Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2312511121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141354

RESUMO

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.


Assuntos
Plasticidade Neuronal , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Humanos , Plasticidade Neuronal/genética , Simulação por Computador , Potenciação de Longa Duração/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/genética , Eletroencefalografia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Neurológicos , Depressão Sináptica de Longo Prazo/genética , Masculino , Potenciais Evocados Visuais/fisiologia
2.
Sci Rep ; 11(1): 6345, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737568

RESUMO

The medial (DMS) and lateral (DLS) dorsal striatum differentially drive goal-directed and habitual/compulsive behaviors, respectively, and are implicated in a variety of neuropsychiatric disorders. These subregions receive distinct inputs from cortical and thalamic regions which uniquely determine dorsal striatal activity and function. Adenosine A1 receptors (A1Rs) are prolific within striatum and regulate excitatory glutamate transmission. Thus, A1Rs may have regionally-specific effects on neuroadaptive processes which may ultimately influence striatally-mediated behaviors. The occurrence of A1R-driven plasticity at specific excitatory inputs to dorsal striatum is currently unknown. To better understand how A1Rs may influence these behaviors, we first sought to understand how A1Rs modulate these distinct inputs. We evaluated A1R-mediated inhibition of cortico- and thalamostriatal transmission using in vitro whole-cell, patch clamp slice electrophysiology recordings in medium spiny neurons from both the DLS and DMS of C57BL/6J mice in conjunction with optogenetic approaches. In addition, conditional A1R KO mice lacking A1Rs at specific striatal inputs to DMS and DLS were generated to directly determine the role of these presynaptic A1Rs on the measured electrophysiological responses. Activation of presynaptic A1Rs produced significant and prolonged synaptic depression (A1R-SD) of excitatory transmission in the both the DLS and DMS of male and female animals. Our findings indicate that A1R-SD at corticostriatal and thalamostriatal inputs to DLS can be additive and that A1R-SD in DMS occurs primarily at thalamostriatal inputs. These findings advance the field's understanding of the functional roles of A1Rs in striatum and implicate their potential contribution to neuropsychiatric diseases.


Assuntos
Comportamento Compulsivo/genética , Corpo Estriado/fisiologia , Depressão Sináptica de Longo Prazo/genética , Receptor A1 de Adenosina/genética , Adenosina/farmacologia , Animais , Comportamento Animal/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/patologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Sinapses/fisiologia , Transmissão Sináptica , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
3.
Neurobiol Learn Mem ; 179: 107397, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33524570

RESUMO

Human genetic studies established MET gene as a risk factor for autism spectrum disorders. We have previously shown that signaling mediated by MET receptor tyrosine kinase, expressed in early postnatal developing forebrain circuits, controls glutamatergic neuron morphological development, synapse maturation, and cortical critical period plasticity. Here we investigated how MET signaling affects synaptic plasticity, learning and memory behavior, and whether these effects are age-dependent. We found that in young adult (postnatal 2-3 months) Met conditional knockout (Metfx/fx:emx1cre, cKO) mice, the hippocampus exhibits elevated plasticity, measured by increased magnitude of long-term potentiation (LTP) and depression (LTD) in hippocampal slices. Surprisingly, in older adult cKO mice (10-12 months), LTP and LTD magnitudes were diminished. We further conducted a battery of behavioral tests to assess learning and memory function in cKO mice and littermate controls. Consistent with age-dependent LTP/LTD findings, we observed enhanced spatial memory learning in 2-3 months old young adult mice, assessed by hippocampus-dependent Morris water maze test, but impaired spatial learning in 10-12 months mice. Contextual and cued learning were further assessed using a Pavlovian fear conditioning test, which also revealed enhanced associative fear acquisition and extinction in young adult mice, but impaired fear learning in older adult mice. Lastly, young cKO mice also exhibited enhanced motor learning. Our results suggest that a shift in the window of synaptic plasticity and an age-dependent early cognitive decline may be novel circuit pathophysiology for a well-established autism genetic risk factor.


Assuntos
Envelhecimento/genética , Disfunção Cognitiva/genética , Memória/fisiologia , Plasticidade Neuronal/genética , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Fatores Etários , Animais , Comportamento Animal , Córtex Cerebral , Condicionamento Clássico/fisiologia , Extinção Psicológica , Medo , Hipocampo/metabolismo , Aprendizagem/fisiologia , Potenciação de Longa Duração/genética , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos Knockout , Teste do Labirinto Aquático de Morris , Aprendizagem Espacial/fisiologia
4.
Development ; 147(10)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32345746

RESUMO

Synapses exhibit an astonishing degree of adaptive plasticity in healthy and disease states. We have investigated whether synapses also adjust to life stages imposed by novel developmental programs for which they were never molded by evolution. Under conditions in which Drosophila larvae are terminally arrested, we have characterized synaptic growth, structure and function at the neuromuscular junction (NMJ). Although wild-type larvae transition to pupae after 5 days, arrested third instar (ATI) larvae persist for 35 days, during which time NMJs exhibit extensive overgrowth in muscle size, presynaptic release sites and postsynaptic glutamate receptors. Remarkably, despite this exuberant growth, stable neurotransmission is maintained throughout the ATI lifespan through a potent homeostatic reduction in presynaptic neurotransmitter release. Arrest of the larval stage in stathmin mutants also reveals a degree of progressive instability and neurodegeneration that was not apparent during the typical larval period. Hence, an adaptive form of presynaptic depression stabilizes neurotransmission during an extended developmental period of unconstrained synaptic growth. More generally, the ATI manipulation provides a powerful system for studying neurodegeneration and plasticity across prolonged developmental timescales.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/genética , Larva/crescimento & desenvolvimento , Larva/genética , Depressão Sináptica de Longo Prazo/genética , Degeneração Neural/genética , Junção Neuromuscular/crescimento & desenvolvimento , Animais , Axônios/patologia , Proteínas de Drosophila/genética , Feminino , Homeostase/genética , Masculino , Mutação , Junção Neuromuscular/metabolismo , Interferência de RNA , Proteínas Smad Reguladas por Receptor/genética , Estatmina/genética , Sinapses/metabolismo , Transmissão Sináptica/genética
5.
Aging (Albany NY) ; 12(3): 2169-2225, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32012119

RESUMO

The prevalence of smoking is significantly higher in persons with schizophrenia (SCZ) than in the general population. However, the biological mechanisms of the comorbidity of smoking and SCZ are largely unknown. This study aimed to reveal shared biological pathways for the two diseases by analyzing data from two genome-wide association studies with a total sample size of 153,898. With pathway-based analysis, we first discovered 18 significantly enriched pathways shared by SCZ and smoking, which were classified into five groups: postsynaptic density, cadherin binding, dendritic spine, long-term depression, and axon guidance. Then, by using an integrative analysis of genetic, epigenetic, and expression data, we found not only 34 critical genes (e.g., PRKCZ, ARHGEF3, and CDKN1A) but also various risk-associated SNPs in these genes, which convey susceptibility to the comorbidity of the two disorders. Finally, using both in vivo and in vitro data, we demonstrated that the expression profiles of the 34 genes were significantly altered by multiple psychotropic drugs. Together, this multi-omics study not only reveals target genes for new drugs to treat SCZ but also reveals new insights into the shared genetic vulnerabilities of SCZ and smoking behaviors.


Assuntos
Encéfalo/metabolismo , Fumar Cigarros/genética , Esquizofrenia/genética , Orientação de Axônios/genética , Caderinas/genética , Caderinas/metabolismo , Fumar Cigarros/epidemiologia , Comorbidade , Metilação de DNA , Bases de Dados Factuais , Bases de Dados Genéticas , Espinhas Dendríticas/genética , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Depressão Sináptica de Longo Prazo/genética , Farmacogenética , Densidade Pós-Sináptica/genética , Esquizofrenia/epidemiologia
6.
Nat Commun ; 10(1): 3622, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399584

RESUMO

Caspase-2 is the most evolutionarily conserved member in the caspase family of proteases and is constitutively expressed in most cell types including neurons; however, its physiological function remains largely unknown. Here we report that caspase-2 plays a critical role in synaptic plasticity and cognitive flexibility. We found that caspase-2 deficiency led to deficits in dendritic spine pruning, internalization of AMPA receptors and long-term depression. Our results indicate that caspase-2 degrades Rictor, a key mTOR complex 2 (mTORC2) component, to inhibit Akt activation, which leads to enhancement of the GSK3ß activity and thereby long-term depression. Furthermore, we found that mice lacking caspase-2 displayed elevated levels of anxiety, impairment in reversal water maze learning, and little memory loss over time. These results not only uncover a caspase-2-mTORC2-Akt-GSK3ß signaling pathway, but also suggest that caspase-2 is important for memory erasing and normal behaviors by regulating synaptic number and transmission.


Assuntos
Caspase 2/metabolismo , Cognição/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais/fisiologia , Animais , Ansiedade , Comportamento Animal , Proteínas de Transporte/metabolismo , Caspase 2/genética , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/genética , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/metabolismo , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de Glutamato/metabolismo
7.
Sci Rep ; 7(1): 15657, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142291

RESUMO

Resveratrol is a natural phytoalexin synthesized by plants, including grapes. It displays a wide range of neuroprotective benefits associated with anti-aging. Recent studies have shown that resveratrol regulates dopaminergic transmission and behavioral effects of drugs of abuse. The goal of the present study is to investigate whether and how resveratrol alters basal inhibitory synaptic transmission and cocaine-induced inhibitory synaptic plasticity in dopamine neurons of the ventral tegmental area (VTA). We report that resveratrol elevated cAMP levels by itself and further potentiated a forskolin-induced increase in cAMP levels in midbrain slices, consistent with reported effects of inhibition of phosphodiesterases (PDEs). Resveratrol potentiated GABAA and GABAB-mediated inhibitory postsynaptic currents (IPSCs) in VTA dopamine neurons, and these effects were mediated by a protein kinase A (PKA)-dependent enhancement of presynaptic GABA release. In addition, we found that resveratrol blocked endocannabinoid-mediated long-term synaptic depression in VTA dopamine neurons. Resveratrol pretreatments attenuated cocaine-induced conditioned place preference and blocked the cocaine-induced reduction of GABAergic inhibition in VTA dopamine neurons. Together, these results provide evidence that resveratrol modulates basal inhibitory synaptic transmission, cocaine-induced synaptic plasticity, and drug-cue associative learning.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Inibidores de Fosfodiesterase/metabolismo , Diester Fosfórico Hidrolases/genética , Resveratrol/administração & dosagem , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Cocaína/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/patologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Endocanabinoides/efeitos adversos , Neurônios GABAérgicos/efeitos dos fármacos , Humanos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Área Tegmentar Ventral/efeitos dos fármacos , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
8.
Eur Neuropsychopharmacol ; 27(8): 759-772, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28619359

RESUMO

Postpartum estrogen (E2) withdrawal is known to be a particularly vulnerable time for depressive symptoms. In this study, ovariectomized (OVX) mice were treated with co-administration of estradiol benzoate and progesterone (E2/P4) followed by administration of E2 alone (E2) and a subsequent E2 withdrawal (EW) to mimic the hormonal changes during pregnancy and postpartum. The objective of this study was to investigate the influence of E2 withdrawal after hormone-simulated pregnancy on synaptic function and plasticity in basolateral amygdala complex (BLA). In comparison to control mice, EW mice spent less time in the central portion of open-field test and open arms of elevated plus-maze. Excitatory postsynaptic potentials (EPSPs) slopes at external capsule BLA synapse were reduced in E2/P4-mice, recovered in E2-mice, and increased in EW-mice. EW-mice showed a significant increase in duration of EPSPs and paired-pulse inhibition (PPI) with multi-spike responses of EPSPs and impairment of long-term depression (LTD) induction, which were corrected by GABAAR agonist muscimol. Levels of estrogen receptor (ER) GPR30, ERα and ERß expression in BLA of EW-mice were lower than those in control mice. The bath-application of GPR30 agonist G-1 in BLA of EW-mice recovered the GABAAR-mediated inhibition and LTD indication, but ERß agonist DPN or ERα agonist PPT could not. A single BLA-injection of G-1 rather than DPN or PPT in EW-mice could partially relieve the anxiety-like behaviors. The results indicate that postpartum E2 withdrawal causes dysfunction of GABAAR-mediated inhibition in the BLA through reducing GPR30 expression, which impairs LTD induction and causes anxiety-like behaviors.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Regulação para Baixo , Estrogênios/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Ácido gama-Aminobutírico/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Anticoncepcionais/farmacologia , Estradiol/análogos & derivados , Estradiol/farmacologia , Potenciais Evocados/efeitos dos fármacos , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos Endogâmicos ICR , Muscimol/farmacologia , Ovariectomia , Período Pós-Parto/fisiologia , Progesterona/farmacologia , Progestinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Síndrome de Abstinência a Substâncias/patologia
9.
Neuron ; 89(5): 1000-15, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26938443

RESUMO

Information processing in the brain requires multiple forms of synaptic plasticity that converge on regulation of NMDA and AMPA-type glutamate receptors (NMDAR, AMPAR), including long-term potentiation (LTP) and long-term depression (LTD) and homeostatic scaling. In some cases, LTP and homeostatic plasticity regulate synaptic AMPAR subunit composition to increase the contribution of Ca(2+)-permeable receptors (CP-AMPARs) containing GluA1 but lacking GluA2 subunits. Here, we show that PKA anchored to the scaffold protein AKAP150 regulates GluA1 phosphorylation and plays a novel role controlling CP-AMPAR synaptic incorporation during NMDAR-dependent LTD. Using knockin mice that are deficient in AKAP-anchoring of either PKA or the opposing phosphatase calcineurin, we found that CP-AMPARs are recruited to hippocampal synapses by anchored PKA during LTD induction but are then rapidly removed by anchored calcineurin. Importantly, blocking CP-AMPAR recruitment, removal, or activity interferes with LTD. Thus, CP-AMPAR synaptic recruitment is required to transiently augment NMDAR Ca(2+) signaling during LTD induction.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Calcineurina/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo/citologia , Hipocampo/ultraestrutura , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Mutação/genética , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Coloração pela Prata , Sinapses/genética , Sinapses/ultraestrutura , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
10.
J Pharmacol Sci ; 128(3): 125-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26154847

RESUMO

The adenosine A1 receptor (A1R) is a G protein-coupled receptor (GPCR) for adenosine, a ubiquitous neuromodulator, and thus regulates neuronal excitability, as well as arousal and sensitivity to pain. In addition, we have previously described a new mode of action for A1R: in cerebellar Purkinje cells, its activation attenuates neuronal responses to glutamate, as mediated by the type-1 metabotropic glutamate receptor (mGluR1). mGluR1 is also a GPCR, and elicits such responses as long-term depression of the postsynaptic response to glutamate, a cellular basis for cerebellar motor learning. Here, we explore in greater detail the interaction between A1R and mGluR1 using non-neuronal cells. Co-immunoprecipitation and Förster resonance energy transfer (FRET) analysis reveal that A1R and mGluR1 form a complex. Furthermore, we found that mGluR1 activation inhibits A1R signaling, as measured by changes in intracellular cAMP. These findings demonstrate that A1R and mGluR1 have the intrinsic ability to form a heteromeric complex and mutually modulate signaling. This interaction may represent a new form of intriguing GPCR-mediated cellular responses.


Assuntos
Receptor Cross-Talk/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptor A1 de Adenosina/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , AMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Transferência Ressonante de Energia de Fluorescência , Glutamatos , Células HEK293 , Humanos , Imunoprecipitação , Depressão Sináptica de Longo Prazo/genética , Transdução de Sinais/genética
11.
Mol Cell Proteomics ; 12(12): 3719-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24023391

RESUMO

The cysteine protease caspase-3, best known as an executioner of cell death in apoptosis, also plays a non-apoptotic role in N-methyl-d-aspartate receptor-dependent long-term depression of synaptic transmission (NMDAR-LTD) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor endocytosis in neurons. The mechanism by which caspase-3 regulates LTD and AMPA receptor endocytosis, however, remains unclear. Here, we addressed this question by using an enzymatic N-terminal peptide enrichment method and mass spectrometry to identify caspase-3 substrates in neurons. Of the many candidates revealed by this proteomic study, we have confirmed BASP1, Dbn1, and Gap43 as true caspase-3 substrates. Moreover, in hippocampal neurons, Gap43 mutants deficient in caspase-3 cleavage inhibit AMPA receptor endocytosis and LTD. We further demonstrated that Gap43, a protein well-known for its functions in axons, is also localized at postsynaptic sites. Our study has identified Gap43 as a key caspase-3 substrate involved in LTD and AMPA receptor endocytosis, uncovered a novel postsynaptic function for Gap43 and provided new insights into how long-term synaptic depression is induced.


Assuntos
Caspase 3/genética , Proteína GAP-43/genética , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/genética , Neurônios/metabolismo , Receptores de AMPA/genética , Transmissão Sináptica/genética , Animais , Caspase 3/metabolismo , Embrião de Mamíferos , Endocitose , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Plasticidade Neuronal/genética , Neurônios/citologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Ligação Proteica , Mapeamento de Interação de Proteínas , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/genética , Sinapses/metabolismo , Técnicas de Cultura de Tecidos
12.
Neuron ; 79(6): 1109-1122, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24050401

RESUMO

The ten-eleven translocation (Tet) family of methylcytosine dioxygenases catalyze oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and promote DNA demethylation. Despite the abundance of 5hmC and Tet proteins in the brain, little is known about the functions of the neuronal Tet enzymes. Here, we analyzed Tet1 knockout mice (Tet1KO) and found downregulation of multiple neuronal activity-regulated genes, including Npas4, c-Fos, and Arc. Furthermore, Tet1KO animals exhibited abnormal hippocampal long-term depression and impaired memory extinction. Analysis of the key regulatory gene, Npas4, indicated that its promoter region, containing multiple CpG dinucleotides, is hypermethylated in both naive Tet1KO mice and after extinction training. Such hypermethylation may account for the diminished expression of Npas4 itself and its downstream targets, impairing transcriptional programs underlying cognitive processes. In summary, we show that neuronal Tet1 regulates normal DNA methylation levels, expression of activity-regulated genes, synaptic plasticity, and memory extinction.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Extinção Psicológica/fisiologia , Regulação da Expressão Gênica/genética , Neurônios/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Fatores Etários , Análise de Variância , Animais , Ansiedade/genética , Ansiedade/fisiopatologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/citologia , Condicionamento Clássico/fisiologia , Proteínas de Ligação a DNA/deficiência , Depressão/genética , Depressão/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Técnicas In Vitro , Locomoção/genética , Depressão Sináptica de Longo Prazo/genética , Masculino , Aprendizagem em Labirinto , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/genética , Sinapsinas/metabolismo
13.
Brain Res ; 1532: 85-98, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23939223

RESUMO

Genes and environmental conditions interact in the development of cognitive capacities and each plays an important role in neuropsychiatric disorders such as attention deficit/hyperactivity disorder (ADHD) and schizophrenia. Multiple studies have indicated that the gene for the SNARE protein SNAP-25 is a candidate susceptibility gene for ADHD, as well as schizophrenia, while maternal smoking is a candidate environmental risk factor for ADHD. We utilized mice heterozygous for a Snap25 null allele and deficient in SNAP-25 expression to model genetic effects in combination with prenatal exposure to nicotine to explore genetic and environmental interactions in synaptic plasticity and behavior. We show that SNAP-25 deficient mice exposed to prenatal nicotine exhibit hyperactivity and deficits in social interaction. Using a high frequency stimulus electrophysiological paradigm for long-term depression (LTD) induction, we examined the roles of dopaminergic D2 receptors (D2Rs) and cannabinoid CB1 receptors (CB1Rs), both critical for LTD induction in the striatum. We found that prenatal exposure to nicotine in Snap25 heterozygote null mice produced a deficit in the D2R-dependent induction of LTD, although CB1R regulation of plasticity was not impaired. We also show that prenatal nicotine exposure altered the affinity and/or receptor coupling of D2Rs, but not the number of these receptors in heterozygote null Snap25 mutants. These results refine the observations made in the coloboma mouse mutant, a proposed mouse model of ADHD, and illustrate how gene×environmental influences can interact to perturb neural functions that regulate behavior.


Assuntos
Interação Gene-Ambiente , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Nicotina/farmacologia , Receptores Dopaminérgicos/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Knockout , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Receptor CB1 de Canabinoide/metabolismo , Proteína 25 Associada a Sinaptossoma/genética
14.
Behav Brain Res ; 254: 83-91, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23644186

RESUMO

De novo gene transcription is a prerequisite for long-term information storage in the brain. Learning-facilitated synaptic plasticity describes the ability of hippocampal synapses to respond with long-lasting synaptic plasticity to the coupling of afferent stimulation with a spatial learning experience. Strikingly, long-term depression (LTD) is facilitated by context-dependent spatial learning experiences suggesting it may play a role in information storage to enable spatial memory. Here, we investigated if learning-facilitated LTD requires the transcription factor, c-Fos and is transcription-dependent. Novel spatial learning about object-place configurations coupled with weak low frequency afferent stimulation induced robust LTD in control animals that persisted for >24h and was associated with elevations in hippocampal expression of c-Fos. Intracerebral application of a c-fos antisense oligonucleotide prevented the facilitation of LTD by novel spatial learning, inhibited elevations of c-Fos triggered by LTD and impaired spatial learning. The expression of the transcription factor zif268 was unaffected by the c-fos antisense oligonucleotide. Learning-facilitated LTD was prevented by a transcription inhibitor. These data support that learning-facilitated LTD requires elevations in c-Fos and is transcription dependent. The observation that LTD shares key regulatory mechanisms with learning and memory processes argues strongly for a role for this form of synaptic plasticity in long-term information storage in the hippocampus.


Assuntos
Hipocampo/fisiologia , Aprendizagem/fisiologia , Depressão Sináptica de Longo Prazo/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transcrição Gênica , Animais , Potenciais Pós-Sinápticos Excitadores , Masculino , Ratos , Ratos Wistar
15.
J Neurosci ; 32(41): 14254-64, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055494

RESUMO

It was demonstrated previously that a positive feedback loop, including protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), is required for the gradual expression of cerebellar long-term depression (LTD). PKC and MAPK are mutually activated in this loop. MAPK-dependent PKC activation is likely to be mediated by phospholipase A2. On the other hand, it is not clear how PKC activates MAPK. Therefore, the entire picture of this loop was not fully understood. We here test the hypothesis that this loop is completed by the PKC substrate, Raf kinase inhibitory protein (RKIP). To test this hypothesis, we used a mutant form of RKIP that is not phosphorylated by PKC and thus constitutively inhibits Raf-1 and MEK, upstream kinases of MAPK. When this RKIP mutant was introduced into Purkinje cells of mouse cerebellar slices through patch-clamp electrodes, LTD was blocked, while wild-type (WT) RKIP had no effect on LTD. Physiological epistasis experiments demonstrated that RKIP works downstream of PKC and upstream of MAPK during LTD induction. Furthermore, biochemical analyses demonstrated that endogenous RKIP dissociates from Raf-1 and MEK during LTD induction in a PKC-dependent manner, suggesting that RKIP binding-dependent inhibition of Raf-1 and MEK is removed upon LTD induction. We therefore conclude that PKC-dependent regulation of RKIP leads to MAPK activation, with RKIP completing the positive feedback loop that is required for LTD.


Assuntos
Cerebelo/enzimologia , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/fisiologia , Proteína Quinase C/fisiologia , Animais , Ativação Enzimática/genética , Feminino , Vetores Genéticos , Células HEK293 , Humanos , Depressão Sináptica de Longo Prazo/genética , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/genética , Células NIH 3T3 , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas do Envelope Viral/genética
16.
Neurobiol Dis ; 45(3): 1101-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198573

RESUMO

Tuberous sclerosis complex (TSC) and fragile X syndrome (FXS) are caused by mutations in negative regulators of translation. FXS model mice exhibit enhanced metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). Therefore, we hypothesized that a mouse model of TSC, ΔRG transgenic mice, also would exhibit enhanced mGluR-LTD. We measured the impact of TSC2-GAP mutations on the mTORC1 and ERK signaling pathways and protein synthesis-dependent hippocampal synaptic plasticity in ΔRG transgenic mice. These mice express a dominant/negative TSC2 that binds to TSC1, but has a deletion and substitution mutation in its GAP-domain, resulting in inactivation of the complex. Consistent with previous studies of several other lines of TSC model mice, we observed elevated S6 phosphorylation in the brains of ΔRG mice, suggesting upregulated translation. Surprisingly, mGluR-LTD was not enhanced, but rather was impaired in the ΔRG transgenic mice, indicating that TSC and FXS have divergent synaptic plasticity phenotypes. Similar to patients with TSC, the ΔRG transgenic mice exhibit elevated ERK signaling. Moreover, the mGluR-LTD impairment displayed by the ΔRG transgenic mice was rescued with the MEK-ERK inhibitor U0126. Our results suggest that the mGluR-LTD impairment observed in ΔRG mice involves aberrant TSC1/2-ERK signaling.


Assuntos
Depressão Sináptica de Longo Prazo/genética , Sistema de Sinalização das MAP Quinases/genética , Receptores de Glutamato Metabotrópico/metabolismo , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/deficiência , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Hipocampo/patologia , Técnicas In Vitro , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Receptores de Glutamato Metabotrópico/genética , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
17.
Biol Psychiatry ; 71(1): 75-83, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21978521

RESUMO

BACKGROUND: Stress is causally associated with anxiety. Although the underlying cellular mechanisms are not well understood, the basal forebrain cholinergic neurons have been implicated in stress response. p75(NTR) is a panneurotrophin receptor expressed almost exclusively in basal forebrain cholinergic neurons in adult brain. This study investigated whether and how p75(NTR), via regulation of the cholinergic system and hippocampal synaptic plasticity, influences stress-related behaviors. METHODS: We used a combination of slice electrophysiology, behavioral analyses, pharmacology, in vivo microdialysis, and neuronal activity mapping to assess the role of p75(NTR) in mood and stress-related behaviors and its underlying cellular and molecular mechanisms. RESULTS: We show that acute stress enables hippocampal long-term depression (LTD) in adult wild-type mice but not in mice lacking p75(NTR). The p75(NTR) mutant mice also exhibit two distinct behavioral impairments: baseline anxiety-like behavior and a deficit in coping with and recovering from stressful situations. Blockade of stress-enabled LTD with a GluA2-derived peptide impaired stress recovery without affecting baseline anxiety. Pharmacological manipulations of cholinergic transmission mimicked the p75(NTR) perturbation in both baseline anxiety and responses to acute stress. Finally, we show evidence of misregulated cholinergic signaling in animals with p75(NTR) deletion. CONCLUSIONS: Our results suggest that loss of p75(NTR) leads to changes in hippocampal cholinergic signaling, which may be involved in regulation of stress-enabled hippocampal LTD and in modulating behaviors related to stress and anxiety.


Assuntos
Acetilcolina/metabolismo , Ansiedade/genética , Hipocampo/fisiopatologia , Depressão Sináptica de Longo Prazo/genética , Receptores de Fator de Crescimento Neural/metabolismo , Estresse Psicológico/genética , Adaptação Psicológica/efeitos dos fármacos , Adaptação Psicológica/fisiologia , Análise de Variância , Animais , Ansiedade/patologia , Ansiedade/fisiopatologia , Biofísica , Colinérgicos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise , Microinjeções , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Fatores de Tempo
18.
J Neurosci ; 31(44): 16012-25, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22049443

RESUMO

Thalamocortical (TC) projections provide the major pathway for ascending sensory information to the mammalian neocortex. Arrays of these projections form synaptic inputs on thalamorecipient neurons, thus contributing to the formation of receptive fields (RFs) in sensory cortices. Experience-dependent plasticity of RFs persists throughout an organism's life span but in adults requires activation of cholinergic inputs to the cortex. In contrast, synaptic plasticity at TC projections is limited to the early postnatal period. This disconnect led to the widespread belief that TC synapses are the principal site of RF plasticity only in neonatal sensory cortices, but that they lose this plasticity upon maturation. Here, we tested an alternative hypothesis that mature TC projections do not lose synaptic plasticity but rather acquire gating mechanisms that prevent the induction of synaptic plasticity. Using whole-cell recordings and direct measures of postsynaptic and presynaptic activity (two-photon glutamate uncaging and two-photon imaging of the FM 1-43 assay, respectively) at individual synapses in acute mouse brain slices that contain the auditory thalamus and cortex, we determined that long-term depression (LTD) persists at mature TC synapses but is gated presynaptically. Cholinergic activation releases presynaptic gating through M(1) muscarinic receptors that downregulate adenosine inhibition of neurotransmitter release acting through A(1) adenosine receptors. Once presynaptic gating is released, mature TC synapses can express LTD postsynaptically through group I metabotropic glutamate receptors. These results indicate that synaptic plasticity at TC synapses is preserved throughout the life span and, therefore, may be a cellular substrate of RF plasticity in both neonate and mature animals.


Assuntos
Córtex Cerebral/citologia , Depressão Sináptica de Longo Prazo/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/citologia , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Glutamatos/farmacologia , Técnicas In Vitro , Indóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Receptor A1 de Adenosina/deficiência , Transmissão Sináptica/genética
19.
Nat Neurosci ; 14(11): 1447-54, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22019731

RESUMO

Phosphatidylinositol 3-kinase (PI3K) has been implicated in synaptic plasticity and other neural functions in the brain. However, the role of individual PI3K isoforms in the brain is unclear. We investigated the role of PI3Kγ in hippocampal-dependent synaptic plasticity and cognitive functions. We found that PI3Kγ has a crucial and specific role in NMDA receptor (NMDAR)-mediated synaptic plasticity at mouse Schaffer collateral-commissural synapses. Both genetic deletion and pharmacological inhibition of PI3Kγ disrupted NMDAR long-term depression (LTD) while leaving other forms of synaptic plasticity intact. Accompanying this physiological deficit, the impairment of NMDAR LTD by PI3Kγ blockade was specifically correlated with deficits in behavioral flexibility. These findings suggest that a specific PI3K isoform, PI3Kγ, is critical for NMDAR LTD and some forms of cognitive function. Thus, individual isoforms of PI3Ks may have distinct roles in different types of synaptic plasticity and may therefore influence various kinds of behavior.


Assuntos
Comportamento Animal/fisiologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Depressão Sináptica de Longo Prazo/genética , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Biofísica , Cromonas/farmacologia , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Estimulação Elétrica/métodos , Meio Ambiente , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/citologia , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Fosforilação/genética , Quinoxalinas/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiazolidinedionas/farmacologia , Fatores de Tempo
20.
J Neurosci ; 31(35): 12513-22, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21880913

RESUMO

Striatal medium spiny neurons (MSNs) are divided into two subpopulations exerting distinct effects on motor behavior. Transgenic mice carrying bacterial artificial chromosome (BAC) able to confer cell type-specific expression of enhanced green fluorescent protein (eGFP) for dopamine (DA) receptors have been developed to characterize differences between these subpopulations. Analysis of these mice, in contrast with original pioneering studies, showed that striatal long-term depression (LTD) was expressed in indirect but not in the direct pathway MSNs. To address this mismatch, we applied a new approach using combined BAC technology and receptor immunohistochemistry. We demonstrate that, in physiological conditions, DA-dependent LTD is expressed in both pathways showing that the lack of synaptic plasticity found in D(1) eGFP mice is associated to behavioral deficits. Our findings suggest caution in the use of this tool and indicate that the "striatal segregation" hypothesis might not explain all synaptic dysfunctions in Parkinson's disease.


Assuntos
Corpo Estriado/patologia , Dopamina/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Doença de Parkinson/patologia , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Fenômenos Biofísicos , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Proteínas de Fluorescência Verde/genética , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Ratos , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/deficiência , Receptores de Dopamina D2/deficiência , Substância P/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA