Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
Neurochem Res ; 49(4): 1076-1092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38267690

RESUMO

Neurotoxicity associated with chemotherapy is a debilitating side effect of cancer management in humans which reportedly involves inflammatory and oxidative stress responses. Diphenyl diselenide (DPDS) is an organoselenium compound which exhibits its anti-tumoral, anti-oxidant, anti-inflammatory and anti-mutagenic effects. Nevertheless, its possible effect on chemotherapy-induced neurotoxicity is not known. Using rat model, we probed the behavioral and biochemical effects accompanying administration of antineoplastic agent doxorubicin (7.5 mg/kg) and DPDS (5 and 10 mg/kg). Anxiogenic-like behavior, motor and locomotor insufficiencies associated with doxorubicin were considerably abated by both DPDS doses with concomitant enhancement in exploratory behavior as demonstrated by reduced heat maps intensity and enhanced track plot densities. Moreover, with exception of cerebral glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, biochemical data demonstrated reversal of doxorubicin-mediated decline in cerebral and cerebellar antioxidant status indices and the increase in acetylcholinesterase (AChE) activity by both doses of DPDS. Also, cerebellar and cerebral lipid peroxidation, hydrogen peroxide as well as reactive oxygen and nitrogen species levels were considerably diminished in rats administered doxorubicin and DPDS. In addition, DPDS administration abated myeloperoxidase activity, tumour necrosis factor alpha and nitric oxide levels along with caspase-3 activity in doxorubicin-administered rats. Chemoprotection of doxorubicin-associated neurotoxicity by DPDS was further validated by histomorphometry and histochemical staining. Taken together, DPDS through offsetting of oxido-inflammatory stress and caspase-3 activation elicited neuroprotection in doxorubicin-treated rats.


Assuntos
Compostos Organosselênicos , Temefós , Humanos , Ratos , Animais , Caspase 3 , Temefós/farmacologia , Acetilcolinesterase , Estresse Oxidativo , Antioxidantes/farmacologia , Derivados de Benzeno/farmacologia , Derivados de Benzeno/uso terapêutico , Derivados de Benzeno/química , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Doxorrubicina/toxicidade
2.
Toxicol Appl Pharmacol ; 436: 115859, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990728

RESUMO

We have previously shown that inhibition of cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4) protects against cellular toxicity in neuronal cells. Since α-synuclein (α-syn) toxicity contributes to the neurodegeneration of Parkinson's disease (PD). The aim of this study was to explore the effects and mechanisms of PDE4 on α-syn-induced neuronal toxicity. Using mutant human A53T α-syn overexpressed SH-SY5Y cells, we found that PDE4B knockdown reduced cellular apoptosis. Roflupram (ROF, 20 µM), a selective PDE4 inhibitor, produced similar protective effects and restored the morphological alterations of mitochondria. Mechanistic studies identified that α-syn enhanced the phosphorylation of Parkin at Ser131, followed by the decreased mitochondrial translocation of Parkin. Whereas both PDE4B knockdown and PDE4 inhibition by ROF blocked the effects of α-syn on Parkin phosphorylation and mitochondrial translocation. Moreover, PDE4 inhibition reversed the increase in the phosphorylation of p38 mitogen-activated protein kinase (MAPK) induced by α-syn. ROF treatment also reduced the binding of p38 MAPK to Parkin. Consistently, overexpression of PDE4B blocked the roles of ROF on p38 MAPK phosphorylation, Parkin phosphorylation, and the subsequent mitochondrial translocation of parkin. Furthermore, PDE4B overexpression attenuated the protective role of ROF, as evidenced by reduced mitochondria membrane potential and increased cellular apoptosis. Interestingly, ROF failed to suppress α-syn-induced cytotoxicity in the presence of a protein kinase A (PKA) inhibitor H-89. Our findings indicate that PDE4 facilitates α-syn-induced cytotoxicity via the PKA/p38 MAPK/Parkin pathway in SH-SY5Y cells overexpressing A53T mutant α-synuclein. PDE4 inhibition by ROF is a promising strategy for the prevention and treatment of α-syn-induced neurodegeneration.


Assuntos
Derivados de Benzeno/farmacologia , Furanos/farmacologia , Mitocôndrias/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética , alfa-Sinucleína/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Humanos , Mitocôndrias/genética , Neurônios/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Inibidores da Fosfodiesterase 4/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Biomed Pharmacother ; 144: 112338, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678728

RESUMO

Chloroethylnitrosoureas (CENUs) are an important family of chemotherapies in clinical treatment of cancers, which exert antitumor activity by inducing the formation of DNA interstrand crosslinks (dG-dC ICLs). However, the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability largely decrease the antitumor efficacy of CENUs. In this study, we synthesized an azobenzene-based hypoxia-activated combi-nitrosourea prodrug, AzoBGNU, and evaluated its hypoxic selectivity and antitumor activity. The prodrug was composed of a CENU pharmacophore and an O6-benzylguanine (O6-BG) analog moiety masked by a N,N-dimethyl-4-(phenyldiazenyl)aniline segment as a hypoxia-activated trigger, which was designed to be selectively reduced via azo bond break in hypoxic tumor microenvironment, accompanied with releasing of an O6-BG analog to inhibit AGT and a chloroethylating agent to induce dG-dC ICLs. AzoBGNU exhibited significantly increased cytotoxicity and apoptosis-inducing ability toward DU145 cells under hypoxia compared with normoxia, indicating the hypoxia-responsiveness as expected. Predominant higher cytotoxicity was observed in the cells treated by AzoBGNU than those by traditional CENU chemotherapy ACNU and its combination with O6-BG. The levels of dG-dC ICLs in DU145 cells induced by AzoBGNU was remarkably enhanced under hypoxia, which was approximately 6-fold higher than those in the AzoBGNU-treated groups under normoxia and those in the ACNU-treated groups. The results demonstrated that azobenzene-based combi-nitrosourea prodrug possessed desirable tumor-hypoxia targeting ability and eliminated chemoresistance compared with the conventional CENUs.


Assuntos
Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Metilases de Modificação do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/antagonistas & inibidores , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Pró-Fármacos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteínas Supressoras de Tumor/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Humanos , Masculino , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Esferoides Celulares , Hipóxia Tumoral , Microambiente Tumoral , Proteínas Supressoras de Tumor/metabolismo
4.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638861

RESUMO

Among organic-inorganic hybrid molecules consisting of organic structure(s) and metal(s), only few studies are available on the cytotoxicity of nucleophilic molecules. In the present study, we investigated the cytotoxicity of a nucleophilic organotellurium compound, diphenyl ditelluride (DPDTe), using a cell culture system. DPDTe exhibited strong cytotoxicity against vascular endothelial cells and fibroblasts along with high intracellular accumulation but showed no cytotoxicity and had less accumulation in vascular smooth muscle cells and renal epithelial cells. The cytotoxicity of DPDTe decreased when intramolecular tellurium atoms were replaced with selenium or sulfur atoms. Electronic state analysis revealed that the electron density between tellurium atoms in DPDTe was much lower than those between selenium atoms of diphenyl diselenide and sulfur atoms of diphenyl disulfide. Moreover, diphenyl telluride did not accumulate and exhibit cytotoxicity. The cytotoxicity of DPDTe was also affected by substitution. p-Dimethoxy-DPDTe showed higher cytotoxicity, but p-dichloro-DPDTe and p-methyl-DPDTe showed lower cytotoxicity than that of DPDTe. The subcellular distribution of the compounds revealed that the compounds with stronger cytotoxicity showed higher accumulation rates in the mitochondria. Our findings suggest that the electronic state of tellurium atoms in DPDTe play an important role in accumulation and distribution of DPDTe in cultured cells. The present study supports the hypothesis that nucleophilic organometallic compounds, as well as electrophilic organometallic compounds, exhibit cytotoxicity by particular mechanisms.


Assuntos
Derivados de Benzeno/farmacologia , Células Endoteliais/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Compostos Organosselênicos/farmacologia , Telúrio/farmacologia , Animais , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células LLC-PK1 , Modelos Químicos , Estrutura Molecular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Suínos , Telúrio/química
5.
Acta Pharmacol Sin ; 42(12): 1991-2003, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34531546

RESUMO

We have previously shown that roflupram (ROF) protects against MPP+-induced neuronal damage in models of Parkinson's disease (PD). Since impaired degradation of α-synuclein (α-syn) is one of the key factors that lead to PD, here we investigated whether and how ROF affects the degradation of α-syn in rotenone (ROT)-induced PD models in vivo and in vitro. We showed that pretreatment with ROF (10 µM) significantly attenuated cell apoptosis and reduced the level of α-syn in ROT-treated SH-SY5Y cells. Furthermore, ROF significantly enhanced the lysosomal function, as evidenced by the increased levels of mature cathepsin D (CTSD) and lysosomal-associated membrane protein 1 (LAMP1) through increasing NAD+/NADH and the expression of sirtuin 1 (SIRT1). Pretreatment with an SIRT1 inhibitor selisistat (SELI, 10 µM) attenuated the neuroprotection of ROF, ROF-reduced expression of α-syn, and ROF-increased expression levels of LAMP1 and mature CTSD. Moreover, inhibition of CTSD by pepstatin A (20 µM) attenuated ROF-reduced expression of α-syn. In vivo study was conducted in mice exposed to ROT (10 mg·kg-1·d-1, i.g.) for 6 weeks; then, ROT-treated mice received ROF (0.5, 1, or 2 mg·kg-1·d-1; i.g.) for four weeks. ROF significantly ameliorated motor deficits, which was accompanied by increased expression levels of tyrosine hydroxylase, SIRT1, mature CTSD, and LAMP1, and a reduced level of α-syn in the substantia nigra pars compacta. Taken together, these results demonstrate that ROF exerts a neuroprotective action and reduces the α-syn level in PD models. The mechanisms underlying ROF neuroprotective effects appear to be associated with NAD+/SIRT1-dependent activation of lysosomal function.


Assuntos
Derivados de Benzeno/uso terapêutico , Furanos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Rotenona/toxicidade , alfa-Sinucleína/metabolismo , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Derivados de Benzeno/farmacologia , Catepsina D/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Furanos/farmacologia , Humanos , Lisossomos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Movimento/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Sirtuína 1/metabolismo
6.
Cancer Sci ; 112(12): 4844-4852, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34529884

RESUMO

Regulatory T cells (Tregs) in the tumor microenvironment regulate tumor immunity. Programmed cell death protein 1 (PD-1) is known to be expressed on Tregs and plays crucial roles in suppressing tumor immunity. However, the immune checkpoint inhibitor, anti-PD-1 antibody, is known to promote the proliferation of the Treg population in tumor-infiltrating lymphocytes, thereby restricting the efficacy of cancer immunotherapy. In this study, we focused on the curcumin analog GO-Y030, an antitumor chemical. GO-Y030 inhibited the immune-suppressive ability of Tregs via metabolic changes in vitro, even in the presence of immune checkpoint inhibitors. Mechanistically, GO-Y030 inhibited the mTOR-S6 axis in Tregs, which plays a pivotal role in their immune-suppressive ability. GO-Y030 also controlled the metabolism in cultured CD4+ T cells in the presence of TGF-ß + IL-6; however, it did not prevent Th17 differentiation. Notably, GO-Y030 significantly inhibited IL-10 production from Th17 cells. In the tumor microenvironment, L-lactate produced by tumors is known to support the suppressive ability of Tregs, and GO-Y030 treatment inhibited L-lactate production via metabolic changes. In addition, experiments in the B16-F10 melanoma mouse model revealed that GO-Y030 helped inhibit the anti-PD-1 immune checkpoint and reduce the Treg population in tumor-infiltrating lymphocytes. Thus, GO-Y030 controls the metabolism of both Tregs and tumors and could serve as a booster for anti-immune checkpoint inhibitors.


Assuntos
Derivados de Benzeno/administração & dosagem , Inibidores de Checkpoint Imunológico/administração & dosagem , Cetonas/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Linfócitos T Reguladores/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Derivados de Benzeno/farmacologia , Células Cultivadas , Sinergismo Farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Cetonas/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Chembiochem ; 22(24): 3391-3397, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34580971

RESUMO

Cellular senescence, a stable form of cell cycle arrest, facilitates protection from tumorigenesis and aids in tissue repair as they accumulate in the body at an early age. However, long-term retention of senescent cells causes inflammation, aging of the tissue, and progression of deadly diseases such as obesity, diabetes, and atherosclerosis. Various attempts have been made to achieve selective elimination of senescent cells from the body, yet little has been explored in designing the mitochondria-targeted senolytic agent. Many characteristics of senescence are associated with mitochondria. Here we have designed a library of alkyl-monoquaternary ammonium-triphenyl phosphine (TPP) and alkyl-diquaternary ammonium-TPP of varying alkyl chain lengths, which target the mitochondria; we also studied their senolytic properties. It was observed that the alkyl-diquaternary ammonium-TPP with the longest chain length induced apoptosis in senescent cells selectively via an increase of reactive oxygen species (ROS) and mitochondrial membrane disruption. This study demonstrates that mitochondria could be a potential target for designing new small molecules as senolytic agents for the treatment of a variety of dysfunctions associated with pathological aging.


Assuntos
Antineoplásicos/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Compostos de Amônio/química , Compostos de Amônio/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Fosfinas/química , Fosfinas/farmacologia
8.
Eur J Med Chem ; 223: 113601, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34153575

RESUMO

Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 µM and 47 µM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Exossomos/metabolismo , Sinteninas/metabolismo , Aminoácidos/síntese química , Aminoácidos/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Derivados de Benzeno/síntese química , Derivados de Benzeno/metabolismo , Desenho de Fármacos , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Domínios PDZ , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Sindecanas/metabolismo , Sinteninas/química
9.
Arch Toxicol ; 95(8): 2643-2657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165617

RESUMO

N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) is a novel lipophilic heavy metal chelator and thiol redox antioxidant. This study was designed to investigate the neuroprotective activity of NBMI in U-87 MG cells exposed to lead acetate (PbAc). Cells were pretreated with NBMI for 24 h prior to a 48 h exposure to PbAc. Cell death (55%, p < 0.0001) and reduction of intracellular GSH levels (0.70-fold, p < 0.005) induced by 250 µM Pb were successfully attenuated by NBMI pretreatment at concentrations as low as 10 µM. A similar pretreatment with the FDA-approved Pb chelator dimercaptosuccinic acid (DMSA) proved ineffective, indicating a superior PKPD profile for NBMI. Pretreatment with NBMI successfully counteracted Pb-induced neuroinflammation by reducing IL-1ß (0.59-fold, p < 0.05) and GFAP expression levels. NBMI alone was also found to significantly increase ferroportin expression (1.97-fold, p < 0.05) thereby enhancing cellular ability to efflux heavy metals. While no response was observed on the apoptotic pathway, this study demonstrated for the first time that necrotic cell death induced by Pb in U-87 MG cells is successfully attenuated by NBMI. Collectively these data demonstrate NBMI to be a promising neuroprotective compound in the realm of Pb poisoning.


Assuntos
Derivados de Benzeno/farmacologia , Quelantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Compostos Organometálicos/toxicidade , Compostos de Sulfidrila/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/prevenção & controle , Succímero/farmacologia
10.
Bioorg Chem ; 112: 104940, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965780

RESUMO

A series of novel substituted bisurea 1,4-Diisocyanatobenzene compounds were designed, synthesized and introduced as potent anticancer compounds and screened for their in vitro anti-proliferative activities in human cancer cell lines. The structures of all titled compounds were characterized using Fourier-transform infrared mass spectra, nuclear magnetic resonance spectroscopy, elemental analysis and evaluated their sustainability using biological experiments. A selected group of ten derivatives were apprised for their anti-proliferative activity. The compounds 3d and 3e displayed potent anticancer activity with low IC50 value of 5.40, and 5.89 µM against HeLa cancer cell lines. The observed apoptosis data has demonstrated that compounds 3d and 3e induce the activaties of caspase-9 and caspase-3, the compounds 3d and 3e regulated fungal zone inhibition. Due to promising growth inhibitions, the all synthesized compounds were allowed to campaign includes quantum-polarized-ligand, quantum mechanical and molecular mechanical, docking experiments. The compounds 3d and 3e have exhibited a higher affinity for ERK/MAP kinase and CDK2 proteins. The molecular docking interactions have demonstrated two stage inhibition of cancer cells by binding with ERK/MAP kinase and CDK2 leads to inactivation of cell proliferation,cell cycle progression,cell divisionanddifferentiation, and hypo-phosphorylation of ribosome leading cells to restricts at point boundary of the G1/S phase. The long-range molecular dynamics, 150 ns, simulations were also revealed more consistency by 3d. Our study conclude good binding propensity for active-tunnel of ERK/MAP kinase and CDK2 proteins, by 3d (1,1'-(1,4-phenylene) bis(3-(2-chlorobenzyl)urea)), to suggest that the designed and synthesized 3d is to use as selective novel nuclei in anti-cancer chemotherapeutics.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Isocianatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ureia/farmacologia , Animais , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Proliferação de Células/efeitos dos fármacos , Ciclina E/antagonistas & inibidores , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/deficiência , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isocianatos/síntese química , Isocianatos/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
11.
J Ethnopharmacol ; 279: 114235, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34044081

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trichodesma indicum (L.) R. Br. (family: Boraginaceae) is a medicinal herb largely used to treat arthralgia, rheumatoid arthritis, wound healing, dysentery, etc. It's mechanism of anti-inflammatory activity has not been systematically analyzed yet. AIM OF THE STUDY: The present study was undertaken to examine the anti-inflammatory effects of successive solvent extracts (n-hexane extract (HE), ethyl acetate extract (EA), ethanol extract (EE), aqueous extract (AE) and fractions of HE) from the aerial parts of Trichodesma indicum (TI) against lipopolysaccharide (LPS) stimulated inflammatory reaction using mouse macrophage RAW 264.7 cells. MATERIALS AND METHODS: Cytotoxic effects of the extracts and fractions of TI were assessed by MTT assay. The effect of extracts and fractions on the production of nitric oxide (NO) in RAW 264.7 macrophages were measured using the Griess reagent method. IL - 6, IL - 1ß, TNF-α, iNOS and COX-2 gene expressions were examined by a qRT-PCR method. RESULTS: RAW 264.7 macrophages pretreated with HE, EA, EE and AE of TI showed a significant decrease in the production of proinflammatory cytokines and NO without exhibiting cytotoxicity. The potent HE was fractionated using flash chromatography into FA, FB, FC, FD and FE. Among the five fractions, FE displayed a stronger ability to reduce IL - 1ß, TNF-α, iNOS, COX2 and NO importantly no cytotoxicity was observed. The phytochemical compounds present in FE were further screened by Gas chromatography - Mass spectroscopy (GC-MS). GC-MS analysis revealed that 1,2-benzenedicarboxylic acid diisooctyl ester is the major compound in FE. Molecular docking analysis showed good inhibition of 1,2-benzenedicarboxylic acid diisooctyl ester against TLR-4, NIK and TACE. CONCLUSION: Our results suggested that 1,2-benzenedicarboxylic acid diisooctyl ester could be a potential candidate in alleviating inflammatory reactions in TI.


Assuntos
Anti-Inflamatórios/farmacologia , Derivados de Benzeno/farmacologia , Boraginaceae/química , Ácidos Carboxílicos/farmacologia , Ésteres/farmacologia , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Derivados de Benzeno/isolamento & purificação , Derivados de Benzeno/uso terapêutico , Ácidos Carboxílicos/isolamento & purificação , Ácidos Carboxílicos/uso terapêutico , Citocinas/metabolismo , Ésteres/isolamento & purificação , Ésteres/uso terapêutico , Cromatografia Gasosa-Espectrometria de Massas , Inflamação/patologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7
12.
Front Immunol ; 12: 664425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054833

RESUMO

Antrodia cinnamomea exhibits anti-inflammatory, antioxidant, and immunomodulatory activities. We aimed to explore the antipsoriatic potential of 2,4-dimethoxy-6-methylbenzene-1,3-diol (DMD) derived from A. cinnamomea. The macrophages activated by imiquimod (IMQ) were used as the cell model for examining the anti-inflammatory effect of DMD in vitro. A significantly high inhibition of IL-23 and IL-6 by DMD was observed in THP-1 macrophages and bone marrow-derived mouse macrophages. The conditioned medium of DMD-treated macrophages could reduce neutrophil migration and keratinocyte overproliferation. DMD could downregulate cytokine/chemokine by suppressing the phosphorylation of mitogen-activated protein kinases (MAPKs) and NF-κB. We also observed inhibition of GDAP1L1/Drp1 translocation from the cytoplasm to mitochondria by DMD intervention. Thus, mitochondrial fission could be a novel target for treating psoriatic inflammation. A psoriasiform mouse model treated by IMQ showed reduced scaling, erythema, and skin thickening after topical application of DMD. Compared to the IMQ stimulation only, the active compound decreased epidermal thickness by about 2-fold. DMD diminished the number of infiltrating macrophages and neutrophils and their related cytokine/chemokine production in the lesional skin. Immunostaining of the IMQ-treated skin demonstrated the inhibition of GDAP1LI and phosphorylated Drp1 by DMD. The present study provides insight regarding the potential use of DMD as an effective treatment modality for psoriatic inflammation.


Assuntos
Derivados de Benzeno/farmacologia , Dinaminas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Polyporales/química , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Psoríase/etiologia , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais/efeitos dos fármacos
13.
J Pharm Pharm Sci ; 24: 23-36, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33735604

RESUMO

BACKGROUND: Current therapies for acute leukemias (ALs) are associated with severe adverse reactions and high relapse rates, which makes the search for new antileukemic agents a necessity. Therefore, the aim of this study was to evaluate the effects of a new sulfonamide, S1, in AL cells K562 and Jurkat. METHODS: The cytotoxic activity of S1 was assessed using MTT method. The involvement of apoptosis in the mechanism of cell death was assessed by flow cytometry and fluorescence microscopy. RESULTS: Our results demonstrated that S1 induced morphological changes suggestive of apoptosis in both K562 and Jurkat cells. Additionally, S1 was not cytotoxic to normal erythrocytes and mononuclear cells and had a highly selective cytotoxicity for AL lineages. The mechanisms of cell death induced by S1 in K562 cells involves cell cycle arrest at G2/M phase and the activation of both extrinsic and intrinsic apoptosis, with an increased FasR and AIF expression and the loss of mitochondrial potential. As for Jurkat, we observed cell cycle blockade at G0/G1 phase, phosphatidylserine exposure and the involvement of intrinsic apoptosis only, with mitochondrial potential loss and a reduced expression of Survivin.  Although sulfonamide S1 did not altered Bcl-2 and Bax expression in AL cell lines, it was able to activate caspase-3 in K562 cells. CONCLUSION: Our results suggest that sulfonamide S1 may be a promising candidate for the development of new drugs for the treatment of ALs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Derivados de Benzeno/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Jurkat , Células K562 , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Estrutura Molecular , Sulfonamidas/síntese química , Sulfonamidas/química
14.
Chem Biodivers ; 18(4): e2000949, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33645910

RESUMO

Three new eremophilane sesquiterpenes phomadecalins G-I (1-3) and two new benzene derivatives microdiplzenes A and B (12 and 13), together with nine known eremophilane sesquiterpenes (4-11 and 14) were isolated from an endophytic fungus, Microdiplodia sp. WGHS5. Their structures were elucidated by the interpretation of HR-ESI-MS and NMR data; meanwhile, the absolute configurations of new compounds were determined on the base of ECD calculations. All compounds were evaluated for the antimicrobial activities and antiproliferative effect on human gastric cancer cell lines (BGC-823).


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Endófitos/química , Sesquiterpenos Policíclicos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Bactérias/efeitos dos fármacos , Derivados de Benzeno/química , Derivados de Benzeno/isolamento & purificação , Derivados de Benzeno/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia
15.
Biochem Pharmacol ; 186: 114430, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556338

RESUMO

Colorectal cancer (CRC) is one of the most malignant cancers in the world. A major cause of death in CRC patients is the limited therapeutic options in its advanced stages. The Farnesoid X receptor (FXR) is a member of the nuclear superfamily, which is effective in slowing the progression of colorectal cancer in addition to its extraordinary role in regulating metabolic disorders. Due to the systemic side-effects caused by non-selective agonists, the intestine-restricted FXR agonists can induce a whole-body benefit without activating the hepatic FXR, suggesting intestinal FXR activation as a potentially safer therapy in the treatment of CRC. This review highlights the effects of FXR on the disturbed bile acid circulation and the carcinogenesis of CRC and with a specific emphasis on listing the functions of several intestinal-restricted FXR agonists.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Antineoplásicos/farmacologia , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Derivados de Benzeno/farmacologia , Derivados de Benzeno/uso terapêutico , Ácidos e Sais Biliares/metabolismo , Neoplasias Colorretais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Ácidos Isonicotínicos/farmacologia , Ácidos Isonicotínicos/uso terapêutico , Receptores Citoplasmáticos e Nucleares/metabolismo
16.
Acta Pharmacol Sin ; 42(11): 1769-1779, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33627802

RESUMO

NOD-like receptor (NLR) family pyrin domain-containing-3 (NLRP3) inflammasome is implicated in inflammation-associated diseases such as multiple sclerosis, Parkinson's disease, and stroke. Targeting the NLRP3 inflammasome is beneficial to these diseases, but few NLRP3 inflammasome-selective inhibitors are identified to date. Essential oils (EOs) are liquid mixtures of volatile and low molecular-weight organic compounds extracted from aromatic plants, which show various pharmacological activities, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory properties. In this study we screened active ingredients from essential oils, and identified 1,2,4-trimethoxybenzene (1,2,4-TTB) as a selective NLRP3 inflammasome inhibitor. We showed that 1,2,4-TTB (1 mM) markedly suppressed nigericin- or ATP-induced NLRP3 inflammasome activation, thus decreased caspase-1 activation and IL-1ß secretion in immortalized murine bone marrow-derived macrophages (iBMDMs) and in primary mouse microglia. Moreover, 1,2,4-TTB specifically inhibited the activation of NLRP3 inflammasome without affecting absent in melanoma 2 (AIM2) inflammasome activation. We further demonstrated that 1,2,4-TTB inhibited oligomerization of the apoptosis-associated speck-like protein containing a CARD (ASC) and protein-protein interaction between NLRP3 and ASC, thus blocking NLRP3 inflammasome assembly in iBMDMs and in primary mouse macrophages. In mice with experimental autoimmune encephalomyelitis (EAE), administration of 1,2,4-TTB (200 mg · kg-1 · d-1, i.g. for 17 days) significantly ameliorated EAE progression and demyelination. In conclusion, our results demonstrate that 1,2,4-TTB is an NLRP3 inflammasome inhibitor and attenuates the clinical symptom and inflammation of EAE, suggesting that 1,2,4-TTB is a potential candidate compound for treating NLRP3 inflammasome-driven diseases, such as multiple sclerosis.


Assuntos
Derivados de Benzeno/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Derivados de Benzeno/farmacologia , Linhagem Celular Transformada , Feminino , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Arch Microbiol ; 203(5): 2219-2228, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33630118

RESUMO

Candida genus comprises several species that can be found in the oral cavity and the gastrointestinal and genitourinary tracts of healthy individuals. Under certain conditions, however, they behave as opportunistic pathogens that colonize these tissues, most frequently when the immune system is compromised by a disease or under certain medical treatments. To colonize the human host, these organisms require to express cell wall proteins (CWP) that allowed them to adhere and adapt to the reactive oxygen (ROS) and nitrogen (RNS) species produced in the macrophage during the respiratory burst. The aim of this study was to determine how four Candida species respond to the oxidative stress imposed by cumene hydroperoxide (CHP). To this purpose, C. albicans, C. glabrata, C. krusei and C. parapsilosis were exposed to this oxidant which is known to generate ROS in the membrane phospholipids. Accordingly, both mock and CHP-exposed cells were used to extract and analyze CWP and also to measure catalase activity and the levels of protein carbonylation. Results indicated that all four species express different CWP to neutralize ROS. Most relevant among these proteins were the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase, known as moonlight proteins because in addition to participate in glycolysis they play an important role in the cell response to ROS. In addition, a thiol-specific antioxidant enzyme (Tsa) was also found to counteract ROS.


Assuntos
Derivados de Benzeno/farmacologia , Candida/classificação , Candida/metabolismo , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Candida/enzimologia , Parede Celular/metabolismo , Trato Gastrointestinal/microbiologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Macrófagos/imunologia , Boca/microbiologia , Fosfopiruvato Hidratase/metabolismo , Proteômica , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistema Urogenital/microbiologia
18.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572814

RESUMO

Although multiple myeloma (MM) patients benefit from standard bortezomib (BTZ) chemotherapy, they develop drug resistance, resulting in relapse. We investigated whether histone deacetylase 6 (HDAC6) inhibitor A452 overcomes bortezomib resistance in MM. We show that HDAC6-selective inhibitor A452 significantly decreases the activation of BTZ-resistant markers, such as extracellular signal-regulated kinases (ERK) and nuclear factor kappa B (NF-κB), in acquired BTZ-resistant MM cells. Combination treatment of A452 and BTZ or carfilzomib (CFZ) synergistically reduces BTZ-resistant markers. Additionally, A452 synergizes with BTZ or CFZ to inhibit the activation of NF-κB and signal transducer and activator of transcription 3 (STAT3), resulting in decreased expressions of low-molecular-mass polypeptide 2 (LMP2) and LMP7. Furthermore, combining A452 with BTZ or CFZ leads to synergistic cancer cell growth inhibition, viability decreases, and apoptosis induction in the BTZ-resistant MM cells. Overall, the synergistic effect of A452 with CFZ is more potent than that of A452 with BTZ in BTZ-resistant U266 cells. Thus, our findings reveal the HDAC6-selective inhibitor as a promising therapy for BTZ-chemoresistant MM.


Assuntos
Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Humanos , Mieloma Múltiplo/metabolismo
19.
Eur J Med Chem ; 209: 112890, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039723

RESUMO

A series of novel 4-aminobenzensulfonamide/carboxamide derivatives bearing naphthoquinone pharmacophore were designed, sythesized and evaluated for their proteasome inhibitory and antiproliferative activities against human breast cancer cell line (MCF-7). The structures of the synthesized compounds were confirmed by spectral and elemental analyses. The proteasome inhibitory activity studies were carried out using cell-based assay. The antiproteasomal activity results revealed that most of the compounds exhibited inhibitory activity with different percentages against the caspase-like (C-L, ß1 subunit), trypsin-like (T-L, ß2 subunit) and chymotrypsin-like (ChT-L, ß5 subunit) activities of proteasome. Among the tested compounds, compound 14 bearing 5-chloro-2-pyridyl ring on the nitrogen atom of sulfonamide group is the most active compound in the series and displayed higher inhibition with IC50 values of 9.90 ± 0.61, 44.83 ± 4.23 and 22.27 ± 0.15 µM against ChT-L, C-L and T-L activities of proteasome compared to the lead compound PI-083 (IC50 = 12.47 ± 0.21, 53.12 ± 2.56 and 26.37 ± 0.5 µM), respectively. The antiproliferative activity was also determined by MTT (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay in vitro. According to the antiproliferative activity results, all of the compounds exhibited cell growth inhibitory activity in a range of IC50 = 1.72 ± 0.14-20.8 ± 0.5 µM and compounds 13 and 28 were found to be the most active compounds with IC50 values of 1.79 ± 0.21 and 1.72 ± 0.14 µM, respectively. Furthermore, molecular modeling studies were carried out for the compounds 13, 14 and 28 to investigate the ligand-enzyme binding interactions.


Assuntos
Naftoquinonas/química , Naftoquinonas/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Naftoquinonas/síntese química , Inibidores de Proteassoma/síntese química , Sulfonamidas/síntese química
20.
J Enzyme Inhib Med Chem ; 36(1): 362-371, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33356659

RESUMO

One of the systems responsible for maintaining cellular redox homeostasis is the thioredoxin-dependent system. An equally important function of this system is the regulation of the expression of many proteins by the transcription factor NF-κB or the apoptosis regulating kinase (ASK-1). Since it has been shown that the Trx-dependent system can contribute to both the enhancement of tumour angiogenesis and growth as well as apoptosis of neoplastic cells, the search for compounds that inhibit the level/activity of Trx and/or TrxR and thus modulate the course of the neoplastic process is ongoing. It has been shown that many naturally occurring polyphenolic compounds inactivate elements of the thioredoxin system. In addition, the effectiveness of Trx is inhibited by imidazole derivatives, while the activity of TrxR is reduced by transition metal ions complexes, dinitrohalobenzene derivatives, Michael acceptors, nitrosourea and ebselen. In addition, research is ongoing to identify new selective Trx/TrxR inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/genética , Antineoplásicos/síntese química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Inibidores Enzimáticos/síntese química , Regulação Neoplásica da Expressão Gênica , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Imidazóis/química , Imidazóis/farmacologia , Isoindóis/química , Isoindóis/farmacologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Compostos de Nitrosoureia/química , Compostos de Nitrosoureia/farmacologia , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Oxirredução , Transdução de Sinais , Relação Estrutura-Atividade , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA