Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 640
Filtrar
1.
Neurochem Res ; 49(4): 1076-1092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38267690

RESUMO

Neurotoxicity associated with chemotherapy is a debilitating side effect of cancer management in humans which reportedly involves inflammatory and oxidative stress responses. Diphenyl diselenide (DPDS) is an organoselenium compound which exhibits its anti-tumoral, anti-oxidant, anti-inflammatory and anti-mutagenic effects. Nevertheless, its possible effect on chemotherapy-induced neurotoxicity is not known. Using rat model, we probed the behavioral and biochemical effects accompanying administration of antineoplastic agent doxorubicin (7.5 mg/kg) and DPDS (5 and 10 mg/kg). Anxiogenic-like behavior, motor and locomotor insufficiencies associated with doxorubicin were considerably abated by both DPDS doses with concomitant enhancement in exploratory behavior as demonstrated by reduced heat maps intensity and enhanced track plot densities. Moreover, with exception of cerebral glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, biochemical data demonstrated reversal of doxorubicin-mediated decline in cerebral and cerebellar antioxidant status indices and the increase in acetylcholinesterase (AChE) activity by both doses of DPDS. Also, cerebellar and cerebral lipid peroxidation, hydrogen peroxide as well as reactive oxygen and nitrogen species levels were considerably diminished in rats administered doxorubicin and DPDS. In addition, DPDS administration abated myeloperoxidase activity, tumour necrosis factor alpha and nitric oxide levels along with caspase-3 activity in doxorubicin-administered rats. Chemoprotection of doxorubicin-associated neurotoxicity by DPDS was further validated by histomorphometry and histochemical staining. Taken together, DPDS through offsetting of oxido-inflammatory stress and caspase-3 activation elicited neuroprotection in doxorubicin-treated rats.


Assuntos
Compostos Organosselênicos , Temefós , Humanos , Ratos , Animais , Caspase 3 , Temefós/farmacologia , Acetilcolinesterase , Estresse Oxidativo , Antioxidantes/farmacologia , Derivados de Benzeno/farmacologia , Derivados de Benzeno/uso terapêutico , Derivados de Benzeno/química , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Doxorrubicina/toxicidade
2.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298823

RESUMO

With the development of the chemical industry, benzene, toluene, ethylbenzene, and xylene (BTEX) have gradually become the major indoor air pollutants. Various gas treatment techniques are widely used to prevent the physical and mental health hazards of BTEX in semi-enclosed spaces. Chlorine dioxide (ClO2) is an alternative to chlorine as a secondary disinfectant with a strong oxidation ability, a wide range of action, and no carcinogenic effects. In addition, ClO2 has a unique permeability which allows it to eliminate volatile contaminants from the source. However, little attention has been paid to the removal of BTEX by ClO2, due to the difficulty of removing BTEX in semi-enclosed areas and the lack of testing methods for the reaction intermediates. Therefore, this study explored the performance of ClO2 advanced oxidation technology on both liquid and gaseous benzene, toluene, o-xylene, and m-xylene. The results showed that ClO2 was efficient in the removal of BTEX. The byproducts were detected by gas chromatography-mass spectrometry (GC-MS) and the reaction mechanism was speculated using the ab initio molecular orbital calculations method. The results demonstrated that ClO2 could remove the BTEX from the water and the air without causing secondary pollution.


Assuntos
Poluição do Ar em Ambientes Fechados , Benzeno , Benzeno/química , Tolueno/química , Xilenos/química , Poluição do Ar em Ambientes Fechados/análise , Derivados de Benzeno/química , Gases/análise , Monitoramento Ambiental/métodos
3.
Toxicol Mech Methods ; 33(3): 222-232, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36042574

RESUMO

The Health and environmental hazards of benzene and nitrobenzene (NB) derivatives have remained a topic of interest of researchers. In silico methods for prediction of toxicity of chemicals have proved their worth in accurate forecast of environmental as well as health toxicity and are strongly recommended by regulatory authorities. Two quantitative structure-toxicity relationship (QSTR) models explaining Scenedesmus obliquus toxicity trends among 39 benzene derivatives and Tetrahymena pyriformis toxicity of 103 NB and 392 benzene derivatives are developed using semiempirical quantum chemical parameters. The best constructed QSTR models have good fitting ability (R2 = 0.8053, 0.7591, and 0.8283) and robustness (Q2LOO = 0.7507, 0.7227, and 0.8194; Q2LMO = 0.7338, 0.7153, and 0.8172). The external predictivity of all the models are quite good (R2EXT = 0.8256, 0.9349, and 0.8698). Electronegativity, Cosmo volume, total energy, and molecular weight are responsible for the increase and decrease of toxicity of benzene derivatives against S. obliquus while electronegativity, electrophilicity index, the heat of formation, total energy, hydrophobicity, and cosmo volume are responsible for modulation of toxicity of NB and benzene derivatives toward T. pyriformis. These models fulfill the requirements of all the five OECD principles.


Assuntos
Derivados de Benzeno , Tetrahymena pyriformis , Derivados de Benzeno/química , Derivados de Benzeno/toxicidade , Relação Quantitativa Estrutura-Atividade , Nitrobenzenos
4.
Chem Commun (Camb) ; 58(4): 573-576, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34913446

RESUMO

Fluorophores with different emission wavelengths were efficiently quenched by a tert-butyl terminated tetrazylmethyl group and activated by an isonitrile-tetrazine click-to-release reaction. Nucleic acid templated chemistry significantly accelerated this bioorthogonal cleavage. Moreover, two mutually orthogonal fluorogenic cleavage reactions were simultaneously conducted in live cells for the first time.


Assuntos
Compostos Aza/química , Derivados de Benzeno/química , Corantes Fluorescentes/química , Nitrilas/química , Imagem Óptica , Linhagem Celular Tumoral , Humanos , Estrutura Molecular
5.
Chem Commun (Camb) ; 58(2): 298-301, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34889325

RESUMO

A series of new BODIPY-tetrazine derivatives have been developed with a twist intramolecular charge transfer (TICT) state in polar solvents, which is an electron transfer process that occurs upon photoexcitation in a molecule that usually consists of an electron donor and acceptor linked by a single bond. Among them, the BODIPY-tetrazine derivative 6i was stable towards long-term storage and red-emitting with excellent performance, and was further used to image trans-cyclooctene-labeled lipids in mammalian cells and cyclopropene-labeled sugars in cancer cells under no-wash conditions.


Assuntos
Compostos Aza/química , Derivados de Benzeno/química , Compostos de Boro/química , Corantes Fluorescentes/química , Imagem Óptica , Células A549 , Humanos , Estrutura Molecular
6.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638861

RESUMO

Among organic-inorganic hybrid molecules consisting of organic structure(s) and metal(s), only few studies are available on the cytotoxicity of nucleophilic molecules. In the present study, we investigated the cytotoxicity of a nucleophilic organotellurium compound, diphenyl ditelluride (DPDTe), using a cell culture system. DPDTe exhibited strong cytotoxicity against vascular endothelial cells and fibroblasts along with high intracellular accumulation but showed no cytotoxicity and had less accumulation in vascular smooth muscle cells and renal epithelial cells. The cytotoxicity of DPDTe decreased when intramolecular tellurium atoms were replaced with selenium or sulfur atoms. Electronic state analysis revealed that the electron density between tellurium atoms in DPDTe was much lower than those between selenium atoms of diphenyl diselenide and sulfur atoms of diphenyl disulfide. Moreover, diphenyl telluride did not accumulate and exhibit cytotoxicity. The cytotoxicity of DPDTe was also affected by substitution. p-Dimethoxy-DPDTe showed higher cytotoxicity, but p-dichloro-DPDTe and p-methyl-DPDTe showed lower cytotoxicity than that of DPDTe. The subcellular distribution of the compounds revealed that the compounds with stronger cytotoxicity showed higher accumulation rates in the mitochondria. Our findings suggest that the electronic state of tellurium atoms in DPDTe play an important role in accumulation and distribution of DPDTe in cultured cells. The present study supports the hypothesis that nucleophilic organometallic compounds, as well as electrophilic organometallic compounds, exhibit cytotoxicity by particular mechanisms.


Assuntos
Derivados de Benzeno/farmacologia , Células Endoteliais/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Compostos Organosselênicos/farmacologia , Telúrio/farmacologia , Animais , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células LLC-PK1 , Modelos Químicos , Estrutura Molecular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Suínos , Telúrio/química
7.
Molecules ; 26(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34500814

RESUMO

The investigation of the constituents of the rhizomes of Dioscorea collettii afforded one new dihydroisocoumarin, named (-)-montroumarin (1a), along with five known compounds-montroumarin (1b), 1,1'-oxybis(2,4-di-tert-butylbenzene) (2), (3R)-3'-O-methylviolanone (3a), (3S)-3'-O-methylviolanone (3b), and (RS)-sativanone (4). Their structures were elucidated using extensive spectroscopic methods. To the best of our knowledge, compound 1a is a new enantiomer of compound 1b. The NMR data of compound 2 had been reported but its structure was erroneous. The structure of compound 2 was revised on the basis of a reinterpretation of its NMR data (1D and 2D) and the assignment of the 1H and 13C NMR data was given rightly for the first time. Compounds 3a-4, three dihydroisoflavones, were reported from the Dioscoreaceae family for the first time. The cytotoxic activities of all the compounds were tested against the NCI-H460 cell line. Two dihydroisocoumarins, compounds 1a and 1b, displayed moderate cytotoxic activities, while the other compounds showed no cytotoxicity.


Assuntos
Cumarínicos/química , Dioscorea/química , Isoflavonas/química , Rizoma/química , Derivados de Benzeno/química , Linhagem Celular Tumoral , Cumarínicos/toxicidade , Humanos , Isoflavonas/toxicidade , Extratos Vegetais/química
8.
Bioorg Med Chem ; 47: 116400, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530297

RESUMO

A chemiluminescent probe has been developed, consisting of phenoxy-dioxetane moiety covalently attached to trans-cyclooctene. The inverse electron demand Diels-Alder reaction with tetrazine produces a cycloaddition product which undergoes a series of spontaneous rearrangements resulting in emission of green light. The chemiluminescent probe can be applied to study bioconjugation chemistry with tetrazine-modified biomaterials, which have recently been shown to have great potential for anticancer drug delivery. This work describes in vitro studies, including NMR and spectroscopic investigation of chemiluminescence, which will pave way for future in vivo bioconjugation experiments.


Assuntos
Compostos Aza/química , Derivados de Benzeno/química , Ciclo-Octanos/química , Compostos Heterocíclicos com 1 Anel/química , Sondas Moleculares/química , Reação de Cicloadição , Compostos Heterocíclicos com 1 Anel/síntese química , Sondas Moleculares/síntese química , Estrutura Molecular
9.
Chembiochem ; 22(24): 3391-3397, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34580971

RESUMO

Cellular senescence, a stable form of cell cycle arrest, facilitates protection from tumorigenesis and aids in tissue repair as they accumulate in the body at an early age. However, long-term retention of senescent cells causes inflammation, aging of the tissue, and progression of deadly diseases such as obesity, diabetes, and atherosclerosis. Various attempts have been made to achieve selective elimination of senescent cells from the body, yet little has been explored in designing the mitochondria-targeted senolytic agent. Many characteristics of senescence are associated with mitochondria. Here we have designed a library of alkyl-monoquaternary ammonium-triphenyl phosphine (TPP) and alkyl-diquaternary ammonium-TPP of varying alkyl chain lengths, which target the mitochondria; we also studied their senolytic properties. It was observed that the alkyl-diquaternary ammonium-TPP with the longest chain length induced apoptosis in senescent cells selectively via an increase of reactive oxygen species (ROS) and mitochondrial membrane disruption. This study demonstrates that mitochondria could be a potential target for designing new small molecules as senolytic agents for the treatment of a variety of dysfunctions associated with pathological aging.


Assuntos
Antineoplásicos/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Compostos de Amônio/química , Compostos de Amônio/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Fosfinas/química , Fosfinas/farmacologia
10.
Chem Pharm Bull (Tokyo) ; 69(8): 707-716, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334514

RESUMO

This account summarizes the development of a benzyne-mediated cyclization/functionalization protocol for the versatile construction of highly substituted benzene derivatives fused with an N-heterocyclic ring such as indolines, indoles, and related nitrogen-containing heterocycles. The protocol comprises sequential reactions initiated by generating a benzyne species and subsequent cyclization via addition of magnesium amide to the benzyne, followed by trapping of the resultant magnesium compound in situ with various electrophiles. The substituent scope was expanded by conducting a transmetalation on a copper species to introduce alkyl, aryl, and alkenyl substituents. The utility of the sequential reaction was demonstrated in the synthesis of a carbazole natural product (heptaphylline), pyrrolo[4,3,2-de]quinoline alkaloids (batzellines), and pyrrolo[2,3-c]carbazole alkaloids (dictyodendrines).


Assuntos
Derivados de Benzeno/química , Produtos Biológicos/síntese química , Compostos Heterocíclicos/química , Produtos Biológicos/química , Ciclização , Estrutura Molecular
11.
J Mol Cell Cardiol ; 161: 23-38, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34331972

RESUMO

A serious consequence of myocardial ischemia-reperfusion injury (I/R) is oxidative damage, which causes mitochondrial dysfunction. The cascading ROS can propagate and potentially induce heme bleaching and protein cysteine sulfonation (PrSO3H) of the mitochondrial electron transport chain. Herein we studied the mechanism of I/R-mediated irreversible oxidative injury of complex III in mitochondria from rat hearts subjected to 30-min of ischemia and 24-h of reperfusion in vivo. In the I/R region, the catalytic activity of complex III was significantly impaired. Spectroscopic analysis indicated that I/R mediated the destruction of hemes b and c + c1 in the mitochondria, supporting I/R-mediated complex III impairment. However, no significant impairment of complex III activity and heme damage were observed in mitochondria from the risk region of rat hearts subjected only to 30-min ischemia, despite a decreased state 3 respiration. In the I/R mitochondria, carbamidomethylated C122/C125 of cytochrome c1 via alkylating complex III with a down regulation of HCCS was exclusively detected, supporting I/R-mediated thioether defect of heme c1. LC-MS/MS analysis showed that I/R mitochondria had intensely increased complex III PrSO3H levels at the C236 ligand of the [2Fe2S] cluster of the Rieske iron­sulfur protein (uqcrfs1), thus impairing the electron transport activity. MS analysis also indicated increased PrSO3H of the hinge protein at C65 and of cytochrome c1 at C140 and C220, which are confined in the intermembrane space. MS analysis also showed that I/R extensively enhanced the PrSO3H of the core 1 (uqcrc1) and core 2 (uqcrc2) subunits in the matrix compartment, thus supporting the conclusion that complex III releases ROS to both sides of the inner membrane during reperfusion. Analysis of ischemic mitochondria indicated a modest reduction from the basal level of complex III PrSO3H detected in the mitochondria of sham control hearts, suggesting that the physiologic hyperoxygenation and ROS overproduction during reperfusion mediated the enhancement of complex III PrSO3H. In conclusion, reperfusion-mediated heme damage with increased PrSO3H controls oxidative injury to complex III and aggravates mitochondrial dysfunction in the post-ischemic heart.


Assuntos
Cisteína/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Derivados de Benzeno/química , Bovinos , Cisteína/química , Citocromos c1/química , Citocromos c1/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Heme/química , Masculino , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Isquemia Miocárdica/metabolismo , Ácido Peroxinitroso/química , Ratos Sprague-Dawley , Superóxido Dismutase/genética
12.
Nat Commun ; 12(1): 3706, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140488

RESUMO

Organometallic complexes are ubiquitous in chemistry and biology. Whereas their preparation has historically relied on ligand synthesis followed by coordination to metal centers, the ability to efficiently diversify their structures remains a synthetic challenge. A promising yet underdeveloped strategy involves the direct manipulation of ligands that are already bound to a metal center, also known as chemistry-on-the-complex. Herein, we introduce a versatile platform for on-the-complex annulation reactions using transient aryne intermediates. In one variant, organometallic complexes undergo transition metal-catalyzed annulations with in situ generated arynes to form up to six new carbon-carbon bonds. In the other variant, an organometallic complex bearing a free aryne is generated and intercepted in cycloaddition reactions to access unique scaffolds. Our studies, centered around privileged polypyridyl metal complexes, provide an effective strategy to annulate organometallic complexes and access complex metal-ligand scaffolds, while furthering the synthetic utility of strained intermediates in chemical synthesis.


Assuntos
Derivados de Benzeno/química , Complexos de Coordenação/química , Metais/química , Compostos Organometálicos/química , Carbono/química , Catálise , Complexos de Coordenação/síntese química , Ligantes , Compostos Organometálicos/síntese química , Paládio/química , Rutênio/química , Elementos de Transição/química
13.
Bioorg Chem ; 112: 104940, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965780

RESUMO

A series of novel substituted bisurea 1,4-Diisocyanatobenzene compounds were designed, synthesized and introduced as potent anticancer compounds and screened for their in vitro anti-proliferative activities in human cancer cell lines. The structures of all titled compounds were characterized using Fourier-transform infrared mass spectra, nuclear magnetic resonance spectroscopy, elemental analysis and evaluated their sustainability using biological experiments. A selected group of ten derivatives were apprised for their anti-proliferative activity. The compounds 3d and 3e displayed potent anticancer activity with low IC50 value of 5.40, and 5.89 µM against HeLa cancer cell lines. The observed apoptosis data has demonstrated that compounds 3d and 3e induce the activaties of caspase-9 and caspase-3, the compounds 3d and 3e regulated fungal zone inhibition. Due to promising growth inhibitions, the all synthesized compounds were allowed to campaign includes quantum-polarized-ligand, quantum mechanical and molecular mechanical, docking experiments. The compounds 3d and 3e have exhibited a higher affinity for ERK/MAP kinase and CDK2 proteins. The molecular docking interactions have demonstrated two stage inhibition of cancer cells by binding with ERK/MAP kinase and CDK2 leads to inactivation of cell proliferation,cell cycle progression,cell divisionanddifferentiation, and hypo-phosphorylation of ribosome leading cells to restricts at point boundary of the G1/S phase. The long-range molecular dynamics, 150 ns, simulations were also revealed more consistency by 3d. Our study conclude good binding propensity for active-tunnel of ERK/MAP kinase and CDK2 proteins, by 3d (1,1'-(1,4-phenylene) bis(3-(2-chlorobenzyl)urea)), to suggest that the designed and synthesized 3d is to use as selective novel nuclei in anti-cancer chemotherapeutics.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Isocianatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ureia/farmacologia , Animais , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Proliferação de Células/efeitos dos fármacos , Ciclina E/antagonistas & inibidores , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/deficiência , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isocianatos/síntese química , Isocianatos/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
14.
Eur J Pharm Biopharm ; 165: 279-292, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34033881

RESUMO

Nucleic acids therapeutics provide a selective and promising alternative to traditional treatments for multiple genetic diseases. A major obstacle is the development of safe and efficient delivery systems. Here, we report the synthesis of the new cationic gemini amphiphile 1,3-bis[(4-oleyl-1-pyridinio)methyl]benzene dibromide (DOPY). Its transfection efficiency was evaluated using PolyPurine Reverse Hoogsteen hairpins (PPRHs), a nucleic acid tool for gene silencing and gene repair developed in our laboratory. The interaction of DOPY with PPRHs was confirmed by gel retardation assays, and it forms complexes of 155 nm. We also demonstrated the prominent internalization of PPRHs using DOPY compared to other chemical vehicles in SH-SY5Y, PC-3 and DF42 cells. Regarding gene silencing, a specific PPRH against the survivin gene delivered with DOPY decreased survivin protein levels and cell viability more effectively than with N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate (DOTAP) in both SH-SY5Y and PC-3 cells. We also validated the applicability of DOPY in gene repair approaches by correcting a point mutation in the endogenous locus of the dhfr gene in DF42 cells using repair-PPRHs. All these results indicate both an efficient entry and release of PPRHs at the intracellular level. Therefore, DOPY can be considered as a new lipid-based vehicle for the delivery of therapeutic oligonucleotides.


Assuntos
Derivados de Benzeno/química , Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Oligonucleotídeos/administração & dosagem , Compostos de Piridínio/química , Linhagem Celular Tumoral , Inativação Gênica , Doenças Genéticas Inatas/genética , Humanos , Lipossomos , Oligonucleotídeos/genética , Mutação Puntual , Survivina/genética , Transfecção/métodos
15.
J Pharm Pharm Sci ; 24: 23-36, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33735604

RESUMO

BACKGROUND: Current therapies for acute leukemias (ALs) are associated with severe adverse reactions and high relapse rates, which makes the search for new antileukemic agents a necessity. Therefore, the aim of this study was to evaluate the effects of a new sulfonamide, S1, in AL cells K562 and Jurkat. METHODS: The cytotoxic activity of S1 was assessed using MTT method. The involvement of apoptosis in the mechanism of cell death was assessed by flow cytometry and fluorescence microscopy. RESULTS: Our results demonstrated that S1 induced morphological changes suggestive of apoptosis in both K562 and Jurkat cells. Additionally, S1 was not cytotoxic to normal erythrocytes and mononuclear cells and had a highly selective cytotoxicity for AL lineages. The mechanisms of cell death induced by S1 in K562 cells involves cell cycle arrest at G2/M phase and the activation of both extrinsic and intrinsic apoptosis, with an increased FasR and AIF expression and the loss of mitochondrial potential. As for Jurkat, we observed cell cycle blockade at G0/G1 phase, phosphatidylserine exposure and the involvement of intrinsic apoptosis only, with mitochondrial potential loss and a reduced expression of Survivin.  Although sulfonamide S1 did not altered Bcl-2 and Bax expression in AL cell lines, it was able to activate caspase-3 in K562 cells. CONCLUSION: Our results suggest that sulfonamide S1 may be a promising candidate for the development of new drugs for the treatment of ALs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Derivados de Benzeno/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Jurkat , Células K562 , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Estrutura Molecular , Sulfonamidas/síntese química , Sulfonamidas/química
16.
Chem Biodivers ; 18(4): e2000949, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33645910

RESUMO

Three new eremophilane sesquiterpenes phomadecalins G-I (1-3) and two new benzene derivatives microdiplzenes A and B (12 and 13), together with nine known eremophilane sesquiterpenes (4-11 and 14) were isolated from an endophytic fungus, Microdiplodia sp. WGHS5. Their structures were elucidated by the interpretation of HR-ESI-MS and NMR data; meanwhile, the absolute configurations of new compounds were determined on the base of ECD calculations. All compounds were evaluated for the antimicrobial activities and antiproliferative effect on human gastric cancer cell lines (BGC-823).


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Endófitos/química , Sesquiterpenos Policíclicos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Bactérias/efeitos dos fármacos , Derivados de Benzeno/química , Derivados de Benzeno/isolamento & purificação , Derivados de Benzeno/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia
17.
Nat Commun ; 12(1): 812, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547279

RESUMO

Carbon dots (CDs) are photoluminescent nanomaterials with wide-ranging applications. Despite their photoactivity, it remains unknown whether CDs degrade under illumination and whether such photodegradation poses any cytotoxic effects. Here, we show laboratory-synthesized CDs irradiated with light degrade into molecules that are toxic to both normal (HEK-293) and cancerous (HeLa and HepG2) human cells. Eight days of irradiation photolyzes 28.6-59.8% of the CDs to <3 kilo Dalton molecules, 1431 of which are detected by high-throughput, non-target high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Molecular network and community analysis further reveal 499 cytotoxicity-related molecules, 212 of which contain polyethylene glycol, glucose, or benzene-related structures. Photo-induced production of hydroxyl and alkyl radicals play important roles in CD degradation as affected by temperature, pH, light intensity and wavelength. Commercial CDs show similar photodegraded products and cytotoxicity profiles, demonstrating that photodegradation-induced cytotoxicity is likely common to CDs regardless of their chemical composition. Our results highlight the importance of light in cytocompatibility studies of CDs.


Assuntos
Carbono/toxicidade , Citotoxinas/toxicidade , Pontos Quânticos/toxicidade , Derivados de Benzeno/química , Derivados de Benzeno/toxicidade , Carbono/química , Carbono/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/química , Glucose/química , Glucose/toxicidade , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Radical Hidroxila/toxicidade , Cinética , Luz , Fotólise , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Pontos Quânticos/química , Pontos Quânticos/efeitos da radiação , Temperatura
18.
Eur J Med Chem ; 209: 112890, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039723

RESUMO

A series of novel 4-aminobenzensulfonamide/carboxamide derivatives bearing naphthoquinone pharmacophore were designed, sythesized and evaluated for their proteasome inhibitory and antiproliferative activities against human breast cancer cell line (MCF-7). The structures of the synthesized compounds were confirmed by spectral and elemental analyses. The proteasome inhibitory activity studies were carried out using cell-based assay. The antiproteasomal activity results revealed that most of the compounds exhibited inhibitory activity with different percentages against the caspase-like (C-L, ß1 subunit), trypsin-like (T-L, ß2 subunit) and chymotrypsin-like (ChT-L, ß5 subunit) activities of proteasome. Among the tested compounds, compound 14 bearing 5-chloro-2-pyridyl ring on the nitrogen atom of sulfonamide group is the most active compound in the series and displayed higher inhibition with IC50 values of 9.90 ± 0.61, 44.83 ± 4.23 and 22.27 ± 0.15 µM against ChT-L, C-L and T-L activities of proteasome compared to the lead compound PI-083 (IC50 = 12.47 ± 0.21, 53.12 ± 2.56 and 26.37 ± 0.5 µM), respectively. The antiproliferative activity was also determined by MTT (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay in vitro. According to the antiproliferative activity results, all of the compounds exhibited cell growth inhibitory activity in a range of IC50 = 1.72 ± 0.14-20.8 ± 0.5 µM and compounds 13 and 28 were found to be the most active compounds with IC50 values of 1.79 ± 0.21 and 1.72 ± 0.14 µM, respectively. Furthermore, molecular modeling studies were carried out for the compounds 13, 14 and 28 to investigate the ligand-enzyme binding interactions.


Assuntos
Naftoquinonas/química , Naftoquinonas/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Naftoquinonas/síntese química , Inibidores de Proteassoma/síntese química , Sulfonamidas/síntese química
19.
Environ Toxicol Pharmacol ; 81: 103518, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33132182

RESUMO

Combined environmental exposures to the volatile organic compounds (VOCs) Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) pose clear risks to public health. Research into these risks is under-studied even as BTEX levels in the atmosphere are predicted to rise. This review focuses on the available literature using single- and combined-BTEX component inhaled solvent exposures in animal models, necessarily also drawing on findings from models of inhalant abuse and occupational exposures. Health effects of these exposures are discussed for multiple organ systems, but with particular attention on neurobehavioral outcomes such as locomotor activity, impulsivity, learning, and psychopharmacological responses. It is clear that animal models have significant differences in the concentrations, durations and patterns of exposure. Experimental evidence of the deleterious health and neurobehavioral consequences of exposures to the individual components of BTEX were found, but these effects were typically assessed using concentrations and exposure patterns not characteristic of environmental exposure. Future studies with animal models designed appropriately to explore combined BTEX will be necessary and advantageous to discovering health outcomes and more subtle neurobehavioral impacts of long-term environmental exposures.


Assuntos
Derivados de Benzeno , Benzeno , Exposição Ambiental , Poluentes Ambientais , Modelos Teóricos , Tolueno , Xilenos , Animais , Comportamento/efeitos dos fármacos , Benzeno/análise , Benzeno/química , Benzeno/farmacocinética , Benzeno/toxicidade , Derivados de Benzeno/análise , Derivados de Benzeno/química , Derivados de Benzeno/farmacocinética , Derivados de Benzeno/toxicidade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Humanos , Solventes/análise , Solventes/química , Solventes/farmacocinética , Solventes/toxicidade , Tolueno/análise , Tolueno/química , Tolueno/farmacocinética , Tolueno/toxicidade , Xilenos/análise , Xilenos/química , Xilenos/farmacocinética , Xilenos/toxicidade
20.
J Enzyme Inhib Med Chem ; 36(1): 362-371, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33356659

RESUMO

One of the systems responsible for maintaining cellular redox homeostasis is the thioredoxin-dependent system. An equally important function of this system is the regulation of the expression of many proteins by the transcription factor NF-κB or the apoptosis regulating kinase (ASK-1). Since it has been shown that the Trx-dependent system can contribute to both the enhancement of tumour angiogenesis and growth as well as apoptosis of neoplastic cells, the search for compounds that inhibit the level/activity of Trx and/or TrxR and thus modulate the course of the neoplastic process is ongoing. It has been shown that many naturally occurring polyphenolic compounds inactivate elements of the thioredoxin system. In addition, the effectiveness of Trx is inhibited by imidazole derivatives, while the activity of TrxR is reduced by transition metal ions complexes, dinitrohalobenzene derivatives, Michael acceptors, nitrosourea and ebselen. In addition, research is ongoing to identify new selective Trx/TrxR inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/genética , Antineoplásicos/síntese química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Inibidores Enzimáticos/síntese química , Regulação Neoplásica da Expressão Gênica , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Imidazóis/química , Imidazóis/farmacologia , Isoindóis/química , Isoindóis/farmacologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Compostos de Nitrosoureia/química , Compostos de Nitrosoureia/farmacologia , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Oxirredução , Transdução de Sinais , Relação Estrutura-Atividade , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA