Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5075, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033245

RESUMO

Nickel-iron composites are efficient in catalyzing oxygen evolution. Here, we develop a microorganism corrosion approach to construct nickel-iron hydroxides. The anaerobic sulfate-reducing bacteria, using sulfate as the electron acceptor, play a significant role in the formation of iron sulfide decorated nickel-iron hydroxides, which exhibit excellent electrocatalytic performance for oxygen evolution. Experimental and theoretical investigations suggest that the synergistic effect between oxyhydroxides and sulfide species accounts for the high activity. This microorganism corrosion strategy not only provides efficient candidate electrocatalysts but also bridges traditional corrosion engineering and emerging electrochemical energy technologies.


Assuntos
Desulfotomaculum/metabolismo , Hidróxidos/metabolismo , Níquel/metabolismo , Oxigênio/metabolismo , Corrosão , Teoria da Densidade Funcional , Eletroquímica , Eletrodos , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
2.
Environ Microbiol ; 21(10): 3953-3964, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314939

RESUMO

Around the world, several dozen deep sedimentary aquifers are being used for storage of natural gas. Ad hoc studies of the microbial ecology of some of them have suggested that sulfate reducing and methanogenic microorganisms play a key role in how these aquifers' communities function. Here, we investigate the influence of gas storage on these two metabolic groups by using high-throughput sequencing and show the importance of sulfate-reducing Desulfotomaculum and a new monophyletic methanogenic group. Aquifer microbial diversity was significantly related to the geological level. The distance to the stored natural gas affects the ratio of sulfate-reducing Firmicutes to deltaproteobacteria. In only one aquifer, the methanogenic archaea dominate the sulfate-reducers. This aquifer was used to store town gas (containing at least 50% H2 ) around 50 years ago. The observed decrease of sulfates in this aquifer could be related to stimulation of subsurface sulfate-reducers. These results suggest that the composition of the microbial communities is impacted by decades old transient gas storage activity. The tremendous stability of these gas-impacted deep subsurface microbial ecosystems suggests that in situ biotic methanation projects in geological reservoirs may be sustainable over time.


Assuntos
Archaea/metabolismo , Deltaproteobacteria/metabolismo , Desulfotomaculum/metabolismo , Firmicutes/metabolismo , Sedimentos Geológicos/microbiologia , Gás Natural , Sedimentos Geológicos/química , Geologia , Água Subterrânea/microbiologia , Microbiota , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
3.
Microbiologyopen ; 8(3): e00647, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29877051

RESUMO

Recent studies have shown that interspecies electron transfer between chemoheterotrophic bacteria and methanogenic archaea can be mediated by electric currents flowing through conductive iron oxides, a process termed electric syntrophy. In this study, we conducted enrichment experiments with methanogenic microbial communities from rice paddy soil in the presence of ferrihydrite and/or sulfate to determine whether electric syntrophy could be enabled by biogenic iron sulfides. Although supplementation with either ferrihydrite or sulfate alone suppressed methanogenesis, supplementation with both ferrihydrite and sulfate enhanced methanogenesis. In the presence of sulfate, ferrihydrite was transformed into black precipitates consisting mainly of poorly crystalline iron sulfides. Microbial community analysis revealed that a methanogenic archaeon and iron- and sulfate-reducing bacteria (Methanosarcina, Geobacter, and Desulfotomaculum, respectively) predominated in the enrichment culture supplemented with both ferrihydrite and sulfate. Addition of an inhibitor specific for methanogenic archaea decreased the abundance of Geobacter, but not Desulfotomaculum, indicating that Geobacter acquired energy via syntrophic interaction with methanogenic archaea. Although electron acceptor compounds such as sulfate and iron oxides have been thought to suppress methanogenesis, this study revealed that coexistence of sulfate and iron oxide can promote methanogenesis by biomineralization of (semi)conductive iron sulfides that enable methanogenesis via electric syntrophy.


Assuntos
Desulfotomaculum/metabolismo , Compostos Ferrosos/metabolismo , Geobacter/metabolismo , Metano/metabolismo , Methanosarcina/metabolismo , Consórcios Microbianos , Interações Microbianas , Desulfotomaculum/crescimento & desenvolvimento , Geobacter/crescimento & desenvolvimento , Methanosarcina/crescimento & desenvolvimento , Minerais/metabolismo , Oryza/crescimento & desenvolvimento , Microbiologia da Água
4.
RNA Biol ; 15(4-5): 471-479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879865

RESUMO

In many organisms, the UGA stop codon is recoded to insert selenocysteine (Sec) into proteins. Sec incorporation in bacteria is directed by an mRNA element, known as the Sec-insertion sequence (SECIS), located downstream of the Sec codon. Unlike other aminoacyl-tRNAs, Sec-tRNASec is delivered to the ribosome by a dedicated elongation factor, SelB. We recently identified a series of tRNASec-like tRNA genes distributed across Bacteria that also encode a canonical tRNASec. These tRNAs contain sequence elements generally recognized by cysteinyl-tRNA synthetase (CysRS). While some of these tRNAs contain a UCA Sec anticodon, most have a GCA Cys anticodon. tRNASec with GCA anticodons are known to recode UGA codons. Here we investigate the clostridial Desulfotomaculum nigrificans tRNASec-like tRNACys, and show that this tRNA is acylated by CysRS, recognized by SelB, and capable of UGA recoding with Cys in Escherichia coli. We named this non-canonical group of tRNACys as 'tRNAReC' (Recoding with Cys). We performed a comprehensive survey of tRNAReC genes to establish their phylogenetic distribution, and found that, in a particular lineage of clostridial Pelotomaculum, the Cys identity elements of tRNAReC had mutated. This novel tRNA, which contains a UCA anticodon, is capable of Sec incorporation in E. coli, albeit with lower efficiency relative to Pelotomaculum tRNASec. We renamed this unusual tRNASec derived from tRNAReC as 'tRNAReU' (Recoding with Sec). Together, our results suggest that tRNAReC and tRNAReU may serve as safeguards in the production of selenoproteins and - to our knowledge - they provide the first example of programmed codon-anticodon mispairing in bacteria.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , Cisteína/metabolismo , Escherichia coli/genética , RNA de Transferência de Cisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Aminoacil-tRNA Sintetases/metabolismo , Anticódon/genética , Anticódon/metabolismo , Proteínas de Bactérias/metabolismo , Códon de Terminação/química , Códon de Terminação/metabolismo , Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Escherichia coli/metabolismo , Código Genético , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Peptococcaceae/genética , Peptococcaceae/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Cisteína/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Selenoproteínas/biossíntese
5.
PLoS One ; 11(1): e0146689, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800443

RESUMO

Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.


Assuntos
Ácido Acético/metabolismo , Desulfotomaculum/metabolismo , Compostos Férricos/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Consórcios Microbianos/fisiologia , Sulfatos/metabolismo , Sequência de Bases , Biodegradação Ambiental , Carbono/química , Carbonatos/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , Desulfotomaculum/genética , Elétrons , Metabolismo Energético/fisiologia , Compostos Ferrosos/metabolismo , Redes e Vias Metabólicas/fisiologia , Oxirredução , Fosfatos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Environ Sci Pollut Res Int ; 22(20): 16121-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26070736

RESUMO

Petrochemical wastewater often contains high concentrations of phenol and sulfate that must be properly treated to meet discharge standards. This study acclimated anaerobic-activated sludge to treat saline phenolic wastewater with sulfate reduction and clarified the diversity and degradation mechanism of the microbial community. The active sludge in an upflow anaerobic sludge blanket (UASB) reactor could remove 90 % of phenol and maintain the effluent concentration of SO4 (2-) below 400 mg/L. Cloning and sequencing showed that Clostridium spp. and Desulfotomaculum spp. were major phenol-degrading bacteria. Phenol was probably degraded through the carboxylation pathway and sulfate reduction catalyzed by adenosine-5'-phosphosulfate (APS) reductase and dissimilatory sulfite reductase (DSR). A real-time polymerase chain reaction (RT-PCR) showed that as phenol concentration increased, the quantities of 16S rRNA gene, dsrB, and mcrA in the sludge all decreased. The relative abundance of dsrB dropped to 12.46 %, while that of mcrA increased to 56.18 %. The change in the electron flow ratio suggested that the chemical oxygen demand (COD) was removed mainly by sulfate-reducing bacteria under a phenol concentration of 420 mg/L, whereas it was removed mainly by methanogens above 630 mg/L.


Assuntos
Consórcios Microbianos , Fenol/metabolismo , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Sulfatos/metabolismo , Reatores Biológicos/microbiologia , Clostridium/metabolismo , Desulfotomaculum/metabolismo , Elétrons , Oxidantes , Reação em Cadeia da Polimerase em Tempo Real , Eliminação de Resíduos Líquidos , Águas Residuárias
7.
Pol J Microbiol ; 56(3): 205-13, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18062655

RESUMO

Three independent 28 or 32-day stationary cultures of Desulfotomaculum acetoxidans DSM 771 strain were carried out under anoxic conditions in acetate or lactate-containing media. The acids were the sole carbon and energy sources in these media. During cultivation the turbidity (for calculation of cell division index) and hydrogen sulfide contents were determined in culture broth and reduced glutathione and protein concentrations were assayed in culture broth supernatant. In these three successive cultures, the bacterium initially grew much faster on lactate than on acetate. However, after two weeks of culture this difference disappeared and in fact the growth rate was higher on acetate than on lactate. The level of H2S formed (product of the dissimilatory pathway of sulfate reduction) demonstrated that this pathway was more effective when lactate was a carbon source and the average H2S concentration was from over 3-fold to about 9-fold greater in lactate than in acetate cultures. Also GSH (glutathione, product of the assimilatory sulfate reduction pathway) average level was about 2-fold higher in lactate-grown cultures. The high negative values of the correlation coefficients between GSH and O2 levels, especially during the first 4 days of cultivation, indicate that GSH is a very important antioxidizing extracellular agent of D. acetoxidans. The rapid increase in GSH level, preceding the release of H2S, indicates the metabolic priority of the assimilation pathway of sulfate reduction. For both carbon sources the highest coefficient of correlation was found between protein and H2S levels. These results suggest that hydrogen sulfide is bound by proteins (which contain cysteinyl residues) secreted by D. acetoxidans cells. Indicated way of H2S bounding could result in its accumulation. This coefficient of correlation increased gradually in the successive cultures. The ratio of H2S concentration to protein concentration increased gradually in the successive cultures, too.


Assuntos
Ácido Acético/metabolismo , Antioxidantes/metabolismo , Meios de Cultura/química , Desulfotomaculum/crescimento & desenvolvimento , Desulfotomaculum/metabolismo , Ácido Láctico/metabolismo , Ácido Acético/química , Proliferação de Células , Glutationa , Sulfeto de Hidrogênio , Ácido Láctico/química , Fatores de Tempo
8.
Appl Microbiol Biotechnol ; 76(2): 339-47, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17583809

RESUMO

Desulfotomaculum carboxydivorans, recently isolated from a full-scale anaerobic wastewater treatment facility, is a sulfate reducer capable of hydrogenogenic growth on carbon monoxide (CO). In the presence of sulfate, the hydrogen formed is used for sulfate reduction. The organism grows rapidly at 200 kPa CO, pH 7.0, and 55 degrees C, with a generation time of 100 min, producing nearly equimolar amounts of H(2) and CO(2) from CO and H(2)O. The high specific CO conversion rates, exceeding 0.8 mol CO (g protein)(-1) h(-1), makes this bacterium an interesting candidate for a biological alternative of the currently employed chemical catalytic water-gas shift reaction to purify synthesis gas (contains mainly H(2), CO, and CO(2)). Furthermore, as D. carboxydivorans is capable of hydrogenotrophic sulfate reduction at partial CO pressures exceeding 100 kPa, it is also a good candidate for biodesulfurization processes using synthesis gas as electron donor at elevated temperatures, e.g., in biological flue gas desulfurization. Although high maximal specific sulfate reduction rates (32 mmol (g protein)(-1) h(-1)) can be obtained, its sulfide tolerance is rather low and pH dependent, i.e., maximally 9 and 5 mM sulfide at pH 7.2 and pH 6.5, respectively.


Assuntos
Monóxido de Carbono/metabolismo , Desulfotomaculum/metabolismo , Hidrogênio/metabolismo , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Biotecnologia/instrumentação , Biotecnologia/métodos , Gases , Cinética
9.
Folia Biol (Krakow) ; 53(1-2): 79-81, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16212113

RESUMO

Sulfate-reducing bacteria (e.g. Desulfotomaculum acetoxidans) exist in animal intestine. These bacteria are able to bind heavy metals (e.g. cadmium or lead). Comparative investigations on the composition of cellular walls of Desulfotomaculum acetoxidans--depending on the initial Fe2+ supplement in the medium (7.5, 57.5 and 507.5 M) were performed. Iron(II) was cumulated as FeS or as pyrite (FeS2). However, if the initial amount of iron was higher, its majority (46% 85%) was transported onto the membrane. It was determined that the siderophore found in Desulfotomaculum acetoxidans was deferroxamine as in animals.


Assuntos
Desulfotomaculum/metabolismo , Intestinos/microbiologia , Ferro/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA