Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 117(1): 198-210, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37019366

RESUMO

PURPOSE: Although surgical resection combined with neoadjuvant radiation therapy can reduce the local recurrence rate of rectal cancer, not all patients benefit from neoadjuvant radiation therapy. Therefore, screening for patients with rectal cancer who are sensitive or resistant to radiation therapy has great clinical significance. METHODS AND MATERIALS: Patients with rectal cancer were selected according to postoperative tumor regression grade, and tumor samples were taken for detection. Differential genes between radiation-resistant and radiation-sensitive tissues were screened and validated by Illumina Infinium MethylationEPIC BeadChip, proteomics, Agena MassARRAY methylation, reverse transcription quantitative real-time polymerase chain reaction, and immunohistochemistry. In vitro and in vivo functional experiments verified the role of DSTN. Protein coimmunoprecipitation, western blot, and immunofluorescence were used to investigate the mechanisms of DSTN-related radiation resistance. RESULTS: DSTN was found to be highly expressed (P < .05) and hypomethylated (P < .01) in rectal cancer tissues resistant to neoadjuvant radiation therapy. Follow-up data confirmed that patients with high expression of DSTN in neoadjuvant radiation therapy-resistant rectal cancer tissues had shorter disease-free survival (P < .05). DSTN expression increased after methyltransferase inhibitor inhibition of DNA methylation in colorectal cancer cells (P < .05). In vitro and in vivo experiments showed that knockdown of DSTN promoted the sensitivity of colorectal cancer cells to radiation therapy, and overexpression of DSTN promoted the resistance of colorectal cancer cells to radiation (P < .05). The Wnt/ß-catenin signaling pathway was activated in colorectal cancer cells overexpressing DSTN. ß-catenin was highly expressed in radiation therapy-resistant tissues, and there was a linear correlation between the expression of DSTN and ß-catenin (P < .0001). Further studies showed that DSTN can bind to ß-catenin and increase its stability. CONCLUSIONS: The degree of DNA methylation and the expression level of DSTN can be used as biomarkers to predict the sensitivity of neoadjuvant radiation therapy for rectal cancer. DSTN and ß-catenin are also expected to become a reference for the selection of neoadjuvant radiation therapy.


Assuntos
Destrina , Tolerância a Radiação , Neoplasias Retais , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Destrina/genética , Destrina/metabolismo , Metilação de DNA , Neoplasias Retais/genética , Neoplasias Retais/radioterapia , Neoplasias Retais/patologia , Via de Sinalização Wnt/genética
2.
Cell Mol Gastroenterol Hepatol ; 14(5): 1123-1145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35953024

RESUMO

BACKGROUND & AIMS: Glia maturation factor-ß (GMFB) is a bona fide member of the actin depolymerizing factor homology family. Recently, emerging evidence suggested its implication in liver diseases, but data on its role in liver remain limited. METHODS: Assessment of GMFB in liver histology, impact on liver regeneration and hepatocyte proliferation, and the underlying molecular pathways were conducted using mouse models with acute liver injury. RESULTS: GMFB is widely distributed in normal liver. Its expression increases within 24 hours after partial hepatectomy (PHx). Adult Gmfb knockout mice and wild-type littermates are similar in gross appearance, body weight, liver function, and histology. However, compared with wild-type control, Gmfb knockout mice post-PHx develop more serious liver damage and steatosis and have delayed liver regeneration; the dominant change in liver transcriptome at 24 hours after PHx is the significantly suppressed acute inflammation pathways; the top down-regulated gene sets relate to interleukin (IL)6/Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling. Another mouse model intoxicated with carbon tetrachloride replicated these findings. Furthermore, Gmfb knockout and wild-type groups have the similar numbers of Kupffer cells, but Gmfb knockout Kupffer cells once stimulated produce less IL6, tumor necrosis factor, and IL1ß. In hepatocytes treated with IL6, GMFB associates positively with cell proliferation and STAT3/cyclin D1 activation, but without any direct interaction with STAT3. In Gmfb knockout hepatocytes, cytoskeleton-related gene expression was changed significantly, with an abnormal-appearing morphology of actin networks. In hepatocyte modeling, actin-filament turnover, STAT3 activation, and metabolite excretion show a strong reliance on the status of actin-filament organization. CONCLUSIONS: GMFB plays a significant role in liver regeneration by promoting acute inflammatory response in Kupffer cells and by intracellularly coordinating the responsive hepatocyte proliferation.


Assuntos
Fator de Maturação da Glia , Regeneração Hepática , Animais , Camundongos , Actinas/metabolismo , Tetracloreto de Carbono , Ciclina D1/metabolismo , Destrina/metabolismo , Fator de Maturação da Glia/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Hepatopatias , Camundongos Knockout , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Front Cell Infect Microbiol ; 12: 952720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601306

RESUMO

Neospora caninum is a member of Apicomplexa Phylum and the causative agent of neosporosis, a disease responsible for abortions in cattle. Apicomplexan parasites have a limited set of actin-binding proteins conducting the regulation of the dynamics of nonconventional actin. The parasite actin-based motility is implicated in the parasite invasion process in the host cell. Once no commercial strategy for the neosporosis control is available, the interference in the parasite actin function may result in novel drug targets. Actin-depolymerization factor (ADF) is a member of the ADF/cofilin family, primarily known for its function in actin severing and depolymerization. ADF/cofilins are versatile proteins modulated by different mechanisms, including reduction and oxidation. In apicomplexan parasites, the mechanisms involved in the modulation of ADF function are barely explored and the effects of oxidation in the protein are unknown so far. In this study, we used the oxidants N-chlorotaurine (NCT) and H2O2 to investigate the susceptibility of the recombinant N. caninum ADF (NcADF) to oxidation. After exposing the protein to either NCT or H2O2, the dimerization status and cysteine residue oxidation were determined. Also, the interference of NcADF oxidation in the interaction with actin was assessed. The treatment of the recombinant protein with oxidants reversibly induced the production of dimers, indicating that disulfide bonds between NcADF cysteine residues were formed. In addition, the exposure of NcADF to NCT resulted in more efficient oxidation of the cysteine residues compared to H2O2. Finally, the oxidation of NcADF by NCT reduced the ability of actin-binding and altered the function of NcADF in actin polymerization. Altogether, our results clearly show that recombinant NcADF is sensitive to redox conditions, indicating that the function of this protein in cellular processes involving actin dynamics may be modulated by oxidation.


Assuntos
Actinas , Neospora , Gravidez , Feminino , Animais , Bovinos , Actinas/metabolismo , Destrina/genética , Destrina/química , Destrina/metabolismo , Neospora/genética , Cisteína/metabolismo , Peróxido de Hidrogênio , Fatores de Despolimerização de Actina/metabolismo , Oxirredução , Oxidantes
5.
Physiol Plant ; 173(3): 993-1007, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34265107

RESUMO

DNA-free genome editing involves the direct introduction of ribonucleoprotein (RNP) complexes into cells, but this strategy has rarely been successful in plants. In the present study, we describe a new technique for the introduction of RNPs into plant cells involving the generation of cavitation bubbles using a pulsed laser. The resulting shockwave achieves the efficient transfection of walled cells in tissue explants by creating transient membrane pores. RNP-containing cells were rapidly identified by fluorescence microscopy, followed by regeneration and the screening of mutant plants by high-resolution melt analysis. We used this technique in Nicotiana tabacum to target the endogenous phytoene desaturase (PDS) and actin depolymerizing factor (ADF) genes. Genome-edited plants were produced with an efficiency of 35.2% for PDS and 16.5% for ADF. Further we evaluated the physiological, cellular and molecular effects of ADF mutations in T2 mutant plants under drought and salinity stress. The results suggest that ADF acts as a key regulator of osmotic stress tolerance in plants.


Assuntos
Sistemas CRISPR-Cas , Nicotiana , Destrina , Mutagênese , Pressão Osmótica , Ribonucleoproteínas/genética , Nicotiana/genética , Nicotiana/metabolismo
6.
Dig Dis Sci ; 66(11): 3803-3812, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34085173

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory bowel disease. The TNF-α inhibitor thalidomide is reported to be effective for inducing remission in pediatric Crohn's disease (CD) and adults with refractory CD. The mechanisms underlying the immunomodulatory and anti-inflammatory properties of thalidomide are unclear. METHODS: Histological assessments were firstly performed in thalidomide treated UC patients. Then the effect of thalidomide in vivo was detected in DSS-induced murine colitis. The mechanism involving IRF5, and M1 macrophage polarization was investigated by using plasmid transfection, western blotting, and real-time PCR. Finally, AOM/DSS model was used to detect the role of thalidomide in colitis associated cancer. RESULTS: We first found that treatment with thalidomide could ameliorate colon inflammation for 8 weeks and promote mucosal healing in human UC. Moreover, treatment with thalidomide protected mice from dextran sodium sulfate (DSS)-induced acute colitis, with treated mice presenting with a higher body weight, lower histological score, and lower DAI. Concomitantly, in comparison with control mice, mice treated with thalidomide showed accelerated recovery following colitis after 10 days of thalidomide treatment. Mechanistically, we observed that thalidomide could increase epithelial cell self-renewal capacity and modulate M1/M2 polarization by decreasing M1 markers CD86 and CCR7 and increasing M2 protein signatures CD206 and Arg-1. Thalidomide controls M1 macrophage polarization by targeting the transcription factor IRF5. Finally, by using the classical AOM/DSS model, we found that thalidomide-treated mice presented with a lower incidence and growth of colitis-associated carcinoma (CAC) than negative control mice. CONCLUSIONS: In summary, thalidomide suppresses M1 polarization in the inflammatory microenvironment, which not only attenuates colonic inflammation to facilitate mucosal healing after DSS-induced injury but also represses the progression of CAC.


Assuntos
Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Fatores Reguladores de Interferon/metabolismo , Macrófagos/efeitos dos fármacos , Talidomida/farmacologia , Animais , Azoximetano , Western Blotting , Destrina , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores Reguladores de Interferon/genética , Masculino , Camundongos , Plasmídeos , Reação em Cadeia da Polimerase em Tempo Real , Células THP-1 , Transfecção
7.
Elife ; 102021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34169836

RESUMO

Melanoma cells have been shown to undergo fast amoeboid (leader bleb-based) migration, requiring a single large bleb for migration. In leader blebs, is a rapid flow of cortical actin that drives the cell forward. Using RNAi, we find that co-depleting cofilin-1 and actin depolymerizing factor (ADF) led to a large increase in cortical actin, suggesting that both proteins regulate cortical actin. Furthermore, severing factors can promote contractility through the regulation of actin architecture. However, RNAi of cofilin-1 but not ADF led to a significant decrease in cell stiffness. We found cofilin-1 to be enriched at leader bleb necks, whereas RNAi of cofilin-1 and ADF reduced bleb sizes and the frequency of motile cells. Strikingly, cells without cofilin-1 and ADF had blebs with abnormally long necks. Many of these blebs failed to retract and displayed slow actin turnover. Collectively, our data identifies cofilin-1 and ADF as actin remodeling factors required for fast amoeboid migration.


Assuntos
Actinas/metabolismo , Extensões da Superfície Celular/metabolismo , Cofilina 1/genética , Destrina/genética , Células A549 , Cofilina 1/metabolismo , Destrina/metabolismo , Humanos
8.
Genome Biol ; 22(1): 180, 2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120636

RESUMO

BACKGROUND: Canonical nonsense-mediated decay (NMD) is an important splicing-dependent process for mRNA surveillance in mammals. However, processed pseudogenes are not able to trigger NMD due to their lack of introns. It is largely unknown whether they have evolved other surveillance mechanisms. RESULTS: Here, we find that the RNAs of pseudogenes, especially processed pseudogenes, have dramatically higher m6A levels than their cognate protein-coding genes, associated with de novo m6A peaks and motifs in human cells. Furthermore, pseudogenes have rapidly accumulated m6A motifs during evolution. The m6A sites of pseudogenes are evolutionarily younger than neutral sites and their m6A levels are increasing, supporting the idea that m6A on the RNAs of pseudogenes is under positive selection. We then find that the m6A RNA modification of processed, rather than unprocessed, pseudogenes promotes cytosolic RNA degradation and attenuates interference with the RNAs of their cognate protein-coding genes. We experimentally validate the m6A RNA modification of two processed pseudogenes, DSTNP2 and NAP1L4P1, which promotes the RNA degradation of both pseudogenes and their cognate protein-coding genes DSTN and NAP1L4. In addition, the m6A of DSTNP2 regulation of DSTN is partially dependent on the miRNA miR-362-5p. CONCLUSIONS: Our discovery reveals a novel evolutionary role of m6A RNA modification in cleaning up the unnecessary processed pseudogene transcripts to attenuate their interference with the regulatory network of protein-coding genes.


Assuntos
Adenosina/análogos & derivados , Genoma Humano , Pseudogenes , Splicing de RNA , RNA Mensageiro/genética , Seleção Genética , Adenosina/genética , Adenosina/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Destrina/genética , Destrina/metabolismo , Células HEK293 , Projeto HapMap , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo
9.
Mol Cancer Res ; 18(12): 1789-1802, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32878967

RESUMO

Lung cancer, especially lung adenocarcinoma, is one of the most common neoplasms worldwide. However, the mechanisms underlying its initiation, development, and metastasis are still poorly understood. Destrin (DSTN) is a member of ADF/cofilin family. Its detailed biological function remains unknown, although it is reported that DSTN is involved in cytoskeleton remodeling and regulation of actin filament turnover. Recent evidence has shown that high expression of cofilin-1 is associated with invasion and poor prognosis of several types of human tumors, but the detailed mechanism is still entirely unclear, particularly in lung cancer tumorigenesis and malignancy. Here, we report that DSTN was highly expressed in a mouse lung cancer model induced by urethane and in clinical lung adenocarcinoma tissue samples. Its expression level was positively correlated with cancer development, as well as metastasis to the liver and lymph nodes. Consistently, it was directly associated with the poor prognosis of lung adenocarcinoma patients. Furthermore, we also found that DSTN promotes cell proliferation, invasion, and migration in vitro, and facilitates subcutaneous tumor formation and lung metastasis via intravenous injection in vivo. Mechanically, DSTN associates with and facilitates nuclear translocation of ß-catenin, which promotes epithelial-to-mesenchymal transition (EMT). Taken together, our results indicated that DSTN enhances lung cancer malignancy through facilitating ß-catenin nuclear translocation and inducing EMT. Combined with multivariate analyses, DSTN might potentially serve as a therapeutic target and an independent prognostic marker of lung adenocarcinoma. IMPLICATIONS: This finding indicates that DSTN facilitates ß-catenin nuclear translocation and promotes malignancy in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/patologia , Destrina/genética , Destrina/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/patologia , beta Catenina/metabolismo , Células A549 , Adenocarcinoma de Pulmão/induzido quimicamente , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Transplante de Neoplasias , Prognóstico , Análise de Sobrevida , Regulação para Cima , Uretana/efeitos adversos , Via de Sinalização Wnt
10.
Transl Neurodegener ; 9(1): 32, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746944

RESUMO

BACKGROUND: Diseases and disorders with a chronic neuroinflammatory component are often linked with changes in brain metabolism. Among neurodegenerative disorders, people living with human immunodeficiency virus (HIV) and Alzheimer's disease (AD) are particularly vulnerable to metabolic disturbances, but the mechanistic connections of inflammation, neurodegeneration and bioenergetic deficits in the central nervous system (CNS) are poorly defined. The particularly interesting new cysteine histidine-rich-protein (PINCH) is nearly undetectable in healthy mature neurons, but is robustly expressed in tauopathy-associated neurodegenerative diseases including HIV infection and AD. Although robust PINCH expression has been reported in neurons in the brains of patients with HIV and AD, the molecular mechanisms and cellular consequences of increased PINCH expression in CNS disease remain largely unknown. METHODS: We investigated the regulatory mechanisms responsible for PINCH protein-mediated changes in bioenergetics, mitochondrial subcellular localization and bioenergetic deficits in neurons exposed to physiological levels of TNFα or the HIV protein Tat. Changes in the PINCH-ILK-Parvin (PIP) complex association with cofilin and TESK1 were assessed to identify factors responsible for actin depolymerization and mitochondrial mislocalization. Lentiviral and pharmacological inhibition experiments were conducted to confirm PINCH specificity and to reinstate proper protein-protein complex communication. RESULTS: We identified MEF2A as the PINCH transcription factor in neuroinflammation and determined the biological consequences of increased PINCH in neurons. TNFα-mediated activation of MEF2A via increased cellular calcium induced PINCH, leading to disruption of the PIP ternary complex, cofilin activation by TESK1 inactivation, and actin depolymerization. The disruption of actin led to perinuclear mislocalization of mitochondria by destabilizing the kinesin-dependent mitochondrial transport machinery, resulting in impaired neuronal metabolism. Blocking TNFα-induced PINCH expression preserved mitochondrial localization and maintained metabolic functioning. CONCLUSIONS: This study reported for the first time the mechanistic and biological consequences of PINCH expression in CNS neurons in diseases with a chronic neuroinflammation component. Our findings point to the maintenance of PINCH at normal physiological levels as a potential new therapeutic target for neurodegenerative diseases with impaired metabolisms.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Destrina/metabolismo , Mediadores da Inflamação/metabolismo , Proteínas com Domínio LIM/biossíntese , Mitocôndrias/metabolismo , Neurônios/metabolismo , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Destrina/genética , Feto , Expressão Gênica , Humanos , Proteínas com Domínio LIM/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Mitocôndrias/patologia , Neurônios/patologia
11.
Health Phys ; 116(6): 749-759, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30913056

RESUMO

Gamma radiation causes cell injury and leads to an increased risk of cancer, so it is of practical significance to identify biomarkers for gamma radiation. We used proteomic analysis to identify differentially expressed proteins in liver tissues of C57BL/6J mice treated with gamma radiation from Cs for 360 d. We confirmed obvious pathological changes in mouse liver tissues after irradiation. Compared with the control group, 74 proteins showed a fold change of ≥1.5 in the irradiated groups. We selected 24 proteins for bioinformatics analysis and peptide mass fingerprinting and found that 20 of the identified proteins were meaningful. These proteins were associated with tumorigenesis, tumor suppression, catalysis, cell apoptosis, cytoskeleton, metabolism, gene transcription, T-cell response, and other pathways. We confirmed that both cofilin-1 and destrin were up regulated in the irradiated groups by western blot and real-time polymerase chain reaction. Our findings indicate that cofilin-1 and destrin are sensitive to gamma radiation and may be potential biomarkers for gamma radiation. Whether these proteins are involved in radiation-induced tumorigenesis requires further investigation.


Assuntos
Biomarcadores/metabolismo , Cofilina 1/metabolismo , Destrina/metabolismo , Fígado/metabolismo , Proteoma/análise , Animais , Biomarcadores/análise , Cofilina 1/genética , Destrina/genética , Raios gama , Fígado/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Cell Death Dis ; 10(2): 126, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755597

RESUMO

Factors mediating mobilization of osteoblastic stem and progenitor cells from their bone marrow niche to be recruited to bone formation sites during bone remodeling are poorly known. We have studied secreted factors present in the bone marrow microenvironment and identified KIAA1199 (also known as CEMIP, cell migration inducing hyaluronan binding protein) in human bone biopsies as highly expressed in osteoprogenitor reversal cells (Rv.C) recruited to the eroded surfaces (ES), which are the future bone formation sites. In vitro, KIAA1199 did not affect the proliferation of human osteoblastic stem cells (also known as human bone marrow skeletal or stromal stem cells, hMSCs); but it enhanced cell migration as determined by scratch assay and trans-well migration assay. KIAA1199 deficient hMSCs (KIAA1199down) exhibited significant changes in cell size, cell length, ratio of cell width to length and cell roundness, together with reduction of polymerization actin (F-actin) and changes in phos-CFL1 (cofflin1), phos-LIMK1 (LIM domain kinase 1) and DSTN (destrin), key factors regulating actin cytoskeletal dynamics and cell motility. Moreover, KIAA1199down hMSC exhibited impaired Wnt signaling in TCF-reporter assay and decreased expression of Wnt target genes and these effects were rescued by KIAA1199 treatment. Finally, KIAA1199 regulated the activation of P38 kinase and its associated changes in Wnt-signaling. Thus, KIAA1199 is a mobilizing factor that interacts with P38 and Wnt signaling, and induces changes in actin cytoskeleton, as a mechanism mediating recruitment of hMSC to bone formation sites.


Assuntos
Movimento Celular , Hialuronoglucosaminidase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proliferação de Células , Tamanho Celular , Cofilina 1/metabolismo , Destrina/metabolismo , Células HEK293 , Humanos , Hialuronoglucosaminidase/genética , Quinases Lim/metabolismo , Sistema de Sinalização das MAP Quinases , Transfecção , Via de Sinalização Wnt
13.
Int J Biol Sci ; 14(9): 1067-1080, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29989053

RESUMO

The characteristic of carcinoma is cell migration and invasion, which involve in strong actin dynamics. Regulations of actin dynamics have been implicated in cancer cell migration and tumor progression. WDR1 (WD-repeat domain 1) is a major cofactor of the actin depolymerizing factor (ADF)/cofilin, strongly accelerating ADF/cofilin-mediated actin disassembly. The role of WDR1 in non-small cell lung cancer (NSCLC) progression has been unknown. Here, we show that the expression levels of WDR1 are increased in human NSCLC tissues compared with adjacent non-tumor tissues, and high WDR1 level correlates with poor prognosis in NSCLC patients. Knockdown of WDR1 in NSCLC cells significantly inhibits cell migration, invasion, EMT process and tumor cell growth in vitro and in vivo. Otherwise, overexpression of WDR1 promotes NSCLC cell proliferation and migration. Mechanically, our data suggested WDR1 regulated tumor cells proliferation and migration might through actin cytoskeleton-mediated regulation of YAP, and we demonstrated that WDR1 contributes to NSCLC progression through ADF/cofilin-mediated actin disassembly. Our findings implicate that the ADF/cofilin-WDR1-actin axis as an activator of malignant phenotype that will be a promising therapeutic target in lung cancer.


Assuntos
Actinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Destrina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células A549 , Actinas/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Destrina/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Masculino , Camundongos , Camundongos Nus , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cell Death Dis ; 8(10): e3063, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28981113

RESUMO

Mitochondria form highly dynamic networks in which organelles constantly fuse and divide. The relevance of mitochondrial dynamics is evident from its implication in various human pathologies, including cancer or neurodegenerative, endocrine and cardiovascular diseases. Dynamin-related protein 1 (DRP1) is a key regulator of mitochondrial fission that oligomerizes at the mitochondrial outer membrane and hydrolyzes GTP to drive mitochondrial fragmentation. Previous studies demonstrated that DRP1 recruitment and mitochondrial fission is promoted by actin polymerization at the mitochondrial surface, controlled by the actin regulatory proteins inverted formin 2 (INF2) and Spire1C. These studies suggested the requirement of additional actin regulatory activities to control DRP1-mediated mitochondrial fission. Here we show that the actin-depolymerizing protein cofilin1, but not its close homolog actin-depolymerizing factor (ADF), is required to maintain mitochondrial morphology. Deletion of cofilin1 caused mitochondrial DRP1 accumulation and fragmentation, without altering mitochondrial function or other organelles' morphology. Mitochondrial morphology in cofilin1-deficient cells was restored upon (i) re-expression of wild-type cofilin1 or a constitutively active mutant, but not of an actin-binding-deficient mutant, (ii) pharmacological destabilization of actin filaments and (iii) genetic depletion of DRP1. Our work unraveled a novel function for cofilin1-dependent actin dynamics in mitochondrial fission, and identified cofilin1 as a negative regulator of mitochondrial DRP1 activity. We conclude that cofilin1 is required for local actin dynamics at mitochondria, where it may balance INF2/Spire1C-induced actin polymerization.


Assuntos
Actinas/genética , Cofilina 1/genética , Proteínas Quinases Associadas com Morte Celular/genética , Dinâmica Mitocondrial/genética , Citoesqueleto de Actina/genética , Actinas/metabolismo , Animais , Células Cultivadas , Destrina/genética , Fibroblastos , Forminas , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Mitocôndrias/genética , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Multimerização Proteica/genética
15.
Plant Cell Rep ; 36(11): 1775-1783, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28849385

RESUMO

KEY MESSAGE: Droplet digital PCR combined with the low copy ACT allele as endogenous reference gene, makes accurate and rapid estimation of gene copy number in Q208 A and Q240 A attainable. Sugarcane is an important cultivated crop with both high polyploidy and aneuploidy in its 10 Gb genome. Without a known copy number reference gene, it is difficult to accurately estimate the copy number of any gene of interest by PCR-based methods in sugarcane. Recently, a new technology, known as droplet digital PCR (ddPCR) has been developed which can measure the absolute amount of the target DNA in a given sample. In this study, we deduced the true copy number of three endogenous genes, actin depolymerizing factor (ADF), adenine phosphoribosyltransferase (APRT) and actin (ACT) in three Australian sugarcane varieties, using ddPCR by comparing the absolute amounts of the above genes with a transgene of known copy number. A single copy of the ACT allele was detected in Q208 A , two copies in Q240 A , but was absent in Q117. Copy number variation was also observed for both APRT and ADF, and ranged from 9 to 11 in the three tested varieties. Using this newly developed ddPCR method, transgene copy number was successfully determined in 19 transgenic Q208 A and Q240 A events using ACT as the reference endogenous gene. Our study demonstrates that ddPCR can be used for high-throughput genetic analysis and is a quick, accurate and reliable alternative method for gene copy number determination in sugarcane. This discovered ACT allele would be a suitable endogenous reference gene for future gene copy number variation and dosage studies of functional genes in Q208 A and Q240 A .


Assuntos
Variações do Número de Cópias de DNA/genética , Plantas Geneticamente Modificadas/genética , Saccharum/genética , Actinas/genética , Adenina Fosforribosiltransferase/genética , Destrina/genética , Dosagem de Genes/genética , Reação em Cadeia da Polimerase , Transgenes/genética
16.
Sci Rep ; 7: 45624, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358024

RESUMO

This study aimed to explore whether the downregulation of LIM kinase 1 (LIMK1)-actin depolymerization factor (ADF, also known as destrin)/cofilin by diallyl disulfide (DADS) inhibited the migration and invasion of colon cancer. Previous studies have shown that silencing LIMK1 could significantly enhance the inhibitory effect of DADS on colon cancer cell migration and invasion, suggesting that LIMK1 was a target molecule of DADS, which needed further confirmation. This study reported that LIMK1 and destrin were highly expressed in colon cancer and associated with poor prognosis of patients with colon cancer. Also, the expression of LIMK1 was positively correlated with the expression of destrin. The overexpression of LIMK1 significantly promoted colon cancer cell migration and invasion. DADS obviously inhibited migration and invasion by suppressing the phosphorylation of ADF/cofilin via downregulation of LIMK1 in colon cancer cells. Furthermore, DADS-induced suppression of cell proliferation was enhanced and antagonized by the knockdown and overexpression of LIMK1 in vitro and in vivo, respectively. Similar results were observed for DADS-induced changes in the expression of vimentin, CD34, Ki-67, and E-cadherin in xenografted tumors. These results indicated that LIMK1 was a potential target molecule for the inhibitory effect of DADS on colon cancer cell migration and invasion.


Assuntos
Compostos Alílicos/administração & dosagem , Movimento Celular , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Destrina/metabolismo , Dissulfetos/administração & dosagem , Regulação Neoplásica da Expressão Gênica , Quinases Lim/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação para Baixo , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosforilação
17.
Am J Pathol ; 186(4): 844-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878213

RESUMO

The actin cytoskeleton is a crucial regulator of the intestinal mucosal barrier, controlling the assembly and function of epithelial adherens and tight junctions (AJs and TJs). Junction-associated actin filaments are dynamic structures that undergo constant turnover. Members of the actin-depolymerizing factor (ADF) and cofilin protein family play key roles in actin dynamics by mediating filament severing and polymerization. We examined the roles of ADF and cofilin-1 in regulating the structure and functions of AJs and TJs in the intestinal epithelium. Knockdown of either ADF or cofilin-1 by RNA interference increased the paracellular permeability of human colonic epithelial cell monolayers to small ions. Additionally, cofilin-1, but not ADF, depletion increased epithelial permeability to large molecules. Loss of either ADF or cofilin-1 did not affect the steady-state morphology of AJs and TJs but attenuated de novo junctional assembly. The observed defects in AJ and TJ formation were accompanied by delayed assembly of the perijunctional filamentous actin belt. A total loss of ADF expression in mice did not result in a defective mucosal barrier or in spontaneous gut inflammation. However, ADF-null mice demonstrated increased intestinal permeability and exaggerated inflammation during dextran sodium sulfate-induced colitis. Our findings demonstrate novel roles for ADF and cofilin-1 in regulating the remodeling and permeability of epithelial junctions, as well as the role of ADF in limiting the severity of intestinal inflammation.


Assuntos
Cofilina 1/metabolismo , Destrina/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Citoesqueleto/metabolismo , Destrina/genética , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Permeabilidade
18.
Anticancer Res ; 35(10): 5277-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26408687

RESUMO

BACKGROUND: Tumor cell migration is a prerequisite for metastasis formation. The role of the actin-modulating protein, gelsolin, in metastasis is controversial, as previous studies have reported associations with both worse and better prognosis. MATERIALS AND METHODS: We analysed the association of gelsolin mRNA levels with metastasis-free survival in three cohorts (n=766) of patients with node-negative breast cancer. To determine its effect on migration, gelsolin expression was down-regulated as well as overexpressed in breast cancer cell lines. RESULTS: Higher gelsolin expression correlated with lower tumor stage and grade, and slower cell proliferation, and was associated with longer metastasis-free survival (hazard ratio (HR)=0.60, p<0.001) in patients with estrogen receptor-positive (ER(+)) erb-b2 receptor tyrosine kinase 2-negative (HER2(-)) tumors. Conversely, the opposite association was observed in those with ER(-)HER(-) tumors (HR=1.95, p=0.014). Down-regulation of gelsolin using siRNA in MCF-7 and MDA-MB-468 cells increased cell migration, whereas overexpression had the opposite effect. CONCLUSION: High gelsolin levels are associated with better prognosis in ER(+)HER2(-) breast cancer and a reduction in tumor cell migration.


Assuntos
Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Destrina/genética , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Destrina/metabolismo , Feminino , Humanos , Células MCF-7 , Gradação de Tumores , Estadiamento de Neoplasias , Análise de Sobrevida
19.
Stem Cell Res ; 15(2): 281-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26209815

RESUMO

Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes, but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study, we demonstrated that stabilizing actin filaments by inhibiting gene expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize polymerized actin filaments, increased hMSCs viability and OB differentiation. Conversely, Cytocholasin D, an inhibitor of actin polymerization, reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level, preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1 (LIMK1) decreased cell viability and impaired OB differentiation of hMSCs. Moreover, depolymerizing actin reduced FAK, p38 and JNK activation during OB differentiation of hMSCs, while polymerizing actin enhanced these signaling pathways. Our results demonstrate that the actin dynamic reassembly and Cofilin phosphorylation loop is involved in the control of hMSC proliferation and osteoblasts differentiation.


Assuntos
Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cofilina 1/antagonistas & inibidores , Cofilina 1/genética , Cofilina 1/metabolismo , Destrina/antagonistas & inibidores , Destrina/genética , Destrina/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Humanos , Quinases Lim/metabolismo , MAP Quinase Quinase 4/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Faloidina/toxicidade , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Nat Cell Biol ; 17(5): 592-604, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25915128

RESUMO

During mouse development, core planar cell polarity (PCP) proteins become polarized in the epidermal plane to guide angling/morphogenesis of hair follicles. How PCP is established is poorly understood. Here, we identify a key role for Wdr1 (also known as Aip1), an F-actin-binding protein that enhances cofilin/destrin-mediated F-actin disassembly. We show that cofilin and destrin function redundantly in developing epidermis, but their combined depletion perturbs cell adhesion, cytokinesis, apicobasal polarity and PCP. Although Wdr1 depletion accentuates single-loss-of-cofilin/destrin phenotypes, alone it resembles core PCP mutations. Seeking a mechanism, we find that Wdr1 and cofilin/destrin-mediated actomyosin remodelling are essential for generating or maintaining cortical tension within the developing epidermal sheet and driving the cell shape and planar orientation changes that accompany establishment of PCP in mammalian epidermis. Our findings suggest intriguing evolutionary parallels but mechanistic modifications to the distal wing hinge-mediated mechanical forces that drive cell shape change and orient PCP in the Drosophila wing disc.


Assuntos
Polaridade Celular , Forma Celular , Epiderme/metabolismo , Queratinócitos/metabolismo , Mecanotransdução Celular , Proteínas dos Microfilamentos/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actomiosina/metabolismo , Animais , Adesão Celular , Linhagem Celular , Citocinese , Citoesqueleto/metabolismo , Destrina/deficiência , Destrina/genética , Células Epidérmicas , Evolução Molecular , Genótipo , Terapia a Laser , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Microscopia de Vídeo , Fenótipo , Transporte Proteico , Interferência de RNA , Estresse Mecânico , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA