Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000513

RESUMO

Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, including abemaciclib, have been approved for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced, and metastatic breast cancer. Despite the high therapeutic efficacy of CDK4/6 inhibitors, they are associated with various adverse effects, including potentially fatal interstitial lung disease. Therefore, a combination of CDK4/6 inhibitors with letrozole or fulvestrant has been attempted but has demonstrated limitations in reducing adverse effects, highlighting the need to develop new combination therapies. This study proposes a combination strategy using CDK4/6 inhibitors and tricyclic antidepressants to enhance the therapeutic outcomes of these inhibitors while reducing their side effects. The therapeutic efficacies of abemaciclib and desipramine were tested in different cancer cell lines (H460, MCF7, and HCT-116). The antitumor effects of the combined abemaciclib and desipramine treatment were evaluated in a xenograft colon tumor model. In vitro cell studies have shown the synergistic anticancer effects of combination therapy in the HCT-116 cell line. The combination treatment significantly reduced tumor size compared with control or single treatment without causing apparent toxicity to normal tissues. Although additional in vivo studies are necessary, this study suggests that the combination therapy of abemaciclib and desipramine may represent a novel therapeutic approach for treating solid tumors.


Assuntos
Aminopiridinas , Benzimidazóis , Desipramina , Sinergismo Farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Benzimidazóis/farmacologia , Benzimidazóis/administração & dosagem , Aminopiridinas/farmacologia , Aminopiridinas/administração & dosagem , Animais , Camundongos , Desipramina/farmacologia , Linhagem Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Células MCF-7 , Células HCT116 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C
2.
Nature ; 632(8026): 921-929, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048818

RESUMO

Noradrenaline, also known as norepinephrine, has a wide range of activities and effects on most brain cell types1. Its reuptake from the synaptic cleft heavily relies on the noradrenaline transporter (NET) located in the presynaptic membrane2. Here we report the cryo-electron microscopy (cryo-EM) structures of the human NET in both its apo state and when bound to substrates or antidepressant drugs, with resolutions ranging from 2.5 Å to 3.5 Å. The two substrates, noradrenaline and dopamine, display a similar binding mode within the central substrate binding site (S1) and within a newly identified extracellular allosteric site (S2). Four distinct antidepressants, namely, atomoxetine, desipramine, bupropion and escitalopram, occupy the S1 site to obstruct substrate transport in distinct conformations. Moreover, a potassium ion was observed within sodium-binding site 1 in the structure of the NET bound to desipramine under the KCl condition. Complemented by structural-guided biochemical analyses, our studies reveal the mechanism of substrate recognition, the alternating access of NET, and elucidate the mode of action of the four antidepressants.


Assuntos
Antidepressivos , Microscopia Crioeletrônica , Dopamina , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Norepinefrina , Humanos , Sítio Alostérico , Antidepressivos/química , Antidepressivos/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cloridrato de Atomoxetina/química , Cloridrato de Atomoxetina/farmacologia , Cloridrato de Atomoxetina/metabolismo , Sítios de Ligação , Bupropiona/química , Bupropiona/metabolismo , Bupropiona/farmacologia , Citalopram/química , Citalopram/farmacologia , Citalopram/metabolismo , Desipramina/farmacologia , Desipramina/química , Dopamina/metabolismo , Dopamina/química , Escitalopram/química , Escitalopram/metabolismo , Modelos Moleculares , Norepinefrina/metabolismo , Norepinefrina/química , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/química , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/ultraestrutura , Potássio/metabolismo , Cloreto de Potássio/farmacologia , Conformação Proteica , Sódio/metabolismo , Especificidade por Substrato
3.
Neuropsychopharmacol Rep ; 44(1): 246-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37960997

RESUMO

Vascular endothelial growth factor (VEGF) signaling is known to be involved in the antidepressant-like effects of conventional antidepressants, such as desipramine (DMI), a tricyclic antidepressant, and fluoxetine (FLX), a selective serotonin reuptake inhibitor; however, the precise role of neuronal VEGF signaling in mediating these effects remains unclear. Using mice with excitatory neuron-specific deletion of VEGF and its receptor, fetal liver kinase 1 (Flk-1) in the forebrain, we examined the effects of forebrain excitatory neuron-specific deletion of VEGF or Flk-1 on the antidepressant-like effects of repeated DMI and chronic FLX administration in the forced swim test (FST). Repeated intraperitoneal (i.p.) injections of DMI (10, 10, and 20 mg/kg at 24, 4, and 1 h before the FST, respectively) significantly decreased immobility in control mice; however, this effect was completely blocked in mice with neuron-specific VEGF or Flk-1 deletion. Although chronic treatment with FLX (18 mg/kg/day, i.p.) did not impact immobility in control mice 1 day after the 22nd injection, immobility was significantly reduced 1 day after the preswim and the 23rd FLX injection. However, in mice with neuron-specific Flk-1 deletion, chronic FLX treatment significantly increased immobility in the preswim and failed to produce antidepressant-like effects. Collectively, these findings indicate that neuronal VEGF-Flk-1 signaling contributes to the antidepressant-like actions of conventional antidepressants.


Assuntos
Fluoxetina , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fluoxetina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Desipramina/metabolismo , Desipramina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Antidepressivos/farmacologia , Neurônios/metabolismo
4.
Anticancer Agents Med Chem ; 23(20): 2225-2236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859313

RESUMO

BACKGROUND: TRAIL has emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells while sparing normal cells. Autophagy, a highly regulated cellular recycling mechanism, is known to play a cell survival role by providing a required environment for the cell. Recent studies suggest that autophagy plays a significant role in increasing TRAIL resistance in certain cancer cells. Thus, regulating autophagy in TRAIL-mediated cancer therapy is crucial for its role in cancer treatment. OBJECTIVE: Our study explored whether the antidepressant drug desipramine could enhance the ability of TRAIL to kill cancer cells by inhibiting autophagy. METHODS: The effect of desipramine on TRAIL sensitivity was examined in various lung cancer cell lines. Cell viability was measured by morphological analysis, trypan blue exclusion, and crystal violet staining. Flow cytometry analysis was carried out to measure apoptosis with annexin V-PI stained cells. Western blotting, rtPCR, and immunocytochemistry were carried out to measure autophagy and death receptor expression. TEM was carried out to detect autophagy inhibition. RESULTS: Desipramine treatment increased the TRAIL sensitivity in all lung cancer cell lines. Mechanistically, desipramine treatment induced death receptor expression to increase TRAIL sensitivity. This effect was confirmed when the genetic blockade of DR5 reduced the effect of desipramine in enhanced TRAIL-mediated cell death. Further investigation revealed that desipramine treatment increased the LC3 and p62 levels, indicating the inhibition of lysosomal degradation of autophagy. Notably, TRAIL, in combination with either desipramine or the autophagy inhibitor chloroquine, exhibited enhanced cytotoxicity compared to TRAIL treatment alone. CONCLUSION: Our findings revealed the potential of desipramine to induce TRAIL-mediated cell death by autophagy impairment. This discovery suggests its therapeutic potential for inducing TRAIL-mediated cell death by increasing the expression of death receptors, which is caused by impairing autophagy.


Assuntos
Desipramina , Neoplasias Pulmonares , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Antidepressivos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia , Linhagem Celular Tumoral , Desipramina/farmacologia , Desipramina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
5.
Cell Cycle ; 22(17): 1827-1853, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522842

RESUMO

Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.


Assuntos
Eriptose , Doadores de Óxido Nítrico , Humanos , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Nitroprussiato/metabolismo , Cálcio/metabolismo , Acetilcisteína/farmacologia , Desipramina/farmacologia , Desipramina/metabolismo , Eritrócitos/metabolismo , Glutationa/metabolismo , Glutationa/farmacologia , Anexinas/metabolismo , Anexinas/farmacologia , Fosfatidilserinas/metabolismo , Tamanho Celular , Ceramidas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo
6.
Front Immunol ; 14: 1160977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409130

RESUMO

Due to the high prevalence of depression among cancer patients, antidepressant medications are frequently administered as adjuvant treatment. However, the safety of such medications in the development of metastasis is unclear. In this study, we investigated the effects of fluoxetine, desipramine, and mirtazapine on the liver metastasis of murine C26 colon carcinoma (cc). Balb/c male mice were administered these antidepressants intraperitoneally (i.p.) for 14 days following intrasplenic injections of C26 colon carcinoma cells. Desipramine and fluoxetine, but not mirtazapine, significantly increased the number of tumor foci and total volume of the tumor in liver tissue. This effect was associated with a decrease in the ability of splenocytes to produce interleukin (IL)-1ß and interferon (IFN)-γ and an increase in their ability to produce interleukin (IL)-10. Similar changes were observed in plasma IL-1ß, IFN-γ, and IL-10 levels. The current study demonstrates that the stimulatory effect of desipramine and fluoxetine, but not mirtazapine, on experimental colon cancer liver metastasis is associated with a suppression of immune defenses against the tumor.


Assuntos
Carcinoma , Neoplasias do Colo , Neoplasias Hepáticas , Masculino , Camundongos , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Mirtazapina/uso terapêutico , Desipramina/farmacologia , Desipramina/uso terapêutico , Citocinas , Antidepressivos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico
7.
Acta Biomed ; 94(2): e2023141, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37092612

RESUMO

Background and aim Crocin is a pharmacologically active chemical found in the spice saffron from Crocus sativus L. It possesses antioxidant and anti-radical properties that can minimize the hepatic phospholipidosis triggered using the tricyclic antidepressant desipramine. The aim of this study was to examine the effect of crocin on desipramine-induced hepatic phospholipidosis targeting the oxidative stress-related PI3K/Akt/mTOR signaling pathways. METHODS: Forty adult male rats were divided into 4 groups (n =10): control group, a group receiving intraperitoneal (IP) crocin (50 mg/kg/day), a group receiving IP desipramine (10 mg/kg/day), and a group receiving both IP crocin and desipramine. RESULTS: After 3 weeks of treatment, the combined treatment group showed diminished desipramine-induced hepatic phospholipidosis, along with significant reductions in total oxidant status (TOS) , the levels of inflammatory markers including interleukin 6 (IL6) and tumor necrosis factor α (TNF-α) and apoptotic markers including caspase3 and Bcl2 (B-cell lymphoma 2) while other markers including total antioxidant capacity (TAC), superoxide dismutase (SOD), phosphoinositide 3-kinases (PI3K), and mammalian target of rapamycin (mTOR) were increased. The gene expression of lysosomal enzymes including ELOVL6, SCD1 and HMGR was notably downregulated, while AP1S1 was upregulated in the combined treatment group compared to the desipramine group. No ultrastructural signs of hepatic phospholipidosis, in the form of multilamellar bodies, were apparent in the combined treatment group. CONCLUSIONS: These data collectively suggest that crocin has a protective effect against desipramine-induced phospholipidosis. (www.actabiomedica.it).


Assuntos
Antioxidantes , Fosfatidilinositol 3-Quinases , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Desipramina/farmacologia , Fígado/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(6): e2209569120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724253

RESUMO

Two-pore channels (TPCs) are activated by phosphatidylinositol bisphosphate (PIP2) binding to domain I and/or by voltage sensing in domain II (DII). Little is known about how these two stimuli are integrated, and how each TPC subtype achieves its unique preference. Here, we show that distinct conformations of DII-S4 in the voltage-sensor domain determine the two gating modes. DII-S4 adopts an intermediate conformation, and forced stabilization in this conformation was found to result in a high PIP2-dependence in primarily voltage-dependent TPC3. In TPC2, which is PIP2-gated and nonvoltage-dependent, a stabilized intermediate conformation does not affect the PIP2-gated currents. These results indicate that the intermediate state represents the PIP2-gating mode, which is distinct from the voltage-gating mode in TPCs. We also found in TPC2 that the tricyclic antidepressant desipramine induces DII-S4-based voltage dependence and that naringenin, a flavonoid, biases the mode preference from PIP2-gating to desipramine-induced voltage gating. Taken together, our study on TPCs revealed an unprecedented mode-switching mechanism involving conformational changes in DII-S4, and its active role in integrating voltage and PIP2 stimuli.


Assuntos
Desipramina , Ativação do Canal Iônico , Estrutura Terciária de Proteína , Fosfatos de Fosfatidilinositol/metabolismo
9.
J Cutan Med Surg ; 27(2): 140-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36802832

RESUMO

BACKGROUND: The lack of clinical guidelines for the treatment of primary psychodermatologic disorders (PPDs) hinders the delivery of optimal care to patients. The review aimed to identify, appraise, and summarize the currently available evidence about the safety and effectiveness of pharmacological management of PPDs through randomized controlled trials (RCTs). METHODS: The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRIMSA) statement and the Global Evidence Mapping Initiative guidance were followed. Medline, Embase, PsycInfo, Cochrane and Scopus were searched, and two reviewers independently completed article review, data extraction, and quality assessment. RESULTS: Among 2618 unique studies, full texts of 83 were reviewed and 21 RCTs were included. Five PDDs were identified: trichotillomania (n = 12), pathologic skin picking (n = 5), nail biting (n = 2), delusional parasitosis (n = 1), and dermatitis from compulsive hand washing (n = 1). Seven different classes of medications were investigated: SSRIs (i.e., fluoxetine, sertraline, and citalopram), tricyclic antidepressants (i.e., clomipramine and desipramine), antipsychotics (i.e., olanzapine and pimozide), anticonvulsant (i.e., lamotrigine), N-acetylcysteine, inositol, and milk thistle. RCT-derived evidence supports the use of antidepressants in trichotillomania (sertraline and clomipramine), pathologic skin picking (fluoxetine), pathologic nail biting and dermatitis from compulsive hand washing (clomipramine or desipramine); antipsychotics in trichotillomania (olanzapine) and delusional parasitosis (pimozide); N-acetyl cysteine in trichotillomania and skin picking. CONCLUSION: Few pharmacotherapies for primary psychodermatologic disorders are assessed through controlled trials in the literature. This review serves as a roadmap for researchers and clinicians to reach informed decisions with current evidence, and to build on it to establish guidelines in the future.


Assuntos
Antipsicóticos , Dermatite , Humanos , Sertralina/uso terapêutico , Fluoxetina/uso terapêutico , Clomipramina/uso terapêutico , Olanzapina , Antipsicóticos/uso terapêutico , Desipramina , Pimozida , Ensaios Clínicos Controlados Aleatórios como Assunto , Acetilcisteína/uso terapêutico , Dermatite/tratamento farmacológico
10.
Ecotoxicol Environ Saf ; 242: 113914, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878501

RESUMO

Silicosis is a systemic disease characterized by diffuse fibrosis of the lung tissue caused by long-term inhalation of large amounts of free silica (SiO2) dust. The pathogenesis of silicosis has not been fully elucidated, and there is a lack of effective treatment methods. N-acetylcysteine (NAC) can potentially treat pulmonary fibrosis by exerting antioxidant effects. Desipramine (DMI) can influence pulmonary fibrosis development by inhibiting acid sphingomyelinase (ASMase) activity and regulating ceramide concentrations. Both can interfere with pulmonary fibrosis through different mechanisms, but the intervention effects of NAC combined with DMI on silicosis fibrosis have not been reported. Therefore, this study established a rat silicosis model using a single tracheal drip of SiO2 dust suspension in Wistar rats to investigate the effect of NAC combined with DMI on SiO2 dust-induced silicosis and its related molecular mechanisms. The histopathological examination of the SiO2 dust-induced silicosis rats suggested that NAC and DMI alone or in combination could decrease the severity of pulmonary fibrosis in rats. The combined intervention had a better effect on reducing fibrosis than the individual interventions. NAC and DMI, alone or in combination, decreased the levels of markers related to pulmonary fibrosis in rats (smooth muscle α-actin (α-SMA), collagen (Col) I, Col III, hydroxyproline (HYP), inflammatory factors (transforming growth factor-ß1 (TGF-ß1) and tumor necrosis factor-α (TNF-α)), and lipid peroxidase malondialdehyde (MDA)). The nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1) and ASMase/ceramide pathways were inhibited to some extent by increasing the superoxide dismutase (SOD) levels of antioxidant enzymes and 8-iso-prostaglandin F2α (8-iso-PGF2α) levels of lipid peroxides. The combined intervention and NAC alone inhibited the SiO2 dust-induced elevation of matrix metalloproteinase 1 (MMP-1) and tissue inhibitor matrix metalloproteinase 1 (TIMP-1), but the effect was not significant in the DMI-treated group. Combining DMI and NAC inhibited Col I deposition and reduced HO-1, TIMP-1, and ASMase levels in lung tissues compared to individual treatments. In summary, the SiO2 dust could induce oxidative stress and inflammation in rats, resulting in an imbalance in extracellular matrix (ECM) synthesis/catabolism and ASMase/ceramide signaling pathway activation, leading to silicosis development.The combined intervention of DMI and NAC may synergistically regulate the Nrf2/HO-1 pathway, maintain the anabolic balance of the ECM, inhibit ASMase/ceramide signaling pathway activation by suppressing the inflammatory response and effectively delay silicosis fibrosis progression.


Assuntos
Acetilcisteína , Desipramina , Fibrose Pulmonar , Silicose , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Antioxidantes/metabolismo , Ceramidas/metabolismo , Desipramina/metabolismo , Desipramina/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Poeira , Fibrose , Heme Oxigenase (Desciclizante) , Pulmão , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/toxicidade , Fator 2 Relacionado a NF-E2 , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Dióxido de Silício/toxicidade , Silicose/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/toxicidade , Inibidor Tecidual de Metaloproteinase-1
11.
Nucl Med Biol ; 112-113: 44-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802985

RESUMO

INTRODUCTION: Meta-[211At]astato-benzylguanidine ([211At]MABG) accumulates in pheochromocytoma via norepinephrine transporter (NET) and leads to a strong antitumor effect, but it also distributed in normal tissues non-specifically. Meta-[131I]iodo-benzylguanidine ([131I]MIBG), an iodine-labeled analog of [211At]MABG, is known to be transported by not only NET but also organic cation transporter (OCT). The involvement of OCT in [211At]MABG uptake is still largely unknown. We investigated the involvement of OCT in the non-NET-driven uptake of [211At]MABG both in vitro and in vivo. METHODS: [123I]MIBG and [211At]MABG uptake was investigated in PC-12 (rat pheochromocytoma cell line), NIH/3T3 (mouse fibroblasts cell line), ACHN (human renal cancer cell line), and BxPC-3 (human pancreatic cancer cell line). Herein, we used desipramine and dl-norepinephrine to inhibit NET, and we used steroids (hydrocortisone and prednisolone) to inhibit OCT3. The [211At]MABG uptake in OCT3-knockdown cells established with OCT3-selective siRNA was also investigated. We investigated the biodistribution of [211At]MABG in PC-12 tumor-bearing mice after a preloading of phosphate-buffered saline (PBS) or hydrocortisone solution. RESULTS: The uptake of both [123I]MIBG and [211At]MABG was significantly inhibited by desipramine in PC-12 cells but not the other cell lines. The expression of OCT3 was relatively higher than those of the other OCT subtypes in ACHN and BxPC-3 cells. The expression of OCTs was not observed in NIH/3T3 cells. The uptake of both [123I]MIBG and [211At]MABG in ACHN and BxPC-3 cells was significantly inhibited by the steroid treatments. The [211At]MABG uptake was also reduced in OCT3-knockdown cells (p < 0.001). The radioactivity of [211At]MABG was significantly reduced in normal tissues by the preloading of hydrocortisone. In contrast, there was an increasing trend of [211At]MABG uptake in the PC-12 tumors. The tumor-to-normal tissue ratio was significantly increased by the preloading of hydrocortisone compared to that of PBS. CONCLUSION: Our results suggest that OCT3 is involved in non-NET-driven [211At]MABG uptake. The preloading of hydrocortisone selectively reduced [211At]MABG accumulation in normal organs in vivo. OCT3 inhibition may therefore be beneficial for a reduction of the radiation risk in healthy organs in the treatment of malignant pheochromocytomas.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , 3-Iodobenzilguanidina/metabolismo , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Cátions/metabolismo , Desipramina , Guanidinas , Humanos , Hidrocortisona , Radioisótopos do Iodo , Camundongos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Feocromocitoma/diagnóstico por imagem , Feocromocitoma/genética , Feocromocitoma/metabolismo , Fosfatos/metabolismo , Prednisolona , RNA Interferente Pequeno , Ratos , Distribuição Tecidual
12.
Adicciones ; 34(2): 157-167, 2022 Apr 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34171105

RESUMO

This review synthesizes the pharmacological and psychosocial interventions that have been conducted in comorbid anxiety disorders and SUDs while also providing clinical recommendations about which intervention elements are helpful for addressing substance use versus anxiety symptoms in patients with these co-occurring conditions. The best evidence from randomized controlled trials was used to evaluate treatment options. The strength of recommendations was described using the GRADE approach. Clinical trials are only available for posttraumatic stress disorder (PTSD) and for social anxiety. Concerning the comorbid substance use, all the studies have included patients with alcohol use, none of them have dealt with cocaine, cannabis or nicotine use. Although some treatments have shown benefit for anxiety symptoms without benefits for alcohol or other substance use, only limited pharmacological approaches have been assayed (sertraline, desipramine, paroxetine, buspirone, naltrexone and disulfiram). Our results suggest that 1) we can (weakly) recommend the use of desipramine over paroxetine to alleviate symptoms of anxiety in patients with a PTSD and alcohol use; 2) In these patients, the use of naltrexone to reduce symptoms of anxiety is also recommended (weak strength); and 3) SSRI antidepressants vs placebo can be recommended to reduce alcohol use (weak recommendation). Our review highlights the need for more research in this area and for larger, multisite studies with generalizable samples to provide more definite guidance for clinical practice.


Esta revisión resume las intervenciones farmacológicos y psicosociales que han sido llevadas a cabo en trastornos de ansiedad con un diagnóstico comórbido de trastorno por uso de sustancias y además proporciona recomendaciones clínicas respecto de cuáles elementos de intervención son útiles para hacer frente a los síntomas del uso de sustancias y los síntomas de ansiedad en pacientes con estas afecciones concurrentes. Se utilizó la mejor evidencia de ensayos controlados aleatorizados para evaluar las opciones de tratamiento. La fuerza de las recomendaciones se describió mediante el enfoque GRADE. Hay ensayos clínicos disponibles únicamente para el trastorno por estrés postraumático (TEPT) y para el trastorno de ansiedad. En cuanto al diagnóstico comórbido de trastorno por uso de sustancias, todos los estudios han incluido pacientes con consumo de alcohol, ninguno de ellos ha abordado el consumo de cocaína, cannabis o nicotina. Aunque algunos tratamientos han mostrado beneficios para los síntomas de ansiedad sin beneficios para el consumo de alcohol u otras sustancias, solo se han ensayado enfoques farmacológicos limitados (sertralina, desipramina, paroxetina, buspirona, naltrexona y disulfiram). Nuestros resultados sugieren que 1) podemos (débilmente) recomendar el uso de desipramina sobre la paroxetina para aliviar los síntomas de ansiedad en pacientes con un TEPT y consumo de alcohol; 2) en estos pacientes, el uso de naltrexona para reducir los síntomas de ansiedad es también recomendable (fuerza débil); y 3) se pueden recomendar antidepresivos ISRS frente a placebo para reducir el consumo de alcohol (recomendación débil). Nuestra revisión pone de relieve la necesidad de realizar más investigaciones en esta área y de estudios más grandes, multisitio con muestras generalizables para proporcionar evidencia más definitiva para la práctica clínica.


Assuntos
Paroxetina , Transtornos Relacionados ao Uso de Substâncias , Adulto , Transtornos de Ansiedade/complicações , Transtornos de Ansiedade/terapia , Desipramina/uso terapêutico , Humanos , Naltrexona/uso terapêutico , Paroxetina/uso terapêutico , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/terapia
13.
Molecules ; 26(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34443522

RESUMO

Five new thiohydantoin derivatives (1-5) were isolated from the rhizomes of Lepidium meyenii Walp. NMR (1H and 13C NMR, 1H-1H COSY, HSQC, and HMBC), HRESIMS, and ECD were employed for the structure elucidation of new compounds. Significantly, the structure of compound 1 was the first example of thiohydantoins with thioxohexahydroimidazo [1,5-a] pyridine moiety. Additionally, compounds 2 and 3 possess rare disulfide bonds. Except for compound 4, all isolates were assessed for neuroprotective activities in corticosterone (CORT)-stimulated PC12 cell damage. Among them, compound (-)-3 exhibited moderate neuroprotective activity (cell viability: 68.63%, 20 µM) compared to the positive control desipramine (DIM) (cell viability: 88.49%, 10 µM).


Assuntos
Lepidium/química , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Tioidantoínas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Corticosterona/farmacologia , Desipramina/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Extratos Vegetais/farmacologia , Piridinas/química , Ratos , Tioidantoínas/isolamento & purificação
14.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281286

RESUMO

Norepinephrine (NE) neurons and extracellular NE exert some protective effects against a variety of insults, including methamphetamine (Meth)-induced cell damage. The intimate mechanism of protection remains difficult to be analyzed in vivo. In fact, this may occur directly on target neurons or as the indirect consequence of NE-induced alterations in the activity of trans-synaptic loops. Therefore, to elude neuronal networks, which may contribute to these effects in vivo, the present study investigates whether NE still protects when directly applied to Meth-treated PC12 cells. Meth was selected based on its detrimental effects along various specific brain areas. The study shows that NE directly protects in vitro against Meth-induced cell damage. The present study indicates that such an effect fully depends on the activation of plasma membrane ß2-adrenergic receptors (ARs). Evidence indicates that ß2-ARs activation restores autophagy, which is impaired by Meth administration. This occurs via restoration of the autophagy flux and, as assessed by ultrastructural morphometry, by preventing the dissipation of microtubule-associated protein 1 light chain 3 (LC3) from autophagy vacuoles to the cytosol, which is produced instead during Meth toxicity. These findings may have an impact in a variety of degenerative conditions characterized by NE deficiency along with autophagy impairment.


Assuntos
Metanfetamina/antagonistas & inibidores , Metanfetamina/toxicidade , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Norepinefrina/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Compartimento Celular/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/antagonistas & inibidores , Estimulantes do Sistema Nervoso Central/toxicidade , Desipramina/farmacologia , Relação Dose-Resposta a Droga , Metanfetamina/administração & dosagem , Microscopia Eletrônica de Transmissão , Modelos Neurológicos , Neurônios/ultraestrutura , Fármacos Neuroprotetores/farmacologia , Norepinefrina/metabolismo , Células PC12 , Ratos , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
15.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062902

RESUMO

Currently utilized antidepressants have limited effectiveness and frequently incur undesired effects. Most antidepressants are thought to act via the inhibition of monoamine reuptake; however, direct binding to monoaminergic receptors has been proposed to contribute to both their clinical effectiveness and their side effects, or lack thereof. Among the target receptors of antidepressants, α1­adrenergic receptors (ARs) have been implicated in depression etiology, antidepressant action, and side effects. However, differences in the direct effects of antidepressants on signaling from the three subtypes of α1-ARs, namely, α1A-, α1B- and α1D­ARs, have been little explored. We utilized cell lines overexpressing α1A-, α1B- or α1D-ARs to investigate the effects of the antidepressants imipramine (IMI), desipramine (DMI), mianserin (MIA), reboxetine (REB), citalopram (CIT) and fluoxetine (FLU) on noradrenaline-induced second messenger generation by those receptors. We found similar orders of inhibition at α1A-AR (IMI < DMI < CIT < MIA < REB) and α1D­AR (IMI = DMI < CIT < MIA), while the α1B-AR subtype was the least engaged subtype and was inhibited with low potency by three drugs (MIA < IMI = DMI). In contrast to their direct antagonistic effects, prolonged incubation with IMI and DMI increased the maximal response of the α1B-AR subtype, and the CIT of both the α1A- and the α1B-ARs. Our data demonstrate a complex, subtype-specific modulation of α1-ARs by antidepressants of different groups.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Receptores Adrenérgicos alfa 1/genética , Animais , Antidepressivos/classificação , Citalopram/farmacologia , Depressão/etiologia , Depressão/genética , Depressão/patologia , Desipramina/farmacologia , Fluoxetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imipramina/farmacologia , Mianserina/farmacologia , Camundongos , Células PC12 , Ratos , Reboxetina/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
J Neurosci Res ; 99(2): 662-678, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32954528

RESUMO

The effect of stress on animal behavior and brain activity has been attracting growing attention in the last decades. Stress dramatically affects several aspects of animal behavior, including motivation and cognitive functioning, and has been used to model human pathologies such as post-traumatic stress disorder. A key question is whether stress alters the plastic potential of synaptic circuits. In this work, we evaluated if stress affects dopamine (DA)-dependent synaptic plasticity in the medial prefrontal cortex (mPFC). On male adolescent rats, we characterized anxiety- and depressive-like behaviors using behavioral testing before and after exposure to a mild stress (elevated platform, EP). After the behavioral protocols, we investigated DA-dependent long-term potentiation (DA-LTP) and depression (DA-LTD) on acute slices of mPFC and evaluated the activation of DA-producing brain regions by western and dot blot analysis. We show that exposure to the EP stress enhances DA-LTP and that desipramine (DMI) treatment abolishes this effect. We also found that DA-LTD is not affected by EP stress unless when this is followed by DMI treatment. In addition, EP stress reduces anxiety, an effect abolished by both DMI and ketamine, while motivation is promoted by previous exposure to EP stress independently of pharmacological treatments. Finally, this form of stress reduces the expression of the early gene cFOS in the ventral tegmental area. These findings support the idea that mild stressors can promote synaptic plasticity in PFC through a dopaminergic mechanism, an effect that might increase the sensitivity of mPFC to subsequent stressful experiences.


Assuntos
Dopamina/fisiologia , Potenciação de Longa Duração , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/etiologia , Ansiedade/fisiopatologia , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/fisiopatologia , Desipramina/farmacologia , Desipramina/uso terapêutico , Teste de Labirinto em Cruz Elevado , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica , Genes fos , Ketamina/farmacologia , Masculino , Motivação , Teste de Campo Aberto , Ratos , Ratos Sprague-Dawley , Natação , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-33242502

RESUMO

Dopamine replacement therapy used in Parkinson's disease (PD) may induce alterations in the emotional state that can underlie the manifestation of iatrogenic psychiatric-like disturbances. The preclinical investigation of these disturbances is limited, also because few reliable paradigms are available to study the affective properties of dopaminomimetic drugs in parkinsonian animals. To provide a relevant experimental tool in this respect, we evaluated whether dopaminomimetic drugs modified the emission of 50-kHz ultrasonic vocalizations (USVs), a behavioral marker of positive affect, in rats bearing a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle. Apomorphine (2 or 4 mg/kg, i.p.), L-3,4-dihydroxyphenilalanine (L-DOPA, 6 or 12 mg/kg, i.p.), or pramipexole (2 or 4 mg/kg, i.p.) were administered in a test cage (× 5 administrations) on alternate days. Seven days after treatment discontinuation, rats were re-exposed to the test cage to measure conditioned calling behavior and thereafter received a drug challenge. Hemiparkinsonian rats treated with either apomorphine or L-DOPA, but not pramipexole, markedly vocalized during repeated treatment and after challenge, and showed conditioned calling behavior. Moreover, apomorphine, L-DOPA and pramipexole elicited different patterns of 50-kHz USV emissions and rotational behavior, indicating that calling behavior in hemiparkinsonian rats treated with dopaminomimetic drugs is not a byproduct of motor activation. Taken together, these results suggest that measuring 50-kHz USV emissions may be a relevant experimental tool for studying how dopaminomimetic drugs modify the affective state in parkinsonian rats, with possible implications for the preclinical investigation of iatrogenic psychiatric-like disturbances in PD.


Assuntos
Dopaminérgicos/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Vocalização Animal/efeitos dos fármacos , Afeto/efeitos dos fármacos , Animais , Apomorfina/uso terapêutico , Desipramina/uso terapêutico , Modelos Animais de Doenças , Levodopa/uso terapêutico , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Pramipexol/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ondas Ultrassônicas
18.
Am J Physiol Heart Circ Physiol ; 320(2): H563-H574, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164582

RESUMO

Heart failure (HF) is associated with neurohumoral activation, which in turn leads to an increased peripheral resistance. In mesenteric vasculature, perivascular innervation plays relevant role maintaining vascular tonus and resistance. Therefore, we aimed to determine the possible alterations in superior mesenteric artery (SMA) perivascular innervation function in HF rats. HF was induced by coronary artery occlusion in male Wistar rats, and sham-operated (SO) rats were used as controls. After 12 wk, a greater vasoconstrictor response to electrical field stimulation (EFS) was observed in endothelium-intact and endothelium-denuded SMA of HF rats. Alpha-adrenoceptor antagonist phentolamine diminished this response in a higher magnitude in HF than in SO animals. However, the noradrenaline (NA) reuptake inhibitor desipramine increased EFS-induced vasoconstriction more in segments from HF rats. Besides, EFS-induced NA release was greater in HF animals, due to a higher tyrosine hydroxylase expression and activity. P2 purinoceptor antagonist suramin reduced EFS-induced vasoconstriction only in segments from SO rats, and adenosine 5'-triphosphate (ATP) release was lower in HF than in SO. Moreover, nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) enhanced EFS-induced vasoconstriction in a similar extent in both groups. HF was not associated with changes in EFS-induced NO release or the vasodilator response to NO donor sodium nitroprusside. In conclusion, HF postmyocardial infarction enhanced noradrenergic function and diminished purinergic cotransmission in SMA and did not change nitrergic innervation. The net effect was an increased sympathetic participation on the EFS-induced vasoconstriction that could help to understand the neurotransduction involved on the control of vascular tonus in HF.NEW & NOTEWORTHY This study reinforces the pivotal role of noradrenergic innervation in the regulation of mesenteric vascular tone in a rat model of heart failure. Moreover, our results highlight the counteracting role of ATP and NA reuptake, and help to understand the signaling pathways involved on the control of vascular tonus and resistance in heart failure postmyocardial infarction.


Assuntos
Trifosfato de Adenosina/metabolismo , Insuficiência Cardíaca/metabolismo , Norepinefrina/metabolismo , Transmissão Sináptica , Inibidores da Captação Adrenérgica/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Desipramina/farmacologia , Inibidores Enzimáticos/farmacologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Fentolamina/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Ratos , Ratos Wistar , Suramina/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição
19.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481596

RESUMO

Mitochondrial damage in the cells comprising inner (retinal endothelial cells) and outer (retinal pigment epithelium (RPE)) blood-retinal barriers (BRB) is known to precede the initial BRB breakdown and further histopathological abnormalities in diabetic retinopathy (DR). We previously demonstrated that activation of acid sphingomyelinase (ASM) is an important early event in the pathogenesis of DR, and recent studies have demonstrated that there is an intricate connection between ceramide and mitochondrial function. This study aimed to determine the role of ASM-dependent mitochondrial ceramide accumulation in diabetes-induced RPE cell damage. Mitochondria isolated from streptozotocin (STZ)-induced diabetic rat retinas (7 weeks duration) showed a 1.64 ± 0.29-fold increase in the ceramide-to-sphingomyelin ratio compared to controls. Conversely, the ceramide-to-sphingomyelin ratio was decreased in the mitochondria isolated from ASM-knockout mouse retinas compared to wild-type littermates, confirming the role of ASM in mitochondrial ceramide production. Cellular ceramide was elevated 2.67 ± 1.07-fold in RPE cells derived from diabetic donors compared to control donors, and these changes correlated with increased gene expression of IL-1ß, IL-6, and ASM. Treatment of RPE cells derived from control donors with high glucose resulted in elevated ASM, vascular endothelial growth factor (VEGF), and intercellular adhesion molecule 1 (ICAM-1) mRNA. RPE from diabetic donors showed fragmented mitochondria and a 2.68 ± 0.66-fold decreased respiratory control ratio (RCR). Treatment of immortalized cell in vision research (ARPE-19) cells with high glucose resulted in a 25% ± 1.6% decrease in citrate synthase activity at 72 h. Inhibition of ASM with desipramine (15 µM, 1 h daily) abolished the decreases in metabolic functional parameters. Our results are consistent with diabetes-induced increase in mitochondrial ceramide through an ASM-dependent pathway leading to impaired mitochondrial function in the RPE cells of the retina.


Assuntos
Ceramidas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Barreira Hematorretiniana , Citrato (si)-Sintase/metabolismo , Desipramina/farmacologia , Regulação da Expressão Gênica , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo
20.
Cancer Res ; 80(12): 2651-2662, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32291318

RESUMO

Ceramide-induced endothelial cell apoptosis boosts intestinal stem cell radiosensitivity. However, the molecular connection between these two cellular compartments has not been clearly elucidated. Here we report that ceramide and its related enzyme acid sphingomyelinase (ASM) are secreted by irradiated endothelial cells and act as bystander factors to enhance the radiotoxicity of intestinal epithelium. Ceramide and the two isoforms of ASM were acutely secreted in the blood serum of wild-type mice after 15 Gy radiation dose, inducing a gastrointestinal syndrome. Interestingly, serum ceramide was not enhanced in irradiated ASMKO mice, which are unable to develop intestinal failure injury. Because ASM/ceramide were secreted by primary endothelial cells, their contribution was studied in intestinal epithelium dysfunction using coculture of primary endothelial cells and intestinal T84 cells. Adding exogenous ASM or ceramide enhanced epithelial cell growth arrest and death. Conversely, blocking their secretion by endothelial cells using genetic, pharmacologic, or immunologic approaches abolished intestinal T84 cell radiosensitivity. Use of enteroid models revealed ASM and ceramide-mediated deleterious mode-of-action: when ceramide reduced the number of intestinal crypt-forming enteroids without affecting their structure, ASM induced a significant decrease of enteroid growth without affecting their number. Identification of specific and different roles for ceramide and ASM secreted by irradiated endothelial cells opens new perspectives in the understanding of intestinal epithelial dysfunction after radiation and defines a new class of potential therapeutic radiomitigators. SIGNIFICANCE: This study identifies secreted ASM and ceramide as paracrine factors enhancing intestinal epithelial dysfunction, revealing a previously unknown class of mediators of radiosensitivity.


Assuntos
Ceramidas/metabolismo , Células Endoteliais/metabolismo , Mucosa Intestinal/patologia , Lesões por Radiação/patologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Efeito Espectador/efeitos da radiação , Células Cultivadas , Ceramidas/sangue , Técnicas de Cocultura , Desipramina/farmacologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Masculino , Camundongos , Camundongos Knockout , Comunicação Parácrina/genética , Comunicação Parácrina/efeitos da radiação , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Lesões por Radiação/sangue , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA