologia , Depressão Sináptica de Longo Prazo/fisiologia , Neuralgia/fisiopatologia , Receptores de AMPA/fisiologia , Animais , Ansiedade/etiologia , Comorbidade , Condicionamento Clássico , Depressão/etiologia , Emoções , Endocitose , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Comportamento Exploratório , Preferências Alimentares , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Lentivirus/genética , Ligadura , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Neuralgia/psicologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Teste de Desempenho do Rota-Rod , Método Simples-Cego , Nervos Espinhais/lesões , Natação
11.
Eur J Neurosci ; 54(3): 4838-4862, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34137082

RESUMO

When activated at low frequencies (0.1-1 Hz), second postnatal week synapses onto the most distal part of the apical dendritic tree (stratum lacunosum-moleculare) of rat hippocampal CA1 pyramidal cells display a frequency-dependent synaptic depression not observed for the more proximal (stratum radiatum) synapses. Depression in this frequency range is thought of as a possible contributor to behavioural habituation. In fact, in contrast to the proximal synapses, the distal synapses provide more direct sensory information from the entorhinal cortex as well as from thalamic nuclei. The use of antagonists showed that the activation of GABAA , GABAB , NMDA, mGlu, kainate, adenosine, or endocannabinoid receptors was not directly involved in the depression, indicating it to be intrinsic to the synapses themselves. While the depression affected paired-pulse plasticity in a manner indicating a decrease in vesicle release probability, the depression could not be explained by a stimulus-dependent decrease in calcium influx. Despite affecting the synaptic response evoked by brief high-frequency stimulation (10 impulses, 20 Hz) in a manner indicating vesicle depletion, the depression was unaffected by large variations in release probability. The depression was found not only to affect the synaptic transmission at low frequencies (0.1-1 Hz) but also to contribute to the depression evolving during brief high-frequency stimulation (10 impulses, 20 Hz). We propose that a release-independent process directly inactivating release sites with a fast onset (ms) and long duration (up to 20 s) underlies this synaptic depression.


Assuntos
Depressão , Sinapses , Animais , Estimulação Elétrica , Hipocampo , Depressão Sináptica de Longo Prazo , Células Piramidais , Ratos
12.
Nat Commun ; 12(1): 2849, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990590

RESUMO

Long-term depression (LTD) of synaptic strength can take multiple forms and contribute to circuit remodeling, memory encoding or erasure. The generic term LTD encompasses various induction pathways, including activation of NMDA, mGlu or P2X receptors. However, the associated specific molecular mechanisms and effects on synaptic physiology are still unclear. We here compare how NMDAR- or P2XR-dependent LTD affect synaptic nanoscale organization and function in rodents. While both LTDs are associated with a loss and reorganization of synaptic AMPARs, only NMDAR-dependent LTD induction triggers a profound reorganization of PSD-95. This modification, which requires the autophagy machinery to remove the T19-phosphorylated form of PSD-95 from synapses, leads to an increase in AMPAR surface mobility. We demonstrate that these post-synaptic changes that occur specifically during NMDAR-dependent LTD result in an increased short-term plasticity improving neuronal responsiveness of depressed synapses. Our results establish that P2XR- and NMDAR-mediated LTD are associated to functionally distinct forms of LTD.


Assuntos
Proteína 4 Homóloga a Disks-Large/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Trifosfato de Adenosina/administração & dosagem , Animais , Autofagia/fisiologia , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/deficiência , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Modelos Neurológicos , N-Metilaspartato/administração & dosagem , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/fisiologia , Receptores Purinérgicos P2X/fisiologia
13.
J Neurosci ; 41(22): 4768-4781, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33911021

RESUMO

Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory processes. While the effects of IGF-I on neurons have been studied extensively, the involvement of astrocytes in IGF-I signaling and the consequences on synaptic plasticity and animal behavior remain unknown. We have found that IGF-I induces long-term potentiation (LTPIGFI) of the postsynaptic potentials that is caused by a long-term depression of inhibitory synaptic transmission in mice. We have demonstrated that this long-lasting decrease in the inhibitory synaptic transmission is evoked by astrocytic activation through its IGF-I receptors (IGF-IRs). We show that LTPIGFI not only increases the output of pyramidal neurons, but also favors the NMDAR-dependent LTP, resulting in the crucial information processing at the barrel cortex since specific deletion of IGF-IR in cortical astrocytes impairs the whisker discrimination task. Our work reveals a novel mechanism and functional consequences of IGF-I signaling on cortical inhibitory synaptic plasticity and animal behavior, revealing that astrocytes are key elements in these processes.SIGNIFICANCE STATEMENT Insulin-like growth factor-I (IGF-I) signaling plays key regulatory roles in multiple processes of brain physiology, such as learning and memory. Yet, the underlying mechanisms remain largely undefined. Here we demonstrate that astrocytes respond to IGF-I signaling, elevating their intracellular Ca2+ and stimulating the release of ATP/adenosine, which triggers the LTD of cortical inhibitory synapses, thus regulating the behavioral task performance related to cortical sensory information processing. Therefore, the present work represents a major conceptual advance in our knowledge of the cellular basis of IGF-I signaling in brain function, by including for the first time astrocytes as key mediators of IGF-I actions on synaptic plasticity, cortical sensory information discrimination and animal behavior.


Assuntos
Adenosina/metabolismo , Astrócitos/metabolismo , Plasticidade Neuronal/fisiologia , Receptor IGF Tipo 1/metabolismo , Córtex Somatossensorial/fisiologia , Animais , Comportamento Animal/fisiologia , Regulação para Baixo , Aprendizagem/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/fisiologia
14.
Neurobiol Learn Mem ; 181: 107445, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33895349

RESUMO

In rodent models of smoking during pregnancy, early postnatal nicotine exposure results in impaired hippocampus-dependent memory, but the underlying mechanism remains elusive. Given that hippocampal cholinergic systems modulate memory and rapid development of hippocampal cholinergic systems occurs during nicotine exposure, here we investigated its impacts on cholinergic function. Both nicotinic and muscarinic activation produce transient or long-lasting depression of excitatory synaptic transmission in the hippocampal CA1 region. We found that postnatal nicotine exposure impairs both the induction and nicotinic modulation of NMDAR-dependent long-term depression (LTD). Activation of muscarinic receptors decreases excitatory synaptic transmission and CA1 network activity in both wild-type and α2 knockout mice. These muscarinic effects are still observed in nicotine-exposed mice. M1 muscarinic receptor activity is required for mGluR-dependent LTD. Early postnatal nicotine exposure has no effect on mGluR-dependent LTD induction, suggesting that it has no effect on the function of m1 muscarinic receptors involved in this form of LTD. Our results demonstrate that early postnatal nicotine exposure has more pronounced effects on nicotinic function than muscarinic function in the hippocampal CA1 region. Thus, impaired hippocampus-dependent memory may arise from the developmental disruption of nicotinic cholinergic systems in the hippocampal CA1 region.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptor Muscarínico M1/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Fumar Cigarros , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Lactação , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Exposição Materna , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Knockout , Receptor Muscarínico M1/metabolismo , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/metabolismo
15.
Mol Cell ; 81(7): 1425-1438.e10, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662272

RESUMO

Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo , Elongação Traducional da Cadeia Peptídica , Fator 2 de Elongação de Peptídeos/metabolismo , Receptores de Glutamato Metabotrópico/biossíntese , Animais , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fator 2 de Elongação de Peptídeos/genética , Fosforilação , Receptores de Glutamato Metabotrópico/genética
16.
Sci Rep ; 11(1): 6345, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737568

RESUMO

The medial (DMS) and lateral (DLS) dorsal striatum differentially drive goal-directed and habitual/compulsive behaviors, respectively, and are implicated in a variety of neuropsychiatric disorders. These subregions receive distinct inputs from cortical and thalamic regions which uniquely determine dorsal striatal activity and function. Adenosine A1 receptors (A1Rs) are prolific within striatum and regulate excitatory glutamate transmission. Thus, A1Rs may have regionally-specific effects on neuroadaptive processes which may ultimately influence striatally-mediated behaviors. The occurrence of A1R-driven plasticity at specific excitatory inputs to dorsal striatum is currently unknown. To better understand how A1Rs may influence these behaviors, we first sought to understand how A1Rs modulate these distinct inputs. We evaluated A1R-mediated inhibition of cortico- and thalamostriatal transmission using in vitro whole-cell, patch clamp slice electrophysiology recordings in medium spiny neurons from both the DLS and DMS of C57BL/6J mice in conjunction with optogenetic approaches. In addition, conditional A1R KO mice lacking A1Rs at specific striatal inputs to DMS and DLS were generated to directly determine the role of these presynaptic A1Rs on the measured electrophysiological responses. Activation of presynaptic A1Rs produced significant and prolonged synaptic depression (A1R-SD) of excitatory transmission in the both the DLS and DMS of male and female animals. Our findings indicate that A1R-SD at corticostriatal and thalamostriatal inputs to DLS can be additive and that A1R-SD in DMS occurs primarily at thalamostriatal inputs. These findings advance the field's understanding of the functional roles of A1Rs in striatum and implicate their potential contribution to neuropsychiatric diseases.


Assuntos
Comportamento Compulsivo/genética , Corpo Estriado/fisiologia , Depressão Sináptica de Longo Prazo/genética , Receptor A1 de Adenosina/genética , Adenosina/farmacologia , Animais , Comportamento Animal/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/patologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Sinapses/fisiologia , Transmissão Sináptica , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
17.
Eur J Pharmacol ; 897: 173946, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607106

RESUMO

Metaplasticity is referred to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), has been considered to be the neural processes underlying learning and memory. Previous observations that cordycepin (an adenosine derivative) improved learning and memory seemed to be contradictory to the findings that cordycepin inhibited LTP. Therefore, we speculated that the conflicting reports of cordycepin might be related to metaplasticity. In the current study, population spike (PS) in hippocampal CA1 area of rats was recorded by using electrophysiological method in vivo. The results showed that cordycepin reduced PS amplitude in hippocampal CA1 with a concentration-dependent relationship, and high frequency stimulation (HFS) failed to induce LTP when cordycepin was intrahippocampally administrated but improved LTP magnitude when cordycepin was pre-treated. Cordycepin increased LTD induced by activating N-Methyl-D-aspartate (NMDA) receptors and subsequently facilitated LTP induced by HFS. Furthermore, we found that 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptors antagonist, could block the roles of cordycepin on LTD and LTP. Collectively, cordycepin was able to modulate metaplasticity in hippocampal CA1 area of rats through adenosine A1 receptors. These findings would be helpful to reconcile the conflicting reports in the literatures and provided new insights into the mechanisms underlying cognitive function promotions with cordycepin treatment.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Região CA1 Hipocampal/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
18.
Neurobiol Learn Mem ; 179: 107397, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33524570

RESUMO

Human genetic studies established MET gene as a risk factor for autism spectrum disorders. We have previously shown that signaling mediated by MET receptor tyrosine kinase, expressed in early postnatal developing forebrain circuits, controls glutamatergic neuron morphological development, synapse maturation, and cortical critical period plasticity. Here we investigated how MET signaling affects synaptic plasticity, learning and memory behavior, and whether these effects are age-dependent. We found that in young adult (postnatal 2-3 months) Met conditional knockout (Metfx/fx:emx1cre, cKO) mice, the hippocampus exhibits elevated plasticity, measured by increased magnitude of long-term potentiation (LTP) and depression (LTD) in hippocampal slices. Surprisingly, in older adult cKO mice (10-12 months), LTP and LTD magnitudes were diminished. We further conducted a battery of behavioral tests to assess learning and memory function in cKO mice and littermate controls. Consistent with age-dependent LTP/LTD findings, we observed enhanced spatial memory learning in 2-3 months old young adult mice, assessed by hippocampus-dependent Morris water maze test, but impaired spatial learning in 10-12 months mice. Contextual and cued learning were further assessed using a Pavlovian fear conditioning test, which also revealed enhanced associative fear acquisition and extinction in young adult mice, but impaired fear learning in older adult mice. Lastly, young cKO mice also exhibited enhanced motor learning. Our results suggest that a shift in the window of synaptic plasticity and an age-dependent early cognitive decline may be novel circuit pathophysiology for a well-established autism genetic risk factor.


Assuntos
Envelhecimento/genética , Disfunção Cognitiva/genética , Memória/fisiologia , Plasticidade Neuronal/genética , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Fatores Etários , Animais , Comportamento Animal , Córtex Cerebral , Condicionamento Clássico/fisiologia , Extinção Psicológica , Medo , Hipocampo/metabolismo , Aprendizagem/fisiologia , Potenciação de Longa Duração/genética , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos Knockout , Teste do Labirinto Aquático de Morris , Aprendizagem Espacial/fisiologia
19.
Nat Commun ; 12(1): 100, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397954

RESUMO

Hippocampal synaptic plasticity includes both long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength, and has been implicated in shaping place field representations that form upon initial exposure to a novel environment. However, direct evidence causally linking either LTP or LTD to place fields remains limited. Here, we show that hippocampal LTD regulates the acute formation and maintenance of place fields using electrophysiology and blocking specifically LTD in freely-moving rats. We also show that exploration of a novel environment produces a widespread and pathway specific de novo synaptic depression in the dorsal hippocampus. Furthermore, disruption of this pathway-specific synaptic depression alters both the dynamics of place field formation and the stability of the newly formed place fields, affecting spatial memory in rats. These results suggest that activity-dependent synaptic depression is required for the acquisition and maintenance of novel spatial information.


Assuntos
Região CA1 Hipocampal/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Potenciais de Ação/fisiologia , Animais , Aprendizagem da Esquiva , Endocitose , Potenciais Pós-Sinápticos Excitadores/fisiologia , Comportamento Exploratório , Peptídeos/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo
20.
Addict Biol ; 26(4): e13002, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33511744

RESUMO

Binge drinking during adolescence induces memory impairments, and evidences suggest that females are more vulnerable than males. However, the reason for such a difference is unclear, whereas preclinical studies addressing this question are lacking. Here we tested the hypothesis that endogenous estrogen level (E2) may explain sex differences in the effects of ethanol on hippocampus plasticity, the cellular mechanism of memory. Long-term depression (LTD) in hippocampus slice of pubertal female rats was recorded 24 h after two ethanol binges (3 g/kg, i.p., 9 h apart). Neither the estrous cycle nor ethanol altered LTD. However, if ethanol was administered during proestrus (i.e., at endogenous E2 peak), LTD was abolished 24 h later, whereas NMDA-fEPSPs response to a GluN2B antagonist increased. The abolition of LTD was not observed in adult female rats. Exogenous E2 combined with ethanol replicated LTD abolition in pubertal, prepubertal female, and in pubertal male rats without changes in ethanol metabolism. In male rats, a higher dose of ethanol was required to abolish LTD at 24-h delay. In pubertal female rats, tamoxifen, an antagonist of estrogen receptors, blocked the impairing effects of endogenous and exogenous E2 on LTD, suggesting estrogen interacts with ethanol through changes in gene expression. In addition, tamoxifen prevented LTD abolition at 24 h but not at 48-h delay. In conclusion, estrogen may explain the increased vulnerability to ethanol-induced plasticity impairment seen in females compared with males. This increased vulnerability of female rats is likely due to changes in the GluN2B subunit that represent a common target between ethanol and estrogen.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Estrogênios/metabolismo , Etanol/farmacologia , Hipocampo/metabolismo , Plasticidade Neuronal , Animais , Depressores do Sistema Nervoso Central/farmacologia , Feminino , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Ratos , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA