Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.285
Filtrar
1.
Dis Model Mech ; 17(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39206868

RESUMO

The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.


Assuntos
Desoxirribonucleotídeos , Instabilidade Genômica , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Desoxirribonucleotídeos/metabolismo , Animais
2.
Yeast ; 41(8): 513-524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961653

RESUMO

Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners. AdoMet is a key product of methionine metabolism and the major methyl donor for methylation events of proteins, RNAs, small molecules, and lipids. The methyl cycle is interrelated to the folate cycle which is involved in de novo synthesis of purine and pyrimidine deoxyribonucleotides (dATP, dTTP, dCTP, and dGTP). AdoMet also plays a role in polyamine production, essential for cell growth and used in detoxification of reactive oxygen species (ROS) and maintenance of the redox status in cells. This is also impacted by the methyl cycle's role in production of glutathione, another ROS scavenger and cellular protectant. We show here that sam2∆/sam2∆ cells, previously characterized with lower levels of AdoMet and higher genome instability, have a higher level of each dNTP (except dTTP), contributing to a higher overall dNTP pool level when compared to wildtype. Unchecked, these increased levels can lead to multiple types of DNA damage which could account for the genome instability increases in these cells.


Assuntos
S-Adenosilmetionina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Instabilidade Genômica , Desoxirribonucleotídeos/metabolismo , Nucleotídeos/metabolismo , Metionina/metabolismo
3.
Toxicol Mech Methods ; 34(4): 423-443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38133498

RESUMO

Torsional stress in double-stranded DNA enables and regulates facets of chromosomal metabolism, replication, and transcription and requires regulatory enzymatic systems including topoisomerases and histone methyltransferases. As such, this machinery may be subject to deleterious effects from reactive mutagens, including ones from carcinogenic polycyclic aromatic hydrocarbon (PAH) adduct formation with DNA. Supercoiled plasmid DNA was investigated for its torsional responses to adducts formed in vitro from PAH benzylic carbocation reactive intermediates created spontaneously by release of leaving groups. PAH sulfate esters were found to (1) unwind DNA in a concentration dependent manner, and (2) provide maximum unwinding in a pattern consistent with known carcinogenicities of the parent PAHs, that is, 6-methylbenzo[a]pyrene > 7,12-methylbenz[a]anthracene > 3-methylcholanthrene > 9-methylanthracene > 7-methylbenz[a]anthracene > 1-methylpyrene. Supercoil unwinding was demonstrated to be dependent on the presence of sulfate or chloride leaving groups such that reactive carbocations were generated in situ by hydrolysis. In silico modeling of intercalative complex topology showed PAH benzylic carbocation reactive functional groups in alignment with target nucleophiles on guanine bases in a 5'-dCdG-3' pocket in agreement with known formation of nucleotide adducts. Inhibitory or modulatory effects on PAH-induced supercoil unwinding were seen with ascorbic acid and an experimental antineoplastic agent Antineoplaston A10 in agreement with their known anticarcinogenic properties. In summary, the reactive PAH intermediates studied here undoubtedly participate in well-known mutational mechanisms such as frameshifts and apurinic site generation. However, they are also capable of random disruption of chromosomal supercoiling in a manner consistent with the known carcinogenicities of the parent compounds, and this mechanism may represent an additional detrimental motif worthy of further study for a more complete understanding of chemical carcinogenicity.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , DNA/metabolismo , Antracenos , Sulfatos , Desoxirribonucleotídeos , Adutos de DNA
4.
Aging (Albany NY) ; 14(19): 7890-7905, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36202136

RESUMO

Ribonucleotide reductase (RNR) small subunit M2 (RRM2) levels are known to regulate the activity of RNR, a rate-limiting enzyme in the synthesis of deoxyribonucleotide triphosphates (dNTPs) and essential for both DNA replication and repair. The high expression of RRM2 enhances the proliferation of cancer cells, thereby implicating its role as an anti-cancer agent. However, little research has been performed on its role in the prognosis of different types of cancers. This pan-cancer study aimed to evaluate the effect of high expression of RRM2 the tumor prognosis based on clinical information collected from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We found RRM2 gene was highly expressed in 30 types of cancers. And we performed a pan-cancer analysis of the genetic alteration status and methylation of RRM2. Results indicated that RRM2 existed hypermethylation, associated with m6A, m1A, and m5C related genes. Subsequently, we explored the microRNAs (miRNA), long non-coding RNAs (lncRNA), and the transcription factors responsible for the high expression of RRM2 in cancer cells. Results indicated that has-miR-125b-5p and has-miR-30a-5p regulated the expression of RRM2 along with transcription factors, such as CBFB, E2F1, and FOXM. Besides, we established the competing endogenous RNA (ceRNA) diagram of lncRNAs-miRNAs-circular RNAs (circRNA) involved in the regulation of RRM2 expression. Meanwhile, our study demonstrated that high-RRM2 levels correlated with patients' worse prognosis survival and immunotherapy effects through the consensus clustering and risk scores analysis. Finally, we found RRM2 regulated the resistance of immune checkpoint inhibitors through the PI3K-AKT single pathways. Collectively, our findings elucidated that high expression of RRM2 correlates with prognosis and tumor immunotherapy in pan-cancer. Moreover, these findings may provide insights for further investigation of the RRM2 gene as a biomarker in predicting immunotherapy's response and therapeutic target.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , RNA Longo não Codificante/genética , RNA Circular , Biologia Computacional , Inibidores de Checkpoint Imunológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Prognóstico , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Fatores de Transcrição/metabolismo , Desoxirribonucleotídeos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
5.
Bioorg Med Chem ; 72: 116972, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057217

RESUMO

The artificial nucleobase 1,3-diaza-2-oxophenoxazine (tCO) and its derivative G-clamp strongly bind to guanine and, when incorporated into double-stranded DNA, significantly increase the stability of the latter. As the phenoxazine skeleton is a constituent of major pharmaceuticals, we hypothesized that oligonucleotides (ONs) containing phenoxazine bases would induce property changes related to intracellular uptake and migration in tissues. In this study, we designed and synthesized a novel G-clamp-linker antisense oligonucleotide (ASO) in which a G-clamp base with a flexible linker was introduced into the 5'-end of an ASO targeting mouse long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (mMALAT1). Compared to unconjugated ASO, the G-clamp-linker ASO induced significantly more effective knockdown of mMALAT1 in mouse skeletal muscle. The ASOs conjugated with 2'-deoxyribonucleotide(s) bearing a tCO nucleobase at the 5'-end exhibited a similar knockdown effect in skeletal muscle. Thus, it may be possible to improve therapeutic effects against skeletal muscle diseases, such as muscular dystrophy, by using ONs with incorporated phenoxazine nucleobases.


Assuntos
Oligonucleotídeos , RNA Longo não Codificante , Animais , DNA , Desoxirribonucleotídeos , Guanina , Camundongos , Oligonucleotídeos/farmacologia , Oligonucleotídeos Antissenso/genética , Oxazinas , Preparações Farmacêuticas
6.
Biochemistry ; 61(18): 1966-1973, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044776

RESUMO

Remdesivir is an adenosine analogue that has a cyano substitution in the C1' position of the ribosyl moiety and a modified base structure to stabilize the linkage of the base to the C1' atom with its strong electron-withdrawing cyano group. Within the replication-transcription complex (RTC) of SARS-CoV-2, the RNA-dependent RNA polymerase nsp12 selects remdesivir monophosphate (RMP) over adenosine monophosphate (AMP) for nucleotide incorporation but noticeably slows primer extension after the added RMP of the RNA duplex product is translocated by three base pairs. Cryo-EM structures have been determined for the RTC with RMP at the nucleotide-insertion (i) site or at the i + 1, i + 2, or i + 3 sites after product translocation to provide a structural basis for a delayed-inhibition mechanism by remdesivir. In this study, we applied molecular dynamics (MD) simulations to extend the resolution of structures to the measurable maximum that is intrinsically limited by MD properties of these complexes. Our MD simulations provide (i) a structural basis for nucleotide selectivity of the incoming substrates of remdesivir triphosphate over adenosine triphosphate and of ribonucleotide over deoxyribonucleotide, (ii) new detailed information on hydrogen atoms involved in H-bonding interactions between the enzyme and remdesivir, and (iii) direct information on the catalytically active complex that is not easily captured by experimental methods. Our improved resolution of interatomic interactions at the nucleotide-binding pocket between remedesivir and the polymerase could help to design a new class of anti-SARS-CoV-2 inhibitors.


Assuntos
Trifosfato de Adenosina , Antivirais , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Alanina/química , Antivirais/química , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus , Desoxirribonucleotídeos , Hidrogênio , Nucleotídeos , RNA Viral/genética , Ribonucleotídeos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
7.
Mol Ther ; 30(10): 3284-3299, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35765243

RESUMO

Existing evidence indicates that gut fungal dysbiosis might play a key role in the pathogenesis of colorectal cancer (CRC). We sought to explore whether reversing the fungal dysbiosis by terbinafine, an approved antifungal drug, might inhibit the development of CRC. A population-based study from Sweden identified a total of 185 patients who received terbinafine after their CRC diagnosis and found that they had a decreased risk of death (hazard ratio = 0.50) and metastasis (hazard ratio = 0.44) compared with patients without terbinafine administration. In multiple mouse models of CRC, administration of terbinafine decreased the fungal load, the fungus-induced myeloid-derived suppressor cell (MDSC) expansion, and the tumor burden. Fecal microbiota transplantation from mice without terbinafine treatment reversed MDSC infiltration and partially restored tumor proliferation. Mechanistically, terbinafine directly impaired tumor cell proliferation by reducing the ratio of nicotinamide adenine dinucleotide phosphate (NADP+) to reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), suppressing the activity of glucose-6-phosphate dehydrogenase (G6PD), resulting in nucleotide synthesis disruption, deoxyribonucleotide (dNTP) starvation, and cell-cycle arrest. Collectively, terbinafine can inhibit CRC by reversing fungal dysbiosis, suppressing tumor cell proliferation, inhibiting fungus-induced MDSC infiltration, and restoring antitumor immune response.


Assuntos
Neoplasias Colorretais , Terbinafina , Animais , Antifúngicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Desoxirribonucleotídeos , Disbiose , Glucosefosfato Desidrogenase , Camundongos , NADP , Terbinafina/farmacologia
8.
Nucleic Acids Res ; 50(D1): D1508-D1514, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34643700

RESUMO

Stimulated by the growing interest in the role of dNTP pools in physiological and malignant processes, we established dNTPpoolDB, the database that offers access to quantitative data on dNTP pools from a wide range of species, experimental and developmental conditions (https://dntppool.org/). The database includes measured absolute or relative cellular levels of the four canonical building blocks of DNA and of exotic dNTPs, as well. In addition to the measured quantity, dNTPpoolDB contains ample information on sample source, dNTP quantitation methods and experimental conditions including any treatments and genetic manipulations. Functions such as the advanced search offering multiple choices from custom-built controlled vocabularies in 15 categories in parallel, the pairwise comparison of any chosen pools, and control-treatment correlations provide users with the possibility to quickly recognize and graphically analyse changes in the dNTP pools in function of a chosen parameter. Unbalanced dNTP pools, as well as the balanced accumulation or depletion of all four dNTPs result in genomic instability. Accordingly, key roles of dNTP pool homeostasis have been demonstrated in cancer progression, development, ageing and viral infections among others. dNTPpoolDB is designated to promote research in these fields and fills a longstanding gap in genome metabolism research.


Assuntos
Bases de Dados Genéticas , Desoxirribonucleotídeos/classificação , Instabilidade Genômica/genética , Neoplasias/genética , Replicação do DNA/genética , Curadoria de Dados , Desoxirribonucleotídeos/genética , Humanos , Neoplasias/classificação , Neoplasias/patologia
9.
ACS Chem Biol ; 17(12): 3331-3340, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34751552

RESUMO

Many small molecule natural products are decorated with sugar moieties that are essential for their biological activity. A considerable number of natural product glycosides and their derivatives are clinically important therapeutics. Anthracyclines like daunorubicin and doxorubicin are examples of valuable glycosylated natural products used in medicine as potent anticancer agents. The sugar moiety, l-daunosamine (a highly modified deoxyhexose), plays a key role in the bioactivity of these molecules as evidenced by semisynthetic anthracycline derivatives such as epirubicin, wherein alteration in the configuration of a single stereocenter of the sugar unit generates a chemotherapeutic drug with lower cardiotoxicity. The nucleotide activated sugar donor that provides the l-daunosamine group for attachment to the natural product scaffold in the biosynthesis of these anthracyclines is dTDP-l-daunosamine. In an in vitro system, we have reconstituted the enzymes in the daunorubicin/doxorubicin pathway involved in the biosynthesis of dTDP-l-daunosamine. Through the study of the enzymatic steps in this reconstituted pathway, we have gained several insights into the assembly of this precursor including the identification of a major bottleneck and competing reactions. We carried out kinetic analysis of the aminotransferase that catalyzes a limiting step of the pathway. Our in vitro reconstituted pathway also provided a platform to test the combinatorial enzymatic synthesis of other dTDP-activated deoxyhexoses as potential tools for "glycodiversification" of natural products. To this end, we replaced the stereospecific ketoreductase that acts in the last step of dTDP-l-daunosamine biosynthesis with an enzyme from a heterologous pathway with opposite stereospecificity and found that it is active in the in vitro pathway, demonstrating the potential for the enzymatic synthesis of nucleotide-activated sugars with regio- and stereospecific tailoring.


Assuntos
Produtos Biológicos , Policetídeos , Antraciclinas/metabolismo , Glicosilação , Vias Biossintéticas , Cinética , Daunorrubicina , Antibióticos Antineoplásicos , Doxorrubicina , Carboidratos , Desoxirribonucleotídeos , Nucleotídeos/metabolismo , Açúcares
10.
Nucleic Acids Res ; 50(3): e18, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34850106

RESUMO

Information about the cellular concentrations of deoxyribonucleoside triphosphates (dNTPs) is instrumental for mechanistic studies of DNA replication and for understanding diseases caused by defects in dNTP metabolism. The dNTPs are measured by methods based on either HPLC or DNA polymerization. An advantage with the HPLC-based techniques is that the parallel analysis of ribonucleoside triphosphates (rNTPs) can serve as an internal quality control of nucleotide integrity and extraction efficiency. We have developed a Freon-free trichloroacetic acid-based method to extract cellular nucleotides and an isocratic reverse phase HPLC-based technique that is able to separate dNTPs, rNTPs and ADP in a single run. The ability to measure the ADP levels improves the control of nucleotide integrity, and the use of an isocratic elution overcomes the shifting baseline problems in previously developed gradient-based reversed phase protocols for simultaneously measuring dNTPs and rNTPs. An optional DNA-polymerase-dependent step is used for confirmation that the dNTP peaks do not overlap with other components of the extracts, further increasing the reliability of the analysis. The method is compatible with a wide range of biological samples and has a sensitivity better than other UV-based HPLC protocols, closely matching that of mass spectrometry-based detection.


Assuntos
Cromatografia Líquida de Alta Pressão , Desoxirribonucleotídeos , Ribonucleotídeos/análise , Difosfato de Adenosina , Cromatografia Líquida de Alta Pressão/métodos , DNA , Desoxirribonucleotídeos/análise , Reprodutibilidade dos Testes
11.
ACS Chem Biol ; 16(9): 1680-1691, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34477366

RESUMO

While alarmone nucleotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNuNpp analogues starting from 3'-azido-3'-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppGNpp as a molecular tool, we show that (i) as an HD substrate mimic, ppGNpp competes with ppGpp to inhibit the enzymatic activity of human MESH1 Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppGNpp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and RelA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppGNpp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas de Bactérias/metabolismo , Ligases/metabolismo , Nucleotídeos de Adenina/síntese química , Sítio Alostérico , Bacillus subtilis , Desoxirribonucleotídeos , Escherichia coli , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Pirofosfatases/metabolismo
12.
Sci Rep ; 11(1): 13474, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188151

RESUMO

Deoxyribonucleotide biosynthesis from ribonucleotides supports the growth of active cancer cells by producing building blocks for DNA. Although ribonucleotide reductase (RNR) is known to catalyze the rate-limiting step of de novo deoxyribonucleotide triphosphate (dNTP) synthesis, the biological function of the RNR large subunit (RRM1) in small-cell lung carcinoma (SCLC) remains unclear. In this study, we established siRNA-transfected SCLC cell lines to investigate the anticancer effect of silencing RRM1 gene expression. We found that RRM1 is required for the full growth of SCLC cells both in vitro and in vivo. In particular, the deletion of RRM1 induced a DNA damage response in SCLC cells and decreased the number of cells with S phase cell cycle arrest. We also elucidated the overall changes in the metabolic profile of SCLC cells caused by RRM1 deletion. Together, our findings reveal a relationship between the deoxyribonucleotide biosynthesis axis and key metabolic changes in SCLC, which may indicate a possible link between tumor growth and the regulation of deoxyribonucleotide metabolism in SCLC.


Assuntos
Proliferação de Células , Desoxirribonucleotídeos/biossíntese , Neoplasias Pulmonares/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Dano ao DNA , Desoxirribonucleotídeos/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia
13.
Sci Rep ; 11(1): 11991, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099824

RESUMO

L-Rhamnose is an important monosaccharide both as nutrient source and as building block in prokaryotic glycoproteins and glycolipids. Generation of those composite molecules requires activated precursors being provided e. g. in form of nucleotide sugars such as dTDP-ß-L-rhamnose (dTDP-L-Rha). dTDP-L-Rha is synthesized in a conserved 4-step reaction which is canonically catalyzed by the enzymes RmlABCD. An intact pathway is especially important for the fitness of pseudomonads, as dTDP-L-Rha is essential for the activation of the polyproline specific translation elongation factor EF-P in these bacteria. Within the scope of this study, we investigated the dTDP-L-Rha-biosynthesis route of Pseudomonas putida KT2440 with a focus on the last two steps. Bioinformatic analysis in combination with a screening approach revealed that epimerization of dTDP-4-keto-6-deoxy-D-glucose to dTDP-4-keto-6-deoxy-L-mannose is catalyzed by the two paralogous proteins PP_1782 (RmlC1) and PP_0265 (RmlC2), whereas the reduction to the final product is solely mediated by PP_1784 (RmlD). Thus, we also exclude the distinct RmlD homolog PP_0500 and the genetically linked nucleoside diphosphate-sugar epimerase PP_0501 to be involved in dTDP-L-Rha formation, other than suggested by certain databases. Together our analysis contributes to the molecular understanding how this important nucleotide-sugar is synthesized in pseudomonads.


Assuntos
Carboidratos Epimerases/metabolismo , Desoxiglucose/análogos & derivados , Escherichia coli/enzimologia , Pseudomonas putida/metabolismo , Carboidratos Epimerases/genética , Catálise , Bases de Dados Factuais , Desoxiglucose/metabolismo , Desoxirribonucleotídeos/metabolismo , Biblioteca Gênica , Açúcares de Nucleosídeo Difosfato/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Nucleotídeos de Timina/metabolismo
14.
Biochemistry ; 60(21): 1682-1698, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33988981

RESUMO

SAMHD1 is a fundamental regulator of cellular dNTPs that catalyzes their hydrolysis into 2'-deoxynucleoside and triphosphate, restricting the replication of viruses, including HIV-1, in CD4+ myeloid lineage and resting T-cells. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome (AGS) and certain cancers. More recently, SAMHD1 has been linked to anticancer drug resistance and the suppression of the interferon response to cytosolic nucleic acids after DNA damage. Here, we probe dNTP hydrolysis and inhibition of SAMHD1 using the Rp and Sp diastereomers of dNTPαS nucleotides. Our biochemical and enzymological data show that the α-phosphorothioate substitution in Sp-dNTPαS but not Rp-dNTPαS diastereomers prevents Mg2+ ion coordination at both the allosteric and catalytic sites, rendering SAMHD1 unable to form stable, catalytically active homotetramers or hydrolyze substrate dNTPs at the catalytic site. Furthermore, we find that Sp-dNTPαS diastereomers competitively inhibit dNTP hydrolysis, while Rp-dNTPαS nucleotides stabilize tetramerization and are hydrolyzed with similar kinetic parameters to cognate dNTPs. For the first time, we present a cocrystal structure of SAMHD1 with a substrate, Rp-dGTPαS, in which an Fe-Mg-bridging water species is poised for nucleophilic attack on the Pα. We conclude that it is the incompatibility of Mg2+, a hard Lewis acid, and the α-phosphorothioate thiol, a soft Lewis base, that prevents the Sp-dNTPαS nucleotides coordinating in a catalytically productive conformation. On the basis of these data, we present a model for SAMHD1 stereospecific hydrolysis of Rp-dNTPαS nucleotides and for a mode of competitive inhibition by Sp-dNTPαS nucleotides that competes with formation of the enzyme-substrate complex.


Assuntos
Desoxirribonucleotídeos/química , Proteína 1 com Domínio SAM e Domínio HD/antagonistas & inibidores , Proteína 1 com Domínio SAM e Domínio HD/química , Regulação Alostérica , Catálise , Domínio Catalítico , Cristalografia por Raios X/métodos , Nucleotídeos de Desoxiguanina/química , Desoxirribonucleotídeos/metabolismo , Humanos , Hidrólise , Cinética , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/química , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral/fisiologia
15.
Nucleic Acids Res ; 49(5): 2598-2608, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33591315

RESUMO

Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteína 1 com Domínio SAM e Domínio HD/fisiologia , Proteína 9 Associada à CRISPR/metabolismo , Quebra Cromossômica , Desoxirribonucleotídeos/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo
16.
Biochemistry ; 60(1): 1-5, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356161

RESUMO

A recently described DNA polymerase ribozyme, obtained by in vitro evolution, provides the opportunity to investigate mechanistic features of RNA catalysis using methods that previously had only been applied to DNA polymerase proteins. Insight can be gained into the transition state of the DNA polymerization reaction by studying the behavior of various ß,γ-bridging substituted methylene (CXY; X, Y = H, halo, methyl) or imido (NH) dNTP analogues that differ with regard to the pKa4 of the bisphosphonate or imidodiphosphate leaving group. The apparent rate constant (kpol) of the polymerase ribozyme was determined for analogues of dGTP and dCTP that span a broad range of acidities for the leaving group, ranging from 7.8 for the CF2-bisphosphonate to 11.6 for the CHCH3-bisphosphonate. A Brønsted plot of log(kpol) versus pKa4 of the leaving group demonstrates linear free energy relationships (LFERs) for dihalo-, monohalo-, and non-halogen-substituted analogues of the dNTPs, with negative slopes, as has been observed for DNA polymerase proteins. The unsubstituted dNTPs have a faster catalytic rate than would be predicted from consideration of the linear free energy relationship alone, presumably due to a relatively more favorable interaction of the ß,γ-bridging oxygen within the active site. Although the DNA polymerase ribozyme is considerably slower than DNA polymerase proteins, it exhibits a similar LFER fingerprint, suggesting mechanistic commonality pertaining to the buildup of negative charge in the transition state, despite the very different chemical compositions of the two catalysts.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , Desoxirribonucleotídeos/química , Polifosfatos/química , RNA Catalítico/metabolismo , Humanos , Cinética , Polimerização , RNA Catalítico/química
17.
Nucleosides Nucleotides Nucleic Acids ; 39(10-12): 1369-1378, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32727257

RESUMO

HL60 myeloid leukemia cells are extensively used as a differentiation model. We investigated a variant of HL60 which is resistant to differentiation induction (HL60-R) by standard differentiation inducers such as retinoic acid and dimethylsulfoxide (DMSO). To find an explanation for this resistance, we examined nucleotide (NTP) and deoxynucleotide (dNTP) pools in HL60-R and its parent cell line, sensitive to differentiation, HL60-S. We also explored whether these differences led to a difference in sensitivity to various antimetabolites. Drug sensitivity was measured with the tetrazolium (MTT) assay, while nucleotides were measured with anion-exchange HPLC. HL60-R cells were between 2- and 5-fold resistant to the antimetabolites 5-fluorouracil, Brequinar, hydroxyurea and N-(phosphonacetyl)-L-aspartate (PALA), but more sensitive to aza-2'-deoxycytidine (DAC), cytarabine and thymidine (5- to 10-fold). The NTP pools in both HL60 variants showed a normal pattern with ATP being the highest (2530-2876 pmol/106 cells) and CTP being lowest. However, UTP pools were 2-fold higher in the HL60-S cells (p < .01), while CTP and GTP pools were 30% higher (p < .01) compared to HL60-R cells. For the dNTP pools, larger differences were observed, with dATP (50 pmol/106 cells) being highest in HL60-R cells, but dATP was 4-fold lower in HL60-S cells. In HL-60-R, the triple combination retinoic acid, DMSO and DAC increased all NTPs almost 2-fold in contrast to HL60-S. Uridine increased UTP (1.4-fold), CTP (2-fold) and dCTP (1.4.-fold) pools in both cell lines, but thymidine increased only dTTP pools (4- to 7-fold), with a depletion of dCTP. PALA decreased UTP and CTP in both cell lines, but increased ATP (only in HL60-R). Hydroxyurea decreased dNTP especially in HL60-S cells. In conclusion, the pronounced differences in NTP and dNTP pools between HL60-S and HL60-R possibly play a role in the induction of differentiation and drug sensitivity.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Desoxirribonucleotídeos/farmacologia , Pirimidinas/metabolismo , Ribonucleotídeos/farmacologia , Células HL-60 , Humanos
18.
Nucleic Acids Res ; 48(15): e87, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32573728

RESUMO

Deoxyribonucleoside triphosphates (dNTPs) are vital for the biosynthesis and repair of DNA. Their cellular concentration peaks during the S phase of the cell cycle. In non-proliferating cells, dNTP concentrations are low, making their reliable quantification from tissue samples of heterogeneous cellular composition challenging. Partly because of this, the current knowledge related to the regulation of and disturbances in cellular dNTP concentrations derive mostly from cell culture experiments with little corroboration at the tissue or organismal level. Here, we fill the methodological gap by presenting a simple non-radioactive microplate assay for the quantification of dNTPs with a minimum requirement of 4-12 mg of biopsy material. In contrast to published assays, this assay is based on long synthetic single-stranded DNA templates (50-200 nucleotides), an inhibitor-resistant high-fidelity DNA polymerase, and the double-stranded-DNA-binding EvaGreen dye. The assay quantified reliably less than 50 fmol of each of the four dNTPs and discriminated well against ribonucleotides. Additionally, thermostable RNAse HII-mediated nicking of the reaction products and a subsequent shift in their melting temperature allowed near-complete elimination of the interfering ribonucleotide signal, if present. Importantly, the assay allowed measurement of minute dNTP concentrations in mouse liver, heart and skeletal muscle.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Desoxirribonucleotídeos/isolamento & purificação , Oligonucleotídeos/genética , Animais , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/química , Desoxirribonucleotídeos/genética , Camundongos , Inibidores da Síntese de Ácido Nucleico/química , Oligonucleotídeos/síntese química , Ribonuclease H/genética
19.
EMBO J ; 39(15): e102931, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32511795

RESUMO

Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, regulates the levels of cellular dNTPs through their hydrolysis. SAMHD1 protects cells from invading viruses that depend on dNTPs to replicate and is frequently mutated in cancers and Aicardi-Goutières syndrome, a hereditary autoimmune encephalopathy. We discovered that SAMHD1 localizes at the immunoglobulin (Ig) switch region, and serves as a novel DNA repair regulator of Ig class switch recombination (CSR). Depletion of SAMHD1 impaired not only CSR but also IgH/c-Myc translocation. Consistently, we could inhibit these two processes by elevating the cellular nucleotide pool. A high frequency of nucleotide insertion at the break-point junctions is a notable feature in SAMHD1 deficiency during activation-induced cytidine deaminase-mediated genomic instability. Interestingly, CSR induced by staggered but not blunt, double-stranded DNA breaks was impaired by SAMHD1 depletion, which was accompanied by enhanced nucleotide insertions at recombination junctions. We propose that SAMHD1-mediated dNTP balance regulates dNTP-sensitive DNA end-processing enzyme and promotes CSR and aberrant genomic rearrangements by suppressing the insertional DNA repair pathway.


Assuntos
Reparo do DNA , Desoxirribonucleotídeos/metabolismo , Switching de Imunoglobulina , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Linhagem Celular , Desoxirribonucleotídeos/genética , Humanos , Proteína 1 com Domínio SAM e Domínio HD/genética
20.
Chemistry ; 26(49): 11340-11344, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32511805

RESUMO

The effect of ionizing radiation on DNA constituents is a widely studied fundamental process using experimental and computational techniques. In particular, radiation effects on nucleobases are usually tackled by mass spectrometry in which the nucleobase is embedded in a water nanodroplet. Here, we present a multiscale theoretical study revealing the effects and the dynamics of water droplets towards neutral and ionized thymine. In particular, by using both hybrid quantum mechanics/molecular mechanics and full ab initio molecular dynamics, we reveal an unexpected proton transfer from thymine cation to a nearby water molecule. This leads to the formation of a neutral radical thymine and a Zundel structure, while the hydrated proton localizes at the interface between the deprotonated thymine and the water droplet. This observation opens entirely novel perspectives concerning the reactivity and further fragmentation of ionized nucleobases.


Assuntos
DNA/química , DNA/efeitos da radiação , Desoxirribonucleotídeos/química , Nanoestruturas/química , Prótons , Radiação Ionizante , Timina/química , Água/química , Cátions/química , Cátions/efeitos da radiação , Desoxirribonucleotídeos/efeitos da radiação , Nanoestruturas/efeitos da radiação , Timina/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA