Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
J Dtsch Dermatol Ges ; 22(2): 186-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345266

RESUMO

BACKGROUND: Few prospective studies exist with an evaluation of a dose-response relationship between use of some photosensitizing antihypertensive medications and skin cancer. PATIENT AND METHODS: We used prospective data from the Women's Health Initiative Observational Study to investigate the association between antihypertensive use and risk of non-melanoma skin cancer (NMSC) and melanoma in postmenopausal women aged 50-79 years at baseline (n  =  64,918). Multivariable Cox proportional hazards regression models were used and hazard ratios (HRs) and 95 confidence intervals (CIs) were calculated. RESULTS: 8,777 NMSC and 1,227 melanoma cases were observed. Use of antihypertensives (HR [95% CI]: 1.12 [1.07-1.18]), ACE inhibitors (1.09 [1.01-1.18]), calcium channel blockers (1.13 [1.05-1.22]), diuretics (1.20 [1.12-1.27]), loop diuretics (1.17 [1.07-1.28]), and thiazides (1.17 [1.03-1.33]) were each associated with higher NMSC risk. NMSC risk linearly increased with use of multiple antihypertensives (p-trend  =  0.02) and with longer duration of use (p-trend < 0.01). Antihypertensives (1.15 [1.00-1.31]), angiotensin-II receptor blockers (1.82 [1.05-3.15]), and diuretics (1.34 [1.13-1.59]) were each associated with elevated melanoma risk. Effect modification by solar radiation exposure was found between antihypertensive use and incidence of melanoma (p-interaction  =  0.02). CONCLUSIONS: Use of antihypertensives overall, and several individual classes thereof, were associated with higher incidence of NMSC and melanoma with dose-response relationship.


Assuntos
Dermatite Fototóxica , Melanoma , Neoplasias Cutâneas , Feminino , Humanos , Anti-Hipertensivos/efeitos adversos , Melanoma/epidemiologia , Estudos Prospectivos , Pós-Menopausa , Fatores de Risco , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/epidemiologia , Diuréticos
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338717

RESUMO

Hypertension is known to be a multifactorial disease associated with abnormalities in neuroendocrine, metabolic, and hemodynamic systems. Poorly controlled hypertension causes more than one in eight premature deaths worldwide. Hydrochlorothiazide (HCT) and furosemide (FUR), being first-line drugs in the treatment of hypertension, are among others the most frequently prescribed drugs in the world. Currently, many pharmacoepidemiological data associate the use of these diuretics with an increased risk of adverse phototoxic reactions that may induce the development of melanoma and non-melanoma skin cancers. In this study, the cytotoxic and phototoxic potential of HCT and FUR against skin cells varied by melanin pigment content was assessed for the first time. The results showed that both drugs reduced the number of metabolically active normal skin cells in a dose-dependent manner. UVA irradiation significantly increased the cytotoxicity of HCT towards fibroblasts by approximately 40% and melanocytes by almost 20% compared to unirradiated cells. In the case of skin cells exposed to FUR and UVA radiation, an increase in cytotoxicity by approximately 30% for fibroblasts and 10% for melanocytes was observed. Simultaneous exposure of melanocytes and fibroblasts to HCT or FUR and UVAR caused a decrease in cell viability, and number, which was confirmed by microscopic assessment of morphology. The phototoxic effect of HCT and FUR was associated with the disturbance of redox homeostasis confirming the oxidative stress as a mechanism of phototoxic reaction. UVA-irradiated drugs increased the generation of ROS by 10-150%, and oxidized intracellular thiols. A reduction in mitochondrial potential of almost 80% in melanocytes exposed to HCT and UVAR and 60% in fibroblasts was found due to oxidative stress occurrence. In addition, HCT and FUR have been shown to disrupt the cell cycle of normal skin cells. Finally, it can be concluded that HCT is the drug with a stronger phototoxic effect, and fibroblasts turn out to be more sensitive cells to the phototoxic effect of tested drugs.


Assuntos
Dermatite Fototóxica , Hipertensão , Humanos , Furosemida/farmacologia , Hidroclorotiazida/efeitos adversos , Melanócitos/metabolismo , Dermatite Fototóxica/etiologia , Dermatite Fototóxica/metabolismo , Pele , Raios Ultravioleta/efeitos adversos , Fármacos Fotossensibilizantes/farmacologia , Hipertensão/metabolismo , Fibroblastos
3.
Photodiagnosis Photodyn Ther ; 45: 103998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316340

RESUMO

BACKGROUND: Photodynamic Therapy (PDT) is a clinically approved cancer treatment. Sex hormones, the key drivers for the development of female hormonal dependent cancers, might affect cancer treatment. There are seldom studies to evaluate the effect of sex hormones mimicked the menstrual cycle on the PDT mediated by prodrug 5-aminolevulinic acid (ALA) and its ester derivatives to the hormonal dependent cancers. AIMS: To evaluate the efficacy of sex hormones on Hexyl-ALA-PDT in hormonal dependent cancers and the effect of the sex hormones on heme biosynthetic pathway. METHODS: Cell culture system that mimicked the fluctuation of sex hormones 17ß-estradiol (E2) and progesterone (PG) in the menstrual cycle was developed. Two pairs of hormonal-independent and hormonal dependent uterine sarcoma and breast cancer cell lines were used as cell models. Hexyl-ALA induced PpIX production and intracellular localization were examined. Key enzymes for PpIX synthesis were analysed. Hexyl-ALA-PDT mediated phototoxicity was evaluated. RESULTS: The PpIX generation was increased in the hormonal-dependent cells (28-50 %) when cultured in the hormonal microenvironment with long incubation of Hexyl-ALA for 15 and 24 h compared to that cultured without hormones; whereas only slight difference in PpIX generation in their hormonal-independent counterpart. The PpIX generation was in a time-dependent manner. The CPOX, PPOX and FECH expressions were significantly enhanced by Hexyl-ALA-PDT in uterine sarcoma cells in hormonal microenvironment. Hexyl-ALA-PDT triggered significant increase of PPOX expression in breast cancer cells in hormonal microenvironment. The Hexyl-ALA-PDT phototoxicity was enhanced by 18-40 % in cells cultured in the hormonal system in a dose-dependent manner. CONCLUSION: The PpIX generation and the efficacy of Hexyl-ALA-PDT in both uterine sarcoma and breast cancer cells was significantly enhanced by the sex hormones via cultured in the hormonal microenvironment.


Assuntos
Neoplasias da Mama , Dermatite Fototóxica , Fotoquimioterapia , Sarcoma , Neoplasias de Tecidos Moles , Feminino , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Hormônios Esteroides Gonadais , Microambiente Tumoral , Flavoproteínas , Proteínas Mitocondriais , Protoporfirinogênio Oxidase
4.
Chem Biodivers ; 21(2): e202300494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983920

RESUMO

This study provides a comprehensive overview of the current knowledge regarding phototoxic terrestrial plants and their phototoxic and photosensitizing metabolites. Within the 435,000 land plant species, only around 250 vascular plants have been documented as phototoxic or implicated in phototoxic occurrences in humans and animals. This work compiles a comprehensive catalog of these phototoxic plant species, organized alphabetically based on their taxonomic family. The dataset encompasses meticulous details including taxonomy, geographical distribution, vernacular names, and information on the nature and structure of their phototoxic and photosensitizing molecule(s). Subsequently, this study undertook an in-depth investigation into phototoxic molecules, resulting in the compilation of a comprehensive and up-to-date list of phytochemicals exhibiting phototoxic or photosensitizing activity synthesized by terrestrial plants. For each identified molecule, an extensive review was conducted, encompassing discussions on its phototoxic activity, chemical family, occurrence in plant families or species, distribution within different plant tissues and organs, as well as the biogeographical locations of the producer species worldwide. The analysis also includes a thorough discussion on the potential use of these molecules for the development of new photosensitizers that could be used in topical or injectable formulations for antimicrobial and anticancer phototherapy as well as manufacturing of photoactive devices.


Assuntos
Dermatite Fototóxica , Fármacos Fotossensibilizantes , Humanos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Plantas
5.
J Med Chem ; 67(1): 691-708, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38141031

RESUMO

A second-generation series of biscyclometalated 2-(5-aryl-thienyl)-benzimidazole and -benzothiazole Ir(III) dppz complexes [Ir(C^N)2(dppz)]+, Ir1-Ir4, were rationally designed and synthesized, where the aryl group attached to the thienyl ring was p-CF3C6H4 or p-Me2NC6H4. These new Ir(III) complexes were assessed as photosensitizers to explore the structure-activity correlations for their potential use in biocompatible anticancer photodynamic therapy. When irradiated with blue light, the complexes exhibited high selective potency across several cancer cell lines predisposed to photodynamic therapy; the benzothiazole derivatives (Ir1 and Ir2) were the best performers, Ir2 being also activatable with green or red light. Notably, when irradiated, the complexes induced leakage of lysosomal content into the cytoplasm of HeLa cancer cells and induced oncosis-like cell death. The capability of the new Ir complexes to photoinduce cell death in 3D HeLa spheroids has also been demonstrated. The investigated Ir complexes can also catalytically photo-oxidate NADH and photogenerate 1O2 and/or •OH in cell-free media.


Assuntos
Antineoplásicos , Complexos de Coordenação , Dermatite Fototóxica , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Irídio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Dermatite Fototóxica/tratamento farmacológico , Lisossomos , Benzotiazóis , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
6.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069219

RESUMO

The aim of this study was to explore the potential of hypericin, a naturally occurring photosensi-tizer, for photodynamic therapy (PDT) in skin cancer, investigating its phototoxic effects and mechanisms of action in cancer cells compared to normal skin keratinocytes, squamous cell cancer (SCC-25) cells and melanoma (MUG-Mel2) cells. Hypericin was applied at concentrations ranging from 0.1-40 µM to HaCaT, SCC-25, and MUG-Mel2 cells. After 24 h of incubation, the cells were exposed to orange light at 3.6 J/cm2 or 7.2 J/cm2. Phototoxicity was assessed using MTT and SRB tests. Cellular uptake was measured by flow cytometry. Apoptosis-positive cells were estimated through TUNEL for apoptotic bodies' visualization. Hypericin exhibited a higher phototoxic reaction in cancer cells compared to normal keratinocytes after irradiation. Cancer cells demonstrated increased and selective uptake of hypericin. Apoptosis was observed in SCC-25 and MUG-Mel2 cells following PDT. Our findings suggest that hypericin-based PDT is a promising and less invasive approach for treating skin cancer. The higher phototoxic reaction, selective uptake by cancer cells, and observed proapoptotic properties support the promising role of hypericin-based PDT in skin cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Dermatite Fototóxica , Melanoma , Perileno , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Perileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Dermatite Fototóxica/tratamento farmacológico , Queratinócitos , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia
7.
J Photochem Photobiol B ; 249: 112803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924677

RESUMO

Creating new tools for the early diagnosis and treatment of cancer is one of the most important and intensively developing areas of modern medicine. Currently, photodynamic cancer therapy (PDT) is attracting increasing attention as a unique modality of minimally invasive treatment and due to the absence of acquired resistance. However, PDT is associated with undesirable activities, such as non-specific photodynamic effects of sunlight on healthy tissues. Therefore, an important fundamental task is the development of improved PDT agents that selectively act on the affected areas. Here, we report the development of a hybrid protein-peptide system for the selective pH-dependent binding and subsequent photodynamic cancer cells ablation. It is known that a distinctive feature of cancer cells is a decreased pH level in the extracellular space. In this study we exploited a peptide fragment (pHLIP) as a targeting module, which spontaneously binds and embeds into the cell membrane when pH decreases below neutral. A mutant of miniSOG protein fused to pHLIP was used as a photosensitizing constituent. We demonstrate that this protein-peptide photosensitizing system selectively binds to HeLa cells at pH below 6.8 and kills them when exposed to light. These findings demonstrate the feasibility of using genetically encoded MiniSOG fusions with pHLIP for the targeted delivery of PSs to cancer cells and subsequent highly precise photodynamic therapy.


Assuntos
Dermatite Fototóxica , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Células HeLa , Linhagem Celular Tumoral , Dermatite Fototóxica/tratamento farmacológico , Peptídeos/farmacologia , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico
8.
Chem Commun (Camb) ; 59(94): 14021-14024, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37946537

RESUMO

Multifunctional metallacycles with solid-state emission are highly important in cancer therapy. Here, an aggregation-induced emission (AIE)-active metallacycle of DTPABT-MC-R is developed with efficient emission in the NIR region in the solid state (PLQYs = 4.92%). DTPABT-MC-R-based nanoparticles also display excellent photo-stability, and impressive photosensitive characteristics (ROS efficiency = 10.74%), finally leading to applications in cellular imaging and photodynamic therapy (PDT).


Assuntos
Dermatite Fototóxica , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
9.
Biomed Pharmacother ; 167: 115593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793275

RESUMO

Talazoparib (TLZ) is a poly(adenosine diphosphate [ADP]-ribose) polymerase inhibitor employed for the treatment of breast cancer. This drug displays an absorption band in the UVA region, and therefore investigation of the possible phototoxic side-effects associated to its administration results of enormous relevance. In this context, we describe here a photochemical and photobiological study to ascertain the photosafety profile of TLZ. Concerning transient species, the singlet and triplet excited states of TLZ were detected by fluorescence (λmax em = 440 nm) and laser flash photolysis experiments (λmax abs = 400 nm), respectively. Remarkably, TLZ irradiation with UVA light in aqueous solution resulted in formation of a stable photooxidated product, TLZ-P, whose absorption band is extended until the visible region. From in vitro experiments, phototoxicity was revealed for the parent drug by neutral red uptake (NRU) assays, with a PIF value of ca 7; besides, TLZ induced formation of reactive oxygen species (ROS) and produced significant damage to both proteins and DNA. By contrast, the singlet and triplet excited states of TLZ-P were not detected, and no photodamage was observed in the NRU experiments. Overall, the results indicate that TLZ induces phototoxicity, whereas its photoproduct exhibits photosafety.


Assuntos
Dermatite Fototóxica , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Luz , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes , Preparações Farmacêuticas
10.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686273

RESUMO

Skin photoaging due to ultraviolet B (UVB) exposure generates reactive oxygen species (ROS) that increase matrix metalloproteinase (MMP). Chlorin e6-photodynamic therapy (Ce6-PDT), in addition to being the first-line treatment for malignancies, has been shown to lessen skin photoaging, while curcumin is well known for reducing the deleterious effects of ROS. In the current study, PDT with three novel Ce6-curcumin derivatives, a combination of Ce6 and curcumin with various linkers, including propane-1,3-diamine for Ce6-propane-curcumin; hexane-1,6-diamine for Ce6-hexane-curcumin; and 3,3'-((oxybis(ethane-2,1-diyl))bis(oxy))bis(propan-1-amine) for Ce6-dipolyethylene glycol (diPEG)-curcumin, were studied for regulation of UVB-induced photoaging on human skin fibroblast (Hs68) and mouse embryonic fibroblast (BALB/c 3T3) cells. We assessed the antiphotoaging effects of Ce6-curcumin derivatives on cell viability, antioxidant activity, the mechanism of matrix metalloproteinase-1 and 2 (MMP-2) expression, and collagen synthesis in UVB-irradiated in vitro models. All three Ce6-curcumin derivatives were found to be non-phototoxic in the neutral red uptake phototoxicity test. We found that Ce6-hexane-curcumin-PDT and Ce6-propane-curcumin-associated PDT exhibited less cytotoxicity in Hs68 and BALB/c 3T3 fibroblast cell lines compared to Ce6-diPEG-curcumin-PDT. Ce6-diPEG-curcumin and Ce6-propane-curcumin-associated PDT showed superior antioxidant activity in Hs68 cell lines. Further, in UVB-irradiated in vitro models, the Ce6-diPEG-curcumin-PDT greatly attenuated the expression levels of MMP-1 and MMP-2 by blocking mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and tumor necrosis factor-α (NF-κB) signaling. Moreover, Ce6-diPEG-curcumin effectively inhibited inflammatory molecules, such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, while accelerating collagen synthesis. These results demonstrate that Ce6-diPEG-curcumin may be a potential therapy for treating skin photoaging.


Assuntos
Curcumina , Dermatite Fototóxica , Fotoquimioterapia , Animais , Camundongos , Humanos , Curcumina/farmacologia , Hexanos , Metaloproteinase 2 da Matriz , Antioxidantes/farmacologia , Propano , Espécies Reativas de Oxigênio , Fibroblastos , Glicóis , Colágeno
11.
Molecules ; 28(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687069

RESUMO

1,4-Benzothiazines are the main building blocks of the naturally occurring pheomelanin pigments, and their chromophoric properties have been strongly related to the well-known phototoxicity of these pigments, partly responsible for the high incidence of melanoma and other skin cancers in red-haired people. However, some peculiar features of the 1,4-benzothiazine chromophore could be functionally exploited in several sectors. Within this context, in this perspective, an overview of the very recently reported applications of the 1,4-benzothiazine chromophore in pH sensing, filter permeability control, smart packaging, electrochromic device fabrication, bioimaging, photocatalysis, and HPLC detection systems is provided, together with a brief presentation of recently developed synthetic approaches to the 1,4-benzothiazine scaffold, with the aim of emphasizing the still-undervalued multifunctional opportunities offered by this class of compounds.


Assuntos
Dermatite Fototóxica , Melanoma , Humanos , Cromatografia Líquida de Alta Pressão , Permeabilidade
12.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687177

RESUMO

Thienopyrimidines are structural analogs of quinazolines, and the creation of new 2-alkyl derivatives of ethyl 4-aminothienopyrimidine-6-carboxylates for the study of their anti-proliferative properties is of great pharmacological interest. Some 2-alkyl-4-amino-thieno[2,3-d]pyrimidines 2-5 were synthesized, and their cyto- and phototoxicity against BALB 3T3 cells were established by an in vitro 3T3 NRU test. The obtained results indicate that the tested compounds are not cytotoxic or phototoxic, and that they are appropriate to be studied for their anti-proliferative and anti-tumor properties. The anti-proliferative potential of the compounds was investigated on MCF-7 and MDA-MB-231 cancer cells, as well as a MCF-10A cell line (normal human mammary epithelial cells). The most toxic to MCF-7 was thienopyrimidine 3 with IC50 13.42 µg/mL (IC50 0.045 µM), followed by compound 4 (IC50 28.89 µg/mL or IC50 0.11 µM). The thienopyrimidine 4 revealed higher selectivity to MCF-7 and lower activity (IC50 367 µg/mL i.e., 1.4 µM) than compound 3 with MCF-10A cells. With respect to MDA-MB-231 cells, ester 2 manifested the highest effect with IC50 52.56 µg/mL (IC50 0.16 µM), and 2-ethyl derivative 4 revealed IC50 62.86 µg/mL (IC50 0.24 µM). It was estimated that the effect of the substances on the cell cycle progression was due to cell cycle arrest in the G2 stage for MDA-MB-231, while arrest in G1 was detected for the estrogen (ER)-positive MCF-7 cell line. The tested compound's effects on the change of the zeta potential in the tumorigenic cells utilized in this study were determined. The calculation which we performed of the physicochemical properties and pharmacokinetic parameters influencing the biological activity suggested high intestinal absorption, as well as drug-likeness.


Assuntos
Dermatite Fototóxica , Estrogênios , Animais , Camundongos , Humanos , Células 3T3 BALB , Ácidos Carboxílicos , Carcinogênese , Células MCF-7
13.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630337

RESUMO

Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be converted into heat by ICG molecules to eliminate cancer cells. In addition, it performs exceptionally well in optical imaging-guided tumor therapy and antimicrobial therapy due to its deeper tissue penetration and low photobleaching properties in the near-infrared region compared to other dyes. In order to solve the problems of water and optical stability and multi-function problem of ICG molecules, composite nanomaterials based on ICG have been designed and widely used, especially in the fields of tumors and sterilization. So far, ICG molecules and their composite materials have become one of the most famous infrared sensitive materials. However, there have been no corresponding review articles focused on ICG molecules. In this review, the molecular structure and properties of ICG, composite material design, and near-infrared light- triggered anti-tumor, and antibacterial, and clinical applications are reviewed in detail, which of great significance for related research.


Assuntos
Dermatite Fototóxica , Verde de Indocianina , Humanos , Verde de Indocianina/farmacologia , Corantes , Antibacterianos , Temperatura Alta
14.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375269

RESUMO

Skin cancer is one of the cancers that registers the highest number of new cases annually. Among all forms of skin cancer, melanoma is the most invasive and deadliest. The resistance of this form of cancer to conventional treatments has led to the employment of alternative/complementary therapeutic approaches. Photodynamic therapy (PDT) appears to be a promising alternative to overcome the resistance of melanoma to conventional therapies. PDT is a non-invasive therapeutic procedure in which highly reactive oxygen species (ROS) are generated upon excitation of a photosensitizer (PS) when subjected to visible light of an adequate wavelength, resulting in the death of cancer cells. In this work, inspired by the efficacy of tetrapyrrolic macrocycles to act as PS against tumor cells, we report the photophysical characterization and biological assays of isobacteriochlorins and their corresponding chlorins and porphyrins against melanoma cancer cells through a photodynamic process. The non-tumoral L929 fibroblast murine cell line was used as the control. The results show that the choice of adequate tetrapyrrolic macrocycle-based PS can be modulated to improve the performance of PDT.


Assuntos
Dermatite Fototóxica , Melanoma , Fotoquimioterapia , Porfirinas , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Dermatite Fototóxica/tratamento farmacológico , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Linhagem Celular Tumoral
15.
JAAPA ; 36(6): 8-10, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229580

RESUMO

ABSTRACT: Many medications are associated with phototoxicity or photoallergy, the two types of photosensitivity. Recently, a warning related to increased skin cancer risk was added to the labeling of the popular diuretic hydrochlorothiazide. This article reviews some photosensitizing medications and describes patient education on preventing and recognizing photosensitivity reactions and skin cancer.


Assuntos
Dermatite Fotoalérgica , Dermatite Fototóxica , Transtornos de Fotossensibilidade , Neoplasias Cutâneas , Humanos , Dermatite Fototóxica/etiologia , Dermatite Fototóxica/prevenção & controle , Transtornos de Fotossensibilidade/induzido quimicamente , Transtornos de Fotossensibilidade/prevenção & controle , Dermatite Fotoalérgica/prevenção & controle , Hidroclorotiazida , Neoplasias Cutâneas/induzido quimicamente
16.
J Med Chem ; 66(11): 7205-7220, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37204432

RESUMO

In this study, we linked classical organelle-targeting groups, such as triphenylphosphonium, pentafluorobenzene, and morpholine, to our previously reported potent monoiodo Aza-BODIPY photosensitizer (BDP-15). They were conveniently prepared and retained the advantages of Aza-BODIPY PS with intense NIR absorption, moderate quantum yield, potent photosensitizing efficiency, and good stability. The in vitro antitumor assessment indicated that mitochondria-targeting and lysosome-targeting groups were more effective than ER-targeting groups. Considering undesirable dark toxicity of triphenylphosphonium-modified PSs, compound 6 containing amide-linked morpholine possessed a favorable dark/phototoxicity ratio (>6900 for tumor cells) and was localized in lysosomes with Pearson's coefficient of 0.91 to Lyso-Tracker Green DND-26. 6 exhibited significantly increased intracellular ROS production and resulted in early/late apoptosis and necrosis to disrupt tumor cells. Moreover, in vivo antitumor efficacy exploration suggested that even under a slightly low dose of light (30 J/cm2) and single-time photoirradiation, 6 retarded tumor growth dramatically and displayed much better PDT activity over BDP-15 and Ce6.


Assuntos
Dermatite Fototóxica , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/efeitos da radiação , Fotoquimioterapia/métodos , Compostos de Boro/farmacologia , Compostos de Boro/efeitos da radiação , Lisossomos , Dermatite Fototóxica/tratamento farmacológico , Linhagem Celular Tumoral
17.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982675

RESUMO

Photodynamic therapy is a minimally invasive procedure used in the treatment of several diseases, including some types of cancer. It is based on photosensitizer molecules, which, in the presence of oxygen and light, lead to the formation of reactive oxygen species (ROS) and consequent cell death. The selection of the photosensitizer molecule is important for the therapy efficiency; therefore, many molecules such as dyes, natural products and metallic complexes have been investigated regarding their photosensitizing potential. In this work, the phototoxic potential of the DNA-intercalating molecules-the dyes methylene blue (MB), acridine orange (AO) and gentian violet (GV); the natural products curcumin (CUR), quercetin (QT) and epigallocatechin gallate (EGCG); and the chelating compounds neocuproine (NEO), 1,10-phenanthroline (PHE) and 2,2'-bipyridyl (BIPY)-were analyzed. The cytotoxicity of these chemicals was tested in vitro in non-cancer keratinocytes (HaCaT) and squamous cell carcinoma (MET1) cell lines. A phototoxicity assay and the detection of intracellular ROS were performed in MET1 cells. Results revealed that the IC50 values of the dyes and curcumin in MET1 cells were lower than 30 µM, while the values for the natural products QT and EGCG and the chelating agents BIPY and PHE were higher than 100 µM. The IC50 of MB and AO was greatly affected by irradiation when submitted to 640 nm and 457 nm light sources, respectively. ROS detection was more evident for cells treated with AO at low concentrations. In studies with the melanoma cell line WM983b, cells were more resistant to MB and AO and presented slightly higher IC50 values, in line with the results of the phototoxicity assays. This study reveals that many molecules can act as photosensitizers, but the effect depends on the cell line and the concentration of the chemical. Finally, significant photosensitizing activity of acridine orange at low concentrations and moderate light doses was demonstrated.


Assuntos
Curcumina , Dermatite Fototóxica , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Fármacos Fotossensibilizantes/química , Substâncias Intercalantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Curcumina/farmacologia , Laranja de Acridina , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Fotoquimioterapia/métodos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Dermatite Fototóxica/tratamento farmacológico , Corantes
18.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768675

RESUMO

Melanoma is still one of the most dangerous cancers. New methods of treatment are sought due to its high aggressiveness and the relatively low effectiveness of therapies. Tetracyclines are drugs exhibiting anticancer activity. Previous studies have also shown their activity against melanoma cells. The possibility of tetracycline accumulation in pigmented tissues and the increase in their toxicity under the influence of UVA radiation creates the possibility of developing a new anti-melanoma therapy. This study aimed to analyze the phototoxic effect of doxycycline and chlortetracycline on melanotic melanoma cells COLO 829 and G-361. The results indicated that tetracycline-induced phototoxicity significantly decreased the number of live cells by cell cycle arrest as well as a decrease in cell viability. The simultaneous exposure of cells to drugs and UVA caused the depolarization of mitochondria as well as inducing oxidative stress and apoptosis. It was found that the combined treatment activated initiator and effector caspases, caused DNA fragmentation and elevated p53 level. Finally, it was concluded that doxycycline demonstrated a stronger cytotoxic and phototoxic effect. UVA irradiation of melanoma cells treated with doxycycline and chlortetracycline allows for the reduction of therapeutic drug concentrations and increases the effectiveness of tested tetracyclines.


Assuntos
Clortetraciclina , Dermatite Fototóxica , Melanoma , Humanos , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Clortetraciclina/farmacologia , Tetraciclina , Melanoma/tratamento farmacológico , Dermatite Fototóxica/etiologia , Raios Ultravioleta , Tetraciclinas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular
19.
Photochem Photobiol ; 99(2): 199-203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35290667

RESUMO

Photodynamic therapy can be useful for the eradication of malignant cells at sites that are accessible to light delivery. There are few adverse effects, with many clinical reports indicating that PDT has curative potential. Patients with minimal disease, where success is more likely, are also sought by those promoting other protocols. New photosensitizing agents that initiate light-catalyzed reactions continue to be discovered. Reports describing advances in understanding fundamental aspects of photobiology are always of interest. But, implications for treatment of neoplasia and other diseases are not always justified, especially when poorly penetrating wavelengths of light are employed, often at very high light doses. Efficacy is sometimes estimated by protocols that may not accurately measure photokilling. Many reports claiming potential clinical relevance for in vitro observations are based on a limited understanding of the determinants of clinical efficacy. The future of photodynamic therapy depends on an appreciation of what can be accomplished, especially when used with other modalities, but will also depend on the goals and interests of granting agencies, pharmaceutical groups, and clinical personnel. This commentary is intended to provide some thoughts on current research efforts, especially where clinical implications are suggested, hinted at or otherwise implied.


Assuntos
Dermatite Fototóxica , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Dermatite Fototóxica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Resultado do Tratamento
20.
J Am Acad Dermatol ; 89(6): 1227-1237, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36041558

RESUMO

Erythropoietic protoporphyria and X-linked protoporphyria are rare genetic photodermatoses. Limited expertise with these disorders among physicians leads to diagnostic delays. Here, we present evidence-based consensus guidelines for the diagnosis, monitoring, and management of erythropoietic protoporphyria and X-linked protoporphyria. A systematic literature review was conducted, and reviewed among subcommittees of experts, divided by topic. Consensus on guidelines was reached within each subcommittee and then among all members of the committee. The appropriate biochemical and genetic testing to establish the diagnosis is reviewed in addition to the interpretation of results. Prevention of symptoms, management of acute phototoxicity, and pharmacologic and nonpharmacologic treatment options are discussed. The importance of ongoing monitoring for liver disease, iron deficiency, and vitamin D deficiency is discussed with management guidance. Finally, management of pregnancy and surgery and the safety of other therapies are summarized. We emphasize that these are multisystemic disorders that require longitudinal monitoring. These guidelines provide a structure for evidence-based diagnosis and management for practicing physicians. Early diagnosis and management of these disorders are essential, particularly given the availability of new and emerging therapies.


Assuntos
Dermatite Fototóxica , Doenças Genéticas Ligadas ao Cromossomo X , Hepatopatias , Guias de Prática Clínica como Assunto , Protoporfiria Eritropoética , Humanos , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Protoporfiria Eritropoética/diagnóstico , Protoporfiria Eritropoética/genética , Protoporfiria Eritropoética/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA