Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000513

RESUMO

Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, including abemaciclib, have been approved for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced, and metastatic breast cancer. Despite the high therapeutic efficacy of CDK4/6 inhibitors, they are associated with various adverse effects, including potentially fatal interstitial lung disease. Therefore, a combination of CDK4/6 inhibitors with letrozole or fulvestrant has been attempted but has demonstrated limitations in reducing adverse effects, highlighting the need to develop new combination therapies. This study proposes a combination strategy using CDK4/6 inhibitors and tricyclic antidepressants to enhance the therapeutic outcomes of these inhibitors while reducing their side effects. The therapeutic efficacies of abemaciclib and desipramine were tested in different cancer cell lines (H460, MCF7, and HCT-116). The antitumor effects of the combined abemaciclib and desipramine treatment were evaluated in a xenograft colon tumor model. In vitro cell studies have shown the synergistic anticancer effects of combination therapy in the HCT-116 cell line. The combination treatment significantly reduced tumor size compared with control or single treatment without causing apparent toxicity to normal tissues. Although additional in vivo studies are necessary, this study suggests that the combination therapy of abemaciclib and desipramine may represent a novel therapeutic approach for treating solid tumors.


Assuntos
Aminopiridinas , Benzimidazóis , Desipramina , Sinergismo Farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Benzimidazóis/farmacologia , Benzimidazóis/administração & dosagem , Aminopiridinas/farmacologia , Aminopiridinas/administração & dosagem , Animais , Camundongos , Desipramina/farmacologia , Linhagem Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Células MCF-7 , Células HCT116 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C
2.
Neuropsychopharmacol Rep ; 44(1): 246-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37960997

RESUMO

Vascular endothelial growth factor (VEGF) signaling is known to be involved in the antidepressant-like effects of conventional antidepressants, such as desipramine (DMI), a tricyclic antidepressant, and fluoxetine (FLX), a selective serotonin reuptake inhibitor; however, the precise role of neuronal VEGF signaling in mediating these effects remains unclear. Using mice with excitatory neuron-specific deletion of VEGF and its receptor, fetal liver kinase 1 (Flk-1) in the forebrain, we examined the effects of forebrain excitatory neuron-specific deletion of VEGF or Flk-1 on the antidepressant-like effects of repeated DMI and chronic FLX administration in the forced swim test (FST). Repeated intraperitoneal (i.p.) injections of DMI (10, 10, and 20 mg/kg at 24, 4, and 1 h before the FST, respectively) significantly decreased immobility in control mice; however, this effect was completely blocked in mice with neuron-specific VEGF or Flk-1 deletion. Although chronic treatment with FLX (18 mg/kg/day, i.p.) did not impact immobility in control mice 1 day after the 22nd injection, immobility was significantly reduced 1 day after the preswim and the 23rd FLX injection. However, in mice with neuron-specific Flk-1 deletion, chronic FLX treatment significantly increased immobility in the preswim and failed to produce antidepressant-like effects. Collectively, these findings indicate that neuronal VEGF-Flk-1 signaling contributes to the antidepressant-like actions of conventional antidepressants.


Assuntos
Fluoxetina , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fluoxetina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Desipramina/metabolismo , Desipramina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Antidepressivos/farmacologia , Neurônios/metabolismo
3.
Anticancer Agents Med Chem ; 23(20): 2225-2236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859313

RESUMO

BACKGROUND: TRAIL has emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells while sparing normal cells. Autophagy, a highly regulated cellular recycling mechanism, is known to play a cell survival role by providing a required environment for the cell. Recent studies suggest that autophagy plays a significant role in increasing TRAIL resistance in certain cancer cells. Thus, regulating autophagy in TRAIL-mediated cancer therapy is crucial for its role in cancer treatment. OBJECTIVE: Our study explored whether the antidepressant drug desipramine could enhance the ability of TRAIL to kill cancer cells by inhibiting autophagy. METHODS: The effect of desipramine on TRAIL sensitivity was examined in various lung cancer cell lines. Cell viability was measured by morphological analysis, trypan blue exclusion, and crystal violet staining. Flow cytometry analysis was carried out to measure apoptosis with annexin V-PI stained cells. Western blotting, rtPCR, and immunocytochemistry were carried out to measure autophagy and death receptor expression. TEM was carried out to detect autophagy inhibition. RESULTS: Desipramine treatment increased the TRAIL sensitivity in all lung cancer cell lines. Mechanistically, desipramine treatment induced death receptor expression to increase TRAIL sensitivity. This effect was confirmed when the genetic blockade of DR5 reduced the effect of desipramine in enhanced TRAIL-mediated cell death. Further investigation revealed that desipramine treatment increased the LC3 and p62 levels, indicating the inhibition of lysosomal degradation of autophagy. Notably, TRAIL, in combination with either desipramine or the autophagy inhibitor chloroquine, exhibited enhanced cytotoxicity compared to TRAIL treatment alone. CONCLUSION: Our findings revealed the potential of desipramine to induce TRAIL-mediated cell death by autophagy impairment. This discovery suggests its therapeutic potential for inducing TRAIL-mediated cell death by increasing the expression of death receptors, which is caused by impairing autophagy.


Assuntos
Desipramina , Neoplasias Pulmonares , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Antidepressivos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia , Linhagem Celular Tumoral , Desipramina/farmacologia , Desipramina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
4.
Cell Cycle ; 22(17): 1827-1853, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522842

RESUMO

Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.


Assuntos
Eriptose , Doadores de Óxido Nítrico , Humanos , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Nitroprussiato/metabolismo , Cálcio/metabolismo , Acetilcisteína/farmacologia , Desipramina/farmacologia , Desipramina/metabolismo , Eritrócitos/metabolismo , Glutationa/metabolismo , Glutationa/farmacologia , Anexinas/metabolismo , Anexinas/farmacologia , Fosfatidilserinas/metabolismo , Tamanho Celular , Ceramidas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo
5.
Front Immunol ; 14: 1160977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409130

RESUMO

Due to the high prevalence of depression among cancer patients, antidepressant medications are frequently administered as adjuvant treatment. However, the safety of such medications in the development of metastasis is unclear. In this study, we investigated the effects of fluoxetine, desipramine, and mirtazapine on the liver metastasis of murine C26 colon carcinoma (cc). Balb/c male mice were administered these antidepressants intraperitoneally (i.p.) for 14 days following intrasplenic injections of C26 colon carcinoma cells. Desipramine and fluoxetine, but not mirtazapine, significantly increased the number of tumor foci and total volume of the tumor in liver tissue. This effect was associated with a decrease in the ability of splenocytes to produce interleukin (IL)-1ß and interferon (IFN)-γ and an increase in their ability to produce interleukin (IL)-10. Similar changes were observed in plasma IL-1ß, IFN-γ, and IL-10 levels. The current study demonstrates that the stimulatory effect of desipramine and fluoxetine, but not mirtazapine, on experimental colon cancer liver metastasis is associated with a suppression of immune defenses against the tumor.


Assuntos
Carcinoma , Neoplasias do Colo , Neoplasias Hepáticas , Masculino , Camundongos , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Mirtazapina/uso terapêutico , Desipramina/farmacologia , Desipramina/uso terapêutico , Citocinas , Antidepressivos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico
6.
Acta Biomed ; 94(2): e2023141, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37092612

RESUMO

Background and aim Crocin is a pharmacologically active chemical found in the spice saffron from Crocus sativus L. It possesses antioxidant and anti-radical properties that can minimize the hepatic phospholipidosis triggered using the tricyclic antidepressant desipramine. The aim of this study was to examine the effect of crocin on desipramine-induced hepatic phospholipidosis targeting the oxidative stress-related PI3K/Akt/mTOR signaling pathways. METHODS: Forty adult male rats were divided into 4 groups (n =10): control group, a group receiving intraperitoneal (IP) crocin (50 mg/kg/day), a group receiving IP desipramine (10 mg/kg/day), and a group receiving both IP crocin and desipramine. RESULTS: After 3 weeks of treatment, the combined treatment group showed diminished desipramine-induced hepatic phospholipidosis, along with significant reductions in total oxidant status (TOS) , the levels of inflammatory markers including interleukin 6 (IL6) and tumor necrosis factor α (TNF-α) and apoptotic markers including caspase3 and Bcl2 (B-cell lymphoma 2) while other markers including total antioxidant capacity (TAC), superoxide dismutase (SOD), phosphoinositide 3-kinases (PI3K), and mammalian target of rapamycin (mTOR) were increased. The gene expression of lysosomal enzymes including ELOVL6, SCD1 and HMGR was notably downregulated, while AP1S1 was upregulated in the combined treatment group compared to the desipramine group. No ultrastructural signs of hepatic phospholipidosis, in the form of multilamellar bodies, were apparent in the combined treatment group. CONCLUSIONS: These data collectively suggest that crocin has a protective effect against desipramine-induced phospholipidosis. (www.actabiomedica.it).


Assuntos
Antioxidantes , Fosfatidilinositol 3-Quinases , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Desipramina/farmacologia , Fígado/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
7.
Molecules ; 26(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34443522

RESUMO

Five new thiohydantoin derivatives (1-5) were isolated from the rhizomes of Lepidium meyenii Walp. NMR (1H and 13C NMR, 1H-1H COSY, HSQC, and HMBC), HRESIMS, and ECD were employed for the structure elucidation of new compounds. Significantly, the structure of compound 1 was the first example of thiohydantoins with thioxohexahydroimidazo [1,5-a] pyridine moiety. Additionally, compounds 2 and 3 possess rare disulfide bonds. Except for compound 4, all isolates were assessed for neuroprotective activities in corticosterone (CORT)-stimulated PC12 cell damage. Among them, compound (-)-3 exhibited moderate neuroprotective activity (cell viability: 68.63%, 20 µM) compared to the positive control desipramine (DIM) (cell viability: 88.49%, 10 µM).


Assuntos
Lepidium/química , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Tioidantoínas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Corticosterona/farmacologia , Desipramina/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Extratos Vegetais/farmacologia , Piridinas/química , Ratos , Tioidantoínas/isolamento & purificação
8.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281286

RESUMO

Norepinephrine (NE) neurons and extracellular NE exert some protective effects against a variety of insults, including methamphetamine (Meth)-induced cell damage. The intimate mechanism of protection remains difficult to be analyzed in vivo. In fact, this may occur directly on target neurons or as the indirect consequence of NE-induced alterations in the activity of trans-synaptic loops. Therefore, to elude neuronal networks, which may contribute to these effects in vivo, the present study investigates whether NE still protects when directly applied to Meth-treated PC12 cells. Meth was selected based on its detrimental effects along various specific brain areas. The study shows that NE directly protects in vitro against Meth-induced cell damage. The present study indicates that such an effect fully depends on the activation of plasma membrane ß2-adrenergic receptors (ARs). Evidence indicates that ß2-ARs activation restores autophagy, which is impaired by Meth administration. This occurs via restoration of the autophagy flux and, as assessed by ultrastructural morphometry, by preventing the dissipation of microtubule-associated protein 1 light chain 3 (LC3) from autophagy vacuoles to the cytosol, which is produced instead during Meth toxicity. These findings may have an impact in a variety of degenerative conditions characterized by NE deficiency along with autophagy impairment.


Assuntos
Metanfetamina/antagonistas & inibidores , Metanfetamina/toxicidade , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Norepinefrina/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Compartimento Celular/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/antagonistas & inibidores , Estimulantes do Sistema Nervoso Central/toxicidade , Desipramina/farmacologia , Relação Dose-Resposta a Droga , Metanfetamina/administração & dosagem , Microscopia Eletrônica de Transmissão , Modelos Neurológicos , Neurônios/ultraestrutura , Fármacos Neuroprotetores/farmacologia , Norepinefrina/metabolismo , Células PC12 , Ratos , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
9.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062902

RESUMO

Currently utilized antidepressants have limited effectiveness and frequently incur undesired effects. Most antidepressants are thought to act via the inhibition of monoamine reuptake; however, direct binding to monoaminergic receptors has been proposed to contribute to both their clinical effectiveness and their side effects, or lack thereof. Among the target receptors of antidepressants, α1­adrenergic receptors (ARs) have been implicated in depression etiology, antidepressant action, and side effects. However, differences in the direct effects of antidepressants on signaling from the three subtypes of α1-ARs, namely, α1A-, α1B- and α1D­ARs, have been little explored. We utilized cell lines overexpressing α1A-, α1B- or α1D-ARs to investigate the effects of the antidepressants imipramine (IMI), desipramine (DMI), mianserin (MIA), reboxetine (REB), citalopram (CIT) and fluoxetine (FLU) on noradrenaline-induced second messenger generation by those receptors. We found similar orders of inhibition at α1A-AR (IMI < DMI < CIT < MIA < REB) and α1D­AR (IMI = DMI < CIT < MIA), while the α1B-AR subtype was the least engaged subtype and was inhibited with low potency by three drugs (MIA < IMI = DMI). In contrast to their direct antagonistic effects, prolonged incubation with IMI and DMI increased the maximal response of the α1B-AR subtype, and the CIT of both the α1A- and the α1B-ARs. Our data demonstrate a complex, subtype-specific modulation of α1-ARs by antidepressants of different groups.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Receptores Adrenérgicos alfa 1/genética , Animais , Antidepressivos/classificação , Citalopram/farmacologia , Depressão/etiologia , Depressão/genética , Depressão/patologia , Desipramina/farmacologia , Fluoxetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imipramina/farmacologia , Mianserina/farmacologia , Camundongos , Células PC12 , Ratos , Reboxetina/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
J Neurosci Res ; 99(2): 662-678, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32954528

RESUMO

The effect of stress on animal behavior and brain activity has been attracting growing attention in the last decades. Stress dramatically affects several aspects of animal behavior, including motivation and cognitive functioning, and has been used to model human pathologies such as post-traumatic stress disorder. A key question is whether stress alters the plastic potential of synaptic circuits. In this work, we evaluated if stress affects dopamine (DA)-dependent synaptic plasticity in the medial prefrontal cortex (mPFC). On male adolescent rats, we characterized anxiety- and depressive-like behaviors using behavioral testing before and after exposure to a mild stress (elevated platform, EP). After the behavioral protocols, we investigated DA-dependent long-term potentiation (DA-LTP) and depression (DA-LTD) on acute slices of mPFC and evaluated the activation of DA-producing brain regions by western and dot blot analysis. We show that exposure to the EP stress enhances DA-LTP and that desipramine (DMI) treatment abolishes this effect. We also found that DA-LTD is not affected by EP stress unless when this is followed by DMI treatment. In addition, EP stress reduces anxiety, an effect abolished by both DMI and ketamine, while motivation is promoted by previous exposure to EP stress independently of pharmacological treatments. Finally, this form of stress reduces the expression of the early gene cFOS in the ventral tegmental area. These findings support the idea that mild stressors can promote synaptic plasticity in PFC through a dopaminergic mechanism, an effect that might increase the sensitivity of mPFC to subsequent stressful experiences.


Assuntos
Dopamina/fisiologia , Potenciação de Longa Duração , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/etiologia , Ansiedade/fisiopatologia , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/fisiopatologia , Desipramina/farmacologia , Desipramina/uso terapêutico , Teste de Labirinto em Cruz Elevado , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica , Genes fos , Ketamina/farmacologia , Masculino , Motivação , Teste de Campo Aberto , Ratos , Ratos Sprague-Dawley , Natação , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia
11.
Am J Physiol Heart Circ Physiol ; 320(2): H563-H574, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164582

RESUMO

Heart failure (HF) is associated with neurohumoral activation, which in turn leads to an increased peripheral resistance. In mesenteric vasculature, perivascular innervation plays relevant role maintaining vascular tonus and resistance. Therefore, we aimed to determine the possible alterations in superior mesenteric artery (SMA) perivascular innervation function in HF rats. HF was induced by coronary artery occlusion in male Wistar rats, and sham-operated (SO) rats were used as controls. After 12 wk, a greater vasoconstrictor response to electrical field stimulation (EFS) was observed in endothelium-intact and endothelium-denuded SMA of HF rats. Alpha-adrenoceptor antagonist phentolamine diminished this response in a higher magnitude in HF than in SO animals. However, the noradrenaline (NA) reuptake inhibitor desipramine increased EFS-induced vasoconstriction more in segments from HF rats. Besides, EFS-induced NA release was greater in HF animals, due to a higher tyrosine hydroxylase expression and activity. P2 purinoceptor antagonist suramin reduced EFS-induced vasoconstriction only in segments from SO rats, and adenosine 5'-triphosphate (ATP) release was lower in HF than in SO. Moreover, nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) enhanced EFS-induced vasoconstriction in a similar extent in both groups. HF was not associated with changes in EFS-induced NO release or the vasodilator response to NO donor sodium nitroprusside. In conclusion, HF postmyocardial infarction enhanced noradrenergic function and diminished purinergic cotransmission in SMA and did not change nitrergic innervation. The net effect was an increased sympathetic participation on the EFS-induced vasoconstriction that could help to understand the neurotransduction involved on the control of vascular tonus in HF.NEW & NOTEWORTHY This study reinforces the pivotal role of noradrenergic innervation in the regulation of mesenteric vascular tone in a rat model of heart failure. Moreover, our results highlight the counteracting role of ATP and NA reuptake, and help to understand the signaling pathways involved on the control of vascular tonus and resistance in heart failure postmyocardial infarction.


Assuntos
Trifosfato de Adenosina/metabolismo , Insuficiência Cardíaca/metabolismo , Norepinefrina/metabolismo , Transmissão Sináptica , Inibidores da Captação Adrenérgica/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Desipramina/farmacologia , Inibidores Enzimáticos/farmacologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Fentolamina/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Ratos , Ratos Wistar , Suramina/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição
12.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481596

RESUMO

Mitochondrial damage in the cells comprising inner (retinal endothelial cells) and outer (retinal pigment epithelium (RPE)) blood-retinal barriers (BRB) is known to precede the initial BRB breakdown and further histopathological abnormalities in diabetic retinopathy (DR). We previously demonstrated that activation of acid sphingomyelinase (ASM) is an important early event in the pathogenesis of DR, and recent studies have demonstrated that there is an intricate connection between ceramide and mitochondrial function. This study aimed to determine the role of ASM-dependent mitochondrial ceramide accumulation in diabetes-induced RPE cell damage. Mitochondria isolated from streptozotocin (STZ)-induced diabetic rat retinas (7 weeks duration) showed a 1.64 ± 0.29-fold increase in the ceramide-to-sphingomyelin ratio compared to controls. Conversely, the ceramide-to-sphingomyelin ratio was decreased in the mitochondria isolated from ASM-knockout mouse retinas compared to wild-type littermates, confirming the role of ASM in mitochondrial ceramide production. Cellular ceramide was elevated 2.67 ± 1.07-fold in RPE cells derived from diabetic donors compared to control donors, and these changes correlated with increased gene expression of IL-1ß, IL-6, and ASM. Treatment of RPE cells derived from control donors with high glucose resulted in elevated ASM, vascular endothelial growth factor (VEGF), and intercellular adhesion molecule 1 (ICAM-1) mRNA. RPE from diabetic donors showed fragmented mitochondria and a 2.68 ± 0.66-fold decreased respiratory control ratio (RCR). Treatment of immortalized cell in vision research (ARPE-19) cells with high glucose resulted in a 25% ± 1.6% decrease in citrate synthase activity at 72 h. Inhibition of ASM with desipramine (15 µM, 1 h daily) abolished the decreases in metabolic functional parameters. Our results are consistent with diabetes-induced increase in mitochondrial ceramide through an ASM-dependent pathway leading to impaired mitochondrial function in the RPE cells of the retina.


Assuntos
Ceramidas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Barreira Hematorretiniana , Citrato (si)-Sintase/metabolismo , Desipramina/farmacologia , Regulação da Expressão Gênica , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo
13.
Cancer Res ; 80(12): 2651-2662, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32291318

RESUMO

Ceramide-induced endothelial cell apoptosis boosts intestinal stem cell radiosensitivity. However, the molecular connection between these two cellular compartments has not been clearly elucidated. Here we report that ceramide and its related enzyme acid sphingomyelinase (ASM) are secreted by irradiated endothelial cells and act as bystander factors to enhance the radiotoxicity of intestinal epithelium. Ceramide and the two isoforms of ASM were acutely secreted in the blood serum of wild-type mice after 15 Gy radiation dose, inducing a gastrointestinal syndrome. Interestingly, serum ceramide was not enhanced in irradiated ASMKO mice, which are unable to develop intestinal failure injury. Because ASM/ceramide were secreted by primary endothelial cells, their contribution was studied in intestinal epithelium dysfunction using coculture of primary endothelial cells and intestinal T84 cells. Adding exogenous ASM or ceramide enhanced epithelial cell growth arrest and death. Conversely, blocking their secretion by endothelial cells using genetic, pharmacologic, or immunologic approaches abolished intestinal T84 cell radiosensitivity. Use of enteroid models revealed ASM and ceramide-mediated deleterious mode-of-action: when ceramide reduced the number of intestinal crypt-forming enteroids without affecting their structure, ASM induced a significant decrease of enteroid growth without affecting their number. Identification of specific and different roles for ceramide and ASM secreted by irradiated endothelial cells opens new perspectives in the understanding of intestinal epithelial dysfunction after radiation and defines a new class of potential therapeutic radiomitigators. SIGNIFICANCE: This study identifies secreted ASM and ceramide as paracrine factors enhancing intestinal epithelial dysfunction, revealing a previously unknown class of mediators of radiosensitivity.


Assuntos
Ceramidas/metabolismo , Células Endoteliais/metabolismo , Mucosa Intestinal/patologia , Lesões por Radiação/patologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Efeito Espectador/efeitos da radiação , Células Cultivadas , Ceramidas/sangue , Técnicas de Cocultura , Desipramina/farmacologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Masculino , Camundongos , Camundongos Knockout , Comunicação Parácrina/genética , Comunicação Parácrina/efeitos da radiação , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Lesões por Radiação/sangue , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética
14.
J Neural Transm (Vienna) ; 125(12): 1837-1845, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30191367

RESUMO

In recent studies, major depressive disorder (MDD) was linked to an increase in acid sphingomyelinase (ASM) activity. Several drugs that are commonly used to treat MDD functionally inhibit the lysosomal enzyme ASM and are called functional inhibitors of ASM (FIASMAs). These drugs are classified as cationic amphiphilic drugs (CADs) that influence the catalytic activities of different lysosomal enzymes. This action results in the side effect of phospholipidosis (PLD), which describes a detrimental increase in the phospholipid content in lysosomes. FIASMAs differ only slightly in their physico-chemical properties, but their effects on ASM activity and induction of the lysosomal phospholipid content vary significantly. In this study, we systematically induced minor chemical modifications to the FIASMAs imipramine, desipramine and fluoxetine. We generated a library of 45 new CADs with slightly different log P (logarithmic partition coefficient) and pKa (logarithmic acid dissociation constant) values. The effects of the compounds on the ASM activity and lysosomal phospholipid content were assessed in cell culture assays. We identified four compounds with beneficial effects, i.e., increased ASM activity inhibition and reduced PLD induction compared with the original drugs. The compounds HT04, RH272B and RH272D outperformed the original imipramine, whereas RH281A performed better than desipramine. Thus, minor chemical variations of CADs impact lysosomal metabolism in a specific manner and can lead to antidepressant drugs with less deleterious side effects.


Assuntos
Desipramina/farmacologia , Fluoxetina/farmacologia , Imipramina/farmacologia , Lisossomos/efeitos dos fármacos , Fosfolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Antidepressivos/farmacologia , Linhagem Celular Tumoral , Humanos , Lisossomos/metabolismo
15.
ACS Nano ; 12(8): 8197-8207, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30080036

RESUMO

The enzyme sphingomyelinase (SMase) is an important biomarker for several diseases such as Niemann Pick's, atherosclerosis, multiple sclerosis, and HIV. We present a two-component colorimetric SMase activity assay that is more sensitive and much faster than currently available commercial assays. Herein, SMase-triggered release of cysteine from a sphingomyelin (SM)-based liposome formulation with 60 mol % cholesterol causes gold nanoparticle (AuNP) aggregation, enabling colorimetric detection of SMase activities as low as 0.02 mU/mL, corresponding to 1.4 pM concentration. While the lipid composition offers a stable, nonleaky liposome platform with minimal background signal, high specificity toward SMase avoids cross-reactivity of other similar phospholipases. Notably, use of an SM-based liposome formulation accurately mimics the natural in vivo substrate: the cell membrane. We studied the physical rearrangement process of the lipid membrane during SMase-mediated hydrolysis of SM to ceramide using small- and wide-angle X-ray scattering. A change in lipid phase from a liquid to gel state bilayer with increasing concentration of ceramide accounts for the observed increase in membrane permeability and consequent release of encapsulated cysteine. We further demonstrated the effectiveness of the sensor in colorimetric screening of small-molecule drug candidates, paving the way for the identification of novel SMase inhibitors in minutes. Taken together, the simplicity, speed, sensitivity, and naked-eye readout of this assay offer huge potential in point-of-care diagnostics and high-throughput drug screening.


Assuntos
Compostos de Bifenilo/análise , Colorimetria , Desipramina/análise , Inibidores Enzimáticos/análise , Naftalenos/análise , Pirimidinonas/análise , Esfingomielina Fosfodiesterase/análise , Animais , Compostos de Bifenilo/farmacologia , Bovinos , Desipramina/farmacologia , Inibidores Enzimáticos/farmacologia , Lipossomos/química , Estrutura Molecular , Naftalenos/farmacologia , Tamanho da Partícula , Pirimidinonas/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo , Propriedades de Superfície
16.
Acta Neuropsychiatr ; 30(3): 158-167, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29202894

RESUMO

OBJECTIVE: The aims of this study were to replicate previously published experiments and to modify the protocol to detect the effects of chronic antidepressant treatment in mice. METHODS: Male Swiss mice (n=6-8/group) housed in reversed light/dark cycle were randomly assigned into receive vehicle (10% sucrose), sub-effective doses (1 and 3 mg/kg) or effective doses (10 and 30 mg/kg) of bupropion, desipramine, and fluoxetine and a candidate antidepressant, sodium butyrate (1-30 mg/kg) per gavage (p.o.) 1 h before the forced swim test (FST). Treatments continued daily for 7 and 14 days during retests 1 and 2, respectively. In an additional experiment, mice received fluoxetine (20 mg/kg) or vehicle (10% sucrose or 0.9% saline) p.o. or i.p. before the FST. Mice housed in reversed or standard light/dark cycles received fluoxetine (20 mg/kg) prior FST. Video recordings of behavioural testing were used for blind assessment of the outcomes. RESULTS: According to the expected, doses of antidepressants considered sub-effective failed to affect the immobility time of mice in the FST. Surprisingly, acute and chronic treatment with the high doses of bupropion, desipramine, and fluoxetine or sodium butyrate also failed to reduce the immobility time of mice in the FST. Fluoxetine 20 mg/kg was also ineffective in the FST when injected i.p. or in mice housed in normal light/dark cycle. CONCLUSION: Data suggest the lack of efficacy of orally administered bupropion, desipramine, fluoxetine in the FST in Swiss mice. High variability, due to high and low immobility mice, may explain the limited effects of the treatments.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Bupropiona/farmacologia , Ácido Butírico/farmacologia , Desipramina/farmacologia , Fluoxetina/farmacologia , Resposta de Imobilidade Tônica/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Animais , Antidepressivos/administração & dosagem , Bupropiona/administração & dosagem , Ácido Butírico/administração & dosagem , Desipramina/administração & dosagem , Fluoxetina/administração & dosagem , Masculino , Camundongos
17.
Cell Biol Int ; 42(2): 248-253, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29068103

RESUMO

Desipramine, a commonly used antidepressant drug, induced cytosolic vacuolization in L929 cells. The level of LC3-II was elevated and that of p62 was reduced in desipramine-treated L929 cells, indicating the induction of autophagy by desipramine. Surprisingly, massive vacuolization was observed in desipramine-treated L929 cells in the presence of LY294002, an inhibitor of autophagy. On the other hand, bafilomycin A1, an inhibitor of vacuolar type H+ ATPase, almost completely inhibited vacuolization in desipramine- or desipramine/LY294002-treated L929 cells. Furthermore, desipramine-induced vacuolization was observed in autophagy-deficient Atg7-/- mouse embryonic fibroblasts (MEFs) as well as wild-type Atg7+/+ MEFs. These results demonstrate that desipramine-induced lysosomal vacuolization is independent of autophagy.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Desipramina/farmacologia , Lisossomos/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Animais , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Linhagem Celular Tumoral , Células Cultivadas , Macrolídeos/farmacologia , Camundongos
18.
Prog Neuropsychopharmacol Biol Psychiatry ; 80(Pt C): 279-290, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28433460

RESUMO

The effect of antidepressant drugs on tumor progress is very poorly recognized. The aim of the present study was to examine the effect of individual reactivity to stress and 24-day desipramine (DES) administration on the metastatic colonization of adenocarcinoma MADB 106 cells in the lungs of Wistar rats. Wistar rats were subjected to stress procedure according to the chronic mild stress (CMS) model of depression for two weeks and stress highly-sensitive (SHS) and stress non-reactive (SNR) rats were selected. SHS rats were more prone to cancer metastasis than SNR ones and chronic DES treatment further increased the number of lung metastases by 59% and 50% in comparison to vehicle-treated appropriate control rats. The increase in lung metastases was connected with DES-induced skew macrophage activity towards M2 functional phenotype in SHS and SNR rats. Moreover, during 24h after DES injection in healthy rats, the decreased number of TCD8+ and B cells in SHS and SNR rats as well as NK cell cytotoxic activity in SNR rats could be attributed to the lowered capacity to defend against cancer metastasis observed in chronic DES treated and tumor injected rats.


Assuntos
Adenocarcinoma/complicações , Adenocarcinoma/secundário , Desipramina/farmacologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/secundário , Estresse Psicológico/complicações , Animais , Antidepressivos/farmacologia , Linhagem Celular Tumoral , Subpopulações de Linfócitos/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos
19.
Br J Cancer ; 117(4): 513-524, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28697173

RESUMO

BACKGROUND: Demand for cholesterol is high in certain cancers making them potentially sensitive to therapeutic strategies targeting cellular cholesterol homoeostasis. A potential approach involves disruption of intracellular cholesterol transport, which occurs in Niemann-Pick disease as a result of acid sphingomyelinase (ASM) deficiency. Hence, a class of lysosomotropic compounds that were identified as functional ASM inhibitors (FIASMAs) might exhibit chemotherapeutic activity by disrupting cancer cell cholesterol homoeostasis. METHODS: Here, the chemotherapeutic utility of ASM inhibition was investigated. The effect of FIASMAs on intracellular cholesterol levels, cholesterol homoeostasis, cellular endocytosis and signalling cascades were investigated. The in vivo efficacy of ASM inhibition was demonstrated using melanoma xenografts and a nanoparticle formulation was developed to overcome dose-limiting CNS-associated side effects of certain FIASMAs. RESULTS: Functional ASM inhibitors inhibited intracellular cholesterol transport leading to disruption of autophagic flux, cellular endocytosis and receptor tyrosine kinase signalling. Consequently, major oncogenic signalling cascades on which cancer cells were reliant for survival were inhibited. Two tested ASM inhibitors, perphenazine and fluphenazine that are also clinically used as antipsychotics, were effective in inhibiting xenografted tumour growth. Nanoliposomal encapsulation of the perphenazine enhanced its chemotherapeutic efficacy while decreasing CNS-associated side effects. CONCLUSIONS: This study suggests that disruption of intracellular cholesterol transport by targeting ASM could be utilised as a potential chemotherapeutic approach for treating cancer.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Antipsicóticos/farmacologia , Colesterol/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Perfenazina/administração & dosagem , Administração Intravenosa , Administração Oral , Animais , Antidepressivos Tricíclicos/uso terapêutico , Antipsicóticos/administração & dosagem , Autofagia/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Sobrevivência Celular/efeitos dos fármacos , Desipramina/farmacologia , Desipramina/uso terapêutico , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Feminino , Flupentixol/farmacologia , Flupentixol/uso terapêutico , Flufenazina/farmacologia , Flufenazina/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HCT116 , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Concentração Inibidora 50 , Lipossomos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Células MCF-7 , Melanoma/genética , Camundongos , Nortriptilina/farmacologia , Nortriptilina/uso terapêutico , Perfenazina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingomielina Fosfodiesterase/genética , Proteína X Associada a bcl-2/metabolismo
20.
Oncol Rep ; 38(2): 1029-1034, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28627696

RESUMO

Antitumor effects of antidepressants have been reported in many cancer cell lines. However, anti-proliferative effects of desipramine, a tricyclic antidepressant, in hepatocellular carcinoma are currently unknown. In this study, we examined the effects of desipramine in human hepatoma Hep3B cells. To evaluate anti-proliferative effects of desipramine in Hep3B cells, we determined cell viability, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), mitogen-activated protein kinase (MAPK) activity, and intracellular Ca2+ levels after desipramine treatment. Desipramine reduced cell viability, increased ROS production, and decreased MMP activity in Hep3B cells. In addition, desipramine activated MAPKs (ERK 1/2, JNK, and p38) and increased intracellular Ca2+ levels. Pro-apoptotic effects of desipramine were abolished after MAPK inhibitors (PD98059, SB203580, and SP600125) or N-acetyl-L-cysteine (NAC), as a ROS scavenger, treatments. These findings suggest that desipramine shows anti-proliferative effects in Hep3B cells mediated by promotion of apoptosis, activation of MAPK signaling, and increase in intracellular Ca2+ levels.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Desipramina/farmacologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA