Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Environ Toxicol ; 39(5): 3188-3197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38356236

RESUMO

Yin chai hu (Radix Stellariae) is a root medicine that is frequently used in Chinese traditional medicine to treat fever and malnutrition. In modern medicine, it has been discovered to have anti-inflammatory, anti-allergic, and anticancer properties. In a previous study, we were able to extract lipids from Stellariae Radix using supercritical CO2 extraction (SRE), and these sterol lipids accounted for up to 88.29% of the extract. However, the impact of SRE on the development of atopic dermatitis (AD) has not yet been investigated. This study investigates the inhibitory effects of SRE on AD development using a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. Treatment with SRE significantly reduced the dermatitis score and histopathological changes compared with the DNCB group. The study found that treatment with SRE resulted in a decrease of pro-inflammatory cytokines TNF-α, CXC-10, IL-12, and IL-1ß in skin lesions. Additionally, immunohistochemical analysis revealed that SRE effectively suppressed M1 macrophage infiltration into the AD lesion. Furthermore, the anti-inflammatory effect of SRE was evaluated in LPS + INF-γ induced bone marrow-derived macrophages (BMDMs) M1 polarization, SRE inhibited the production of TNF-α, CXC-10, IL-12, and IL-1ß and decreased the expression of NLRP3. Additionally, SRE was found to increase p-AMPKT172, but had no effect on total AMPK expression, after administration of the AMPK inhibitor Compound C, the inhibitory effect of SRE on M1 macrophages was partially reversed. The results indicate that SRE has an inhibitory effect on AD, making it a potential therapeutic agent for this atopic disorder.


Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Dinitroclorobenzeno/uso terapêutico , Proteínas Quinases Ativadas por AMP , Dióxido de Carbono/toxicidade , Dióxido de Carbono/uso terapêutico , Fator de Necrose Tumoral alfa , Citocinas/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/uso terapêutico , Interleucina-12/toxicidade , Interleucina-12/uso terapêutico , Lipídeos , Camundongos Endogâmicos BALB C , Pele
2.
Sci Total Environ ; 837: 155858, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561921

RESUMO

Plant growth, photosynthesis, and hydraulics are affected by heavy metals but also by elevated atmospheric CO2 concentration (e[CO2]) and nitrogen (N) deposition. However, few studies have investigated the response of woody species to the combined effects of these three factors. We conducted an open-top chamber experiment with two common subtropical trees (Acacia auriculiformis and Syzygium hainanense) to explore the effects of cadmium (Cd)-contamination, e[CO2], and N addition on plant eco-physiological traits. We found that the growth of A. auriculiformis was insensitive to the treatments, indicating that it is a Cd-tolerant and useful afforestation species. For S. hainanense, in contrast, e[CO2] and/or N addition offset the detrimental effects of Cd addition by greatly increasing plant biomass and reducing the leaf Cd concentration. We then found that e[CO2] and/or N addition offset the detrimental Cd effects on S. hainanense biomass by increasing its photosynthetic rate, its N concentration, and the efficiency of its stem water transport network. These offsetting effects of e[CO2] and/or N addition, however, came at the expense of reduced xylem hydraulic safety resulting from wider vessels, thinner vessel walls, and therefore weaker vessel reinforcement. Our study suggests that, given future increases in global CO2 concentration and N deposition, the growth of Cd-tolerant tree species (like A. auriculiformis) will be probably stable while the growth of Cd-sensitive tree species (like S. hainanense) might be enhanced despite reduced hydraulic safety. This also suggests that both species will be useful for afforestation of Cd-contaminated soils given future global change scenarios.


Assuntos
Cádmio , Árvores , Cádmio/toxicidade , Dióxido de Carbono/toxicidade , Nitrogênio , Fotossíntese , Folhas de Planta
3.
J Exp Biol ; 225(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35005768

RESUMO

Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2 and 1 kPa CO2 (2000-10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate for the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid-base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ∼1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ∼40 min, thus restoring haemoglobin-O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ∼2 h, which is one of the fastest acid-base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3- in blood, which increased from ∼4 to ∼22 mmol l-1. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid-base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3- and pH, probably because reduced environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid-base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.


Assuntos
Bass , Animais , Bass/fisiologia , Dióxido de Carbono/toxicidade , Ecossistema , Brânquias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Mar Pollut Bull ; 173(Pt B): 113145, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34800761

RESUMO

Here, we examined the 48-h acute toxicity of cadmium (Cd) in the marine copepod Tigriopus japonicus under two pCO2 concentrations (400 and 1000 µatm). Subsequently, T. japonicus was interactively exposed to different pCO2 (400, 1000 µatm) and Cd (control, 500 µg/L) treatments for 48 h. After exposure, biochemical and physiological responses were analyzed for the copepods. The results showed that the 48-h LC50 values of Cd were calculated as 12.03 mg/L and 9.08 mg/L in T. japonicus, respectively, under 400 and 1000 µatm pCO2 conditions. Cd exposure significantly promoted Cd exclusion/glycolysis, detoxification/stress response, and oxidative stress/apoptosis while it depressed that of antioxidant capacity. Intriguingly, CO2-driven acidification enhanced Cd bioaccumulation and its toxicity in T. japonicus. Overall, our study provides a mechanistic understanding about the interaction between seawater acidification and Cd pollution in marine copepods.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Dióxido de Carbono/toxicidade , Concentração de Íons de Hidrogênio , Água do Mar , Poluentes Químicos da Água/toxicidade
5.
Chem Res Toxicol ; 34(3): 723-732, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33629582

RESUMO

Tobacco smoke is a complex mixture of chemicals, many of which are toxic and carcinogenic. Hazard assessments of tobacco smoke exposure have predominantly focused on either single chemical exposures or the more complex mixtures of tobacco smoke or its fractions. There are fewer studies exploring interactions between specific tobacco smoke chemicals. Aldehydes such as formaldehyde and acetaldehyde were hypothesized to enhance the carcinogenic properties of the human carcinogen, 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) through a variety of mechanisms. This hypothesis was tested in the established NNK-induced A/J mouse lung tumor model. A/J mice were exposed to NNK (intraperitoneal injection, 0, 2.5, or 7.5 µmol in saline) in the presence or absence of acetaldehyde (0 or 360 ppmv) or formaldehyde (0 or 17 ppmv) for 3 h in a nose-only inhalation chamber, and lung tumors were counted 16 weeks later. Neither aldehyde by itself induced lung tumors. However, mice receiving both NNK and acetaldehyde or formaldehyde had more adenomas with dysplasia or progression than those receiving only NNK, suggesting that aldehydes may increase the severity of NNK-induced lung adenomas. The aldehyde coexposure did not affect the levels of NNK-derived DNA adduct levels. Similar studies tested the ability of a 3 h nose-only carbon dioxide (0, 5, 10, or 15%) coexposure to influence lung adenoma formation by NNK. While carbon dioxide alone was not carcinogenic, it significantly increased the number of NNK-derived lung adenomas without affecting NNK-derived DNA damage. These studies indicate that the chemicals in tobacco smoke work together to form a potent lung carcinogenic mixture.


Assuntos
Aldeídos/toxicidade , Dióxido de Carbono/toxicidade , Carcinógenos/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Nitrosaminas/toxicidade , Administração por Inalação , Aldeídos/administração & dosagem , Aldeídos/química , Animais , Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/química , Carcinógenos/administração & dosagem , Carcinógenos/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Neoplasias Pulmonares/metabolismo , Camundongos , Estrutura Molecular , Nitrosaminas/administração & dosagem , Nicotiana/química
6.
Invest Ophthalmol Vis Sci ; 62(1): 2, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393968

RESUMO

Purpose: To test the effect of different sodium channel blockers on the electrical activity of corneal nociceptors in intact and surgically injured corneas. Methods: In anesthetized guinea pigs, a 4-mm diameter corneal flap was performed in one eye at a midstromal depth using a custom-made microkeratome. At different times after surgery (3 hours to 15 days), the electrical activity of corneal nociceptor fibers was recorded from ciliary nerve filaments in the superfused eye in vitro. Mechanical threshold was measured using calibrated von Frey hairs; chemical stimulation was performed applying 30-second CO2 gas pulses. The characteristics of the spontaneous and stimulus-evoked activity of corneal nociceptors recorded from intact and lesioned corneas, before and after treatment with the sodium channel blockers lidocaine, carbamazepine, and amitriptyline, were compared. Results: No spontaneous or stimulus-evoked impulse activity was detected inside the flap at any of the studied time points. However, both were recorded from mechanonociceptor and polymodal nociceptors fibers in the surrounding corneal tissue, being significantly higher (sensitization) 24 to 48 hours after surgery. In these fibers, none of the tested drugs affected mechanical threshold, but they significantly reduced the CO2 response of polymodal nociceptors of intact and injured corneas. Likewise, they diminished significantly the transient increase in spontaneous and stimulus-evoked activity of sensitized polymodal nociceptors. Conclusions: Na+ channel blockers decrease the excitability of intact and sensitized corneal nociceptor fibers, thus acting as potential tools to attenuate their abnormal activity, which underlies the spontaneous pain, hyperalgesia, and allodynia often accompanying surgical corneal lesions, as occurs after photorefractive surgery.


Assuntos
Córnea/inervação , Regeneração Nervosa/fisiologia , Nociceptores/metabolismo , Nervo Oftálmico/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Amitriptilina/farmacologia , Animais , Carbamazepina/farmacologia , Dióxido de Carbono/toxicidade , Córnea/cirurgia , Substância Própria/cirurgia , Eletrofisiologia , Feminino , Cobaias , Lidocaína/farmacologia , Masculino , Fibras Nervosas/fisiologia , Retalhos Cirúrgicos
7.
Artigo em Inglês | MEDLINE | ID: mdl-32781296

RESUMO

Acidification in the marine environment has become a global issue that creates serious threats to marine organisms. In the present study, we evaluated the effect of CO2 driven acidification on the shrimp Litopenaeus vannamei post-larvae (PL). L. vannamei PL were exposed to six different CO2 driven acidified seawater, such as 8.2 (control), pH 7.8 (IPCC-predicted ocean pH by 2100), 7.6, 7.4, 7.2 and 7.0 with corresponding pCO2 level of 380.66, 557.53, 878.55, 1355.48, 2129.46, and 3312.12 µatm for seven weeks. At the end of the acidification experiment, results revealed that the survival, growth, feed index, biochemical constituents, chitin, minerals (Na, K, and Ca), and hemocyte populations of shrimps were found to be significantly decreased in CO2 driven acidified seawater which indicates the negative impacts of acidified seawater on these parameters in L. vannamei. Further, the level of antioxidants, lipid peroxidation, and metabolic enzymes were significantly higher in the muscle of shrimps exposed to acidified seawater suggests that the L. vannamei under oxidative stress and metabolic stress. Among the various acidified seawater tested, pH 7.6 to 7.0 produced a significantly adverse effect on shrimps. Hence, the present study concluded that the elevated level of seawater acidification can produce harmful effects on the biology and physiology of the commercially important shrimp L. vannamei PL.


Assuntos
Dióxido de Carbono/toxicidade , Concentração de Íons de Hidrogênio , Penaeidae , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Quitina/metabolismo , Estresse Oxidativo , Penaeidae/enzimologia , Penaeidae/crescimento & desenvolvimento , Alimentos Marinhos
8.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R116-R128, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146556

RESUMO

The evidence is mounting for a role for abnormal signaling of the stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its canonical receptor PAC1 in the pathogenesis of sudden infant death syndrome. In this study, we investigated whether the PACAP receptors PAC1 or VPAC2 are involved in the neonatal cardiorespiratory response to hypercapnic stress. We used head-out plethysmography and surface ECG electrodes to assess cardiorespiratory responses to an 8% hypercapnic challenge in unanesthetized and spontaneously breathing 4-day-old PAC1 or VPAC2 knockout (KO) and wild-type mouse pups. We demonstrate that compared with WTs, breathing frequency (RR) and minute ventilation ([Formula: see text]) in PAC1 KO pups were significantly blunted in response to hypercapnia. Although heart rate was unaltered in PAC1 KO pups during hypercapnia, heart rate recovery posthypercapnia was impaired. In contrast, cardiorespiratory impairments in VPAC2 KO pups were limited to only an overall higher tidal volume (VT), independent of treatment. These findings suggest that PACAP signaling through the PAC1 receptor plays a more important role than signaling through the VPAC2 receptor in neonatal respiratory responses to hypercapnia. Thus deficits in PACAP signaling primarily via PAC1 may contribute to the inability of infants to mount an appropriate protective response to homeostatic stressors in childhood disorders such as SIDS.


Assuntos
Dióxido de Carbono/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Hipercapnia/induzido quimicamente , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Apneia , Peso Corporal , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Hipercapnia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Temperatura
9.
J Hazard Mater ; 401: 123849, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113748

RESUMO

So far, the phytotoxic hazards of nano-sized mercuric oxide (HgO-NPs) are not investigated. Herein, the phytotoxicity of fully characterized HgO-NPs (100 mg/kg soil), prepared by coprecipitation method, on maize grown under ambient (aCO2, 410 ppm) and elevated CO2 (eCO2, 620 ppm) was investigated. Regardless of CO2 concentration, HgO-NPs treatment increased Hg levels in maize organs. HgO-NPs induced severe oxidative stress in aCO2 grown plants as indicated by reduced growth and photosynthesis and accumulation of reactive oxygen species (ROS), through photorespiration and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activities, and lipid and protein oxidation products. Although HgO-NPs increased molecular (polyphenols, flavonoids, tocopherols) and enzymatic (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione peroxidase) antioxidants in shoots of aCO2 plants, but this failed to fight the eruption of increased ROS. On contrary, eCO2 treatment mitigated the HgO-NPs impact by promoting photosynthesis and reducing the Hg-induced ROS production. Moreover, eCO2 promoted ROS detoxification via molecular antioxidants overproduction, enhanced superoxide dismutase, catalase and peroxidases activities, and modulation of reduced ascorbate/oxidized ascorbate and reduced glutathione/oxidized glutathione homeostasis. The combined HgO-NPs + eCO2 treatment also enhanced the glutathione-S-transferase activity. This study suggests that HgO-NPs cause severe phytotoxic hazards and this effect will be less detrimental under future CO2 climate.


Assuntos
Nanopartículas , Zea mays , Antioxidantes , Ascorbato Peroxidases/metabolismo , Dióxido de Carbono/toxicidade , Catalase/metabolismo , Compostos de Mercúrio , Nanopartículas/toxicidade , Estresse Oxidativo , Óxidos , Superóxido Dismutase/metabolismo , Zea mays/metabolismo
10.
Sci Total Environ ; 745: 140600, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32717595

RESUMO

We collected samples for oxidative stress and antioxidants in a high CO2 mesocosm experiment for two weeks, focussing on two common crustacean copepods Calanus finmarchicus and Temora longicornis. The samples were collected during a field experiment campaign studying responses of plankton communities to future ocean acidification (OA), off the Norwegian coast south of Bergen. The main results showed that there were species-specific differences between Temora and Calanus, especially in antioxidant defences (glutathione system) and oxidative stress (lipid peroxidation and reduced:oxidised glutathione ratio). Regular monitoring of chlorophyll a and jellyfish abundances taking place during the field campaign revealed that both chl a and predators may have affected the eco-physiological response. Antioxidant and oxidative stress levels are known to respond sensitively to both the food quality and quantity and the predator pressure, apart from environmental (i.e., abiotic) changes. Calanus was more robust towards OA, perhaps due to its high tolerance to a wide range of vertical physical-chemical conditions. Both top-down and bottom-up factors seem to play a role for the outcome of copepod responses to future ocean acidification.


Assuntos
Copépodes , Animais , Antioxidantes , Dióxido de Carbono/toxicidade , Clorofila A , Concentração de Íons de Hidrogênio , Noruega , Estresse Oxidativo , Água do Mar
11.
Bull Environ Contam Toxicol ; 105(2): 237-243, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32651610

RESUMO

We assessed the effects of carbon dioxide (CO2) and decabromodiphenyl ether (BDE-209, 0, 3 and 30 mg/kg) on rice (Oryza sativa L. cv. Wuyunjing) in field free-air CO2 enrichment system. Rice at elevated (580 ppm) CO2 had increased net photosynthetic rate, intercellular CO2 concentration, shoot biomass, yield and phosphorus content in grains. However, there were no significant changes in such parameters observed on rice at elevated CO2 combined with BDE-209 (3 and 30 mg/kg). Elevated CO2 alone had no significant effects on sugar or starch content in rice grains, whereas its combination with BDE-209 (3 mg/kg) significantly decreased grain sugar and starch content. In conclusion, rice reared in soil polluted by BDE-209 under elevated CO2 modulates the effects in grain feature.


Assuntos
Dióxido de Carbono/toxicidade , Éteres Difenil Halogenados/toxicidade , Oryza/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biomassa , Dióxido de Carbono/análise , China , Mudança Climática , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Éteres Difenil Halogenados/análise , Oryza/química , Fotossíntese/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise
12.
J Hazard Mater ; 396: 122749, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32361134

RESUMO

Cadmium (Cd) pollution is a widespread threat to marine life, and ongoing ocean acidification (OA) is predicted to impact bio-toxicity of Cd compounds. However, the cascading effects of changed Cd toxicity to marine primary producers are not well characterized. Here, we studied the impact of OA on Cd toxicity responses in a globally important diatom Phaeodactylum tricornutum under both ambient and elevated pCO2 conditions. We found that increased pCO2 alleviated the impact of additive Cd toxicity on P. tricornutum not only under controlled indoor experiments but also in outdoor mesocosm experiments that reflect more natural growth conditions. Transcriptome analysis suggested that genes involved in Cd efflux and phytochelatin production were up-regulated and genes involved in Cd influx were down-regulated in long-term selected lineages under elevated pCO2. We further found a significant reduction of Cd transfer across trophic level, when the scallop Argopecten irradians was fed with Cd-exposed P. tricornutum previously cultured under elevated pCO2. Our results indicate that after long-term selection of P. tricornutum exposed to future OA conditions (i.e. elevated pCO2), the diatom alters its Cd detoxification strategy, which could have broader impacts on the bio-geochemical cycle of Cd in the marine ecosystem.


Assuntos
Diatomáceas , Cádmio/toxicidade , Dióxido de Carbono/toxicidade , Diatomáceas/genética , Ecossistema , Concentração de Íons de Hidrogênio , Água do Mar
13.
J Fish Biol ; 96(6): 1508-1511, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166741

RESUMO

The purpose of this study was to test the effects of high CO2 exposure on wound healing rates in an elasmobranch fish (Urobatis jamaicensis). Small dermal injuries (8 mm biopsy) closed by 22 days post wounding with a decrease in haematocrit. High CO2 exposure (ΔpH = 1.4) did not influence healing rate or haematocrit. Combined, these data provide evidence that minimally invasive scientific procedures have short-term impacts on elasmobranch fishes even during exposure to a chronic stressor. Therefore, wound healing rates may not be strongly impacted by ocean acidification (ΔpH = 0.4).


Assuntos
Dióxido de Carbono/toxicidade , Água do Mar/química , Rajidae/fisiologia , Cicatrização/efeitos dos fármacos , Animais , Concentração de Íons de Hidrogênio
14.
Environ Sci Pollut Res Int ; 26(16): 16195-16209, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972683

RESUMO

CO2, SO2, and NO are the main components of flue gas and can cause serious environmental issues. Utilization of these compounds in oleaginous microalgae cultivation not only could reduce air pollution but could also produce feedstock for biodiesel production. However, the continuous input of SO2 and NO inhibits microalgal growth. In this study, the toxicity of simulated flue gas (15% CO2, 0.03% SO2, and 0.03% NO, balanced with N2) was reduced through automatic pH feedback control. Integrated lipid production and CO2 fixation with the removal of SO2 and NO was achieved. Using this technique, a lipid content of 38.0% DW was achieved in Chlorella pyrenoidosa XQ-20044. The lipid composition and fatty acid profile indicated that lipid production by C. pyrenoidosa XQ-20044 cultured with flue gas is suitable as a biodiesel feedstock; 81.2% of the total lipids were neutral lipids and 99.5% of the total fatty acids were C16 and C18. The ratio of saturated fatty acids to monounsaturated fatty acids in the microalgal lipid content was 74.5%. In addition, CO2, SO2, and NO from the simulated flue gas were fixed and converted to biomass and lipids with a removal efficiency of 95.9%, 100%, and 84.2%, respectively. Furthermore, the utilization efficiencies of CO2, SO2, and NO were equal to or very close to their removal efficiencies. These results provide a novel strategy for combining biodiesel production with biofixation of flue gas.


Assuntos
Biotecnologia/métodos , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Lipídeos/biossíntese , Poluentes Atmosféricos/química , Poluentes Atmosféricos/isolamento & purificação , Poluentes Atmosféricos/toxicidade , Biocombustíveis , Biomassa , Biotecnologia/instrumentação , Dióxido de Carbono/isolamento & purificação , Dióxido de Carbono/toxicidade , Chlorella/crescimento & desenvolvimento , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Óxido Nítrico/isolamento & purificação , Óxido Nítrico/toxicidade , Dióxido de Enxofre/isolamento & purificação , Dióxido de Enxofre/toxicidade
15.
Sci Rep ; 8(1): 13508, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202079

RESUMO

Hypercapnia, the elevation of CO2 in blood and tissues, commonly occurs in severe acute and chronic respiratory diseases, and is associated with increased risk of mortality. Recent studies have shown that hypercapnia adversely affects innate immunity, host defense, lung edema clearance and cell proliferation. Airway epithelial dysfunction is a feature of advanced lung disease, but the effect of hypercapnia on airway epithelium is unknown. Thus, in the current study we examined the effect of normoxic hypercapnia (20% CO2 for 24 h) vs normocapnia (5% CO2), on global gene expression in differentiated normal human airway epithelial cells. Gene expression was assessed on Affymetrix microarrays, and subjected to gene ontology analysis for biological process and cluster-network representation. We found that hypercapnia downregulated the expression of 183 genes and upregulated 126. Among these, major gene clusters linked to immune responses and nucleosome assembly were largely downregulated, while lipid metabolism genes were largely upregulated. The overwhelming majority of these genes were not previously known to be regulated by CO2. These changes in gene expression indicate the potential for hypercapnia to impact bronchial epithelial cell function in ways that may contribute to poor clinical outcomes in patients with severe acute or advanced chronic lung diseases.


Assuntos
Dióxido de Carbono/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Hipercapnia/complicações , Pneumopatias/patologia , Mucosa Respiratória/efeitos dos fármacos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/patologia , Dióxido de Carbono/sangue , Diferenciação Celular , Células Cultivadas , Doença Crônica , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Hipercapnia/sangue , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Pneumopatias/etiologia , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Sarcoglicanopatias
16.
Environ Sci Pollut Res Int ; 25(33): 33361-33369, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30259325

RESUMO

Cadmium is one of the major heavy metal pollutions in coastal waters, and it is well known that cadmium at trace concentration is toxic to macroalgae. Change in marine carbonate system and ocean acidification caused by elevated atmospheric CO2 also alter physiological characteristics of macroalgae. However, less research is focused on the combined impacts of elevated CO2 and cadmium pollution on the growth and physiology in macroalgae. In this study, the maricultivated macroalga Pyropia haitanensis (Rhodophyta) was cultured at three levels of Cd2+ (control, 4 and 12 mg L-1) and two concentrations of CO2, the ambient CO2 (AC, 410 ppm) and elevated CO2 (HC, 1100 ppm). The results showed that 12 mg L-1 Cd2+ significantly suppressed the relative growth rate and superoxide dismutase activity in AC-grown P. haitanensis, while such inhibition extents by Cd2+ were alleviated in HC-grown algae. Cd2+ had no effects on efficiency of electron transport (α) and maximum electron transport rate (ETRmax), but α was increased by elevated CO2. Cd2+ dramatically suppressed the maximum net photosynthesis oxygen evolution rate (NPRm) and the minimum saturation irradiance (Ik) when the algal thalli were grown at AC, while such suppression of NPRm by Cd2+ was much decreased when the thalli were grown at HC. Collectively, our results suggested that elevated CO2 would alleviate Cd2+ toxicity on P. haitanensis.


Assuntos
Ar/análise , Cádmio/toxicidade , Dióxido de Carbono/toxicidade , Rodófitas/efeitos dos fármacos , Alga Marinha/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Cádmio/análise , Dióxido de Carbono/análise , China , Modelos Teóricos , Fotossíntese/efeitos dos fármacos , Rodófitas/crescimento & desenvolvimento , Alga Marinha/crescimento & desenvolvimento , Poluentes Químicos da Água/análise
17.
J Fish Biol ; 93(3): 560-566, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29934974

RESUMO

Human activity has resulted in increasing atmospheric carbon dioxide (CO2 ), which will result in reduced pH and higher levels of CO2 in the ocean, a process known as ocean acidification. Understanding the effects of ocean acidification (OA) on fishes will be important to predicting and mitigating its consequences. Anadromous species such as salmonids may be especially at risk because of their rapid movements between fresh water and seawater, which could minimize their ability to acclimate. In the present study, we examine the effect of future OA on the salinity tolerance and early seawater growth of Atlantic salmon Salmo salar smolts. Exposure to 610 and 1010 µatm CO2 did not alter salinity tolerance but did result in slightly lower plasma chloride levels in smolts exposed to seawater compared with controls (390 µatm). Gill Na+ -K+ -ATPase activity, plasma cortisol, glucose and haematocrit after seawater exposure were not altered by elevated CO2 . Growth rate in the first 2 weeks of seawater exposure was greater at 1010 µatm CO2 than under control conditions. This study of the effects of OA on S. salar during the transition from fresh water to seawater indicates that elevated CO2 is not likely to affect osmoregulation negatively and may improve early growth in seawater.


Assuntos
Dióxido de Carbono/toxicidade , Salmo salar/crescimento & desenvolvimento , Tolerância ao Sal/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Aclimatação , Animais , Mudança Climática , Água Doce , Brânquias/enzimologia , Concentração de Íons de Hidrogênio , Oceanos e Mares , Osmorregulação , Salinidade , Salmo salar/sangue , Salmão/metabolismo , Salmonidae , Água do Mar/química , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
Sci Total Environ ; 642: 809-823, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29925053

RESUMO

Mounting evidence has demonstrated the combined effects of ocean acidification (OA) and other environmental stressors on marine organisms. Although metal pollution is widely distributed in coasts and estuaries, the combined effects of OA and metal pollution have received little attention until recent years. In this study, the accumulation and subcellular distribution of cadmium (Cd) and the physiological responses of the oyster Crassostrea gigas were investigated after 31 days of exposure to OA and Cd, either alone or in combination. Increased Cd accumulation was found both in gills (about 57% increase at pH 7.8, 22% increase at pH 7.6) and digestive glands (about 38% increase at pH 7.8, 22% increase at pH 7.6) of C. gigas under elevated pCO2 exposure. Although a similar total Cd accumulation pattern was seen in oyster gills and digestive glands, a higher partition of Cd in the BIM (biologically inactive metal) fractions of gills (about 60%) was found in Cd-exposed treatments compared to the digestive glands (about 45%), which might correspond to the generally lower toxicity in gills. Moreover, synergetic effects of Cd and OA on the oxidative stresses, histopathological damage, and apoptosis of exposed oysters were observed in this study, which might be explained by significant interactions of these two factors on increased generation of ROS. These findings demonstrated that OA could aggravate the toxicity of metals in marine organisms, with significant implications for coastal benthic ecosystems regarding the widespread metal contamination and the concurrent increase of acidified seawater.


Assuntos
Cádmio/toxicidade , Crassostrea/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Cádmio/metabolismo , Dióxido de Carbono/toxicidade , Brânquias , Água do Mar/química , Poluentes Químicos da Água/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R115-R127, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29561650

RESUMO

Multiple environmental stressors may interact in complex ways to exceed or diminish the impacts of individual stressors. In the present study, the interactive effects of two ecologically relevant stressors [increased temperature and partial pressure of carbon dioxide (Pco2)] were assessed for freshwater mussels, a group of organisms that are among the most sensitive and rapidly declining worldwide. The individual and combined effects of elevated temperature (22°C-34°C) and Pco2 (~230, 58,000 µatm) on juvenile Lampsilis siliquoidea were quantified over a 5- or 14-day period, during which physiological and whole animal responses were measured. Exposure to elevated temperature induced a series of physiological responses, including an increase in oxygen consumption rates following 5 days of exposure at 31°C and an increase in carbonic anhydrase ( ca) and heat shock protein 70 mRNA levels following 14 days of exposure at 28°C and 34°C, respectively. Treatment with elevated Pco2 activated acid-base regulatory responses including increases in CA and Na+-K+-ATPase activity and a novel mechanism for acid-base regulation during Pco2 exposure in freshwater mussels was proposed. Thermal and CO2 stressors also interacted such that responses to the thermal stressor were diminished in mussels exposed to elevated Pco2, resulting in the greatest level of mortality. Additionally, larger mussels were more likely to survive treatment with elevated Pco2 and/or temperature. Together, exposure to elevated Pco2 may compromise the ability of juvenile freshwater mussels to respond to additional stressors, such as increased temperatures, highlighting the importance of considering not only the individual but also the interactive effects of multiple environmental stressors.


Assuntos
Bivalves/efeitos dos fármacos , Dióxido de Carbono/toxicidade , Exposição Ambiental/efeitos adversos , Estresse Fisiológico , Temperatura , Equilíbrio Ácido-Base/efeitos dos fármacos , Animais , Bivalves/genética , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Água Doce , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Pressão Parcial , Medição de Risco , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo
20.
Sci Rep ; 8(1): 4191, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520055

RESUMO

Spaceflight introduces a combination of environmental stressors, including microgravity, ionizing radiation, changes in diet and altered atmospheric gas composition. In order to understand the impact of each environmental component on astronauts it is important to investigate potential influences in isolation. Rodent spaceflight experiments involve both standard vivarium cages and animal enclosure modules (AEMs), which are cages used to house rodents in spaceflight. Ground control AEMs are engineered to match the spaceflight environment. There are limited studies examining the biological response invariably due to the configuration of AEM and vivarium housing. To investigate the innate global transcriptomic patterns of rodents housed in spaceflight-matched AEM compared to standard vivarium cages we utilized publicly available data from the NASA GeneLab repository. Using a systems biology approach, we observed that AEM housing was associated with significant transcriptomic differences, including reduced metabolism, altered immune responses, and activation of possible tumorigenic pathways. Although we did not perform any functional studies, our findings revealed a mild hypoxic phenotype in AEM, possibly due to atmospheric carbon dioxide that was increased to match conditions in spaceflight. Our investigation illustrates the process of generating new hypotheses and informing future experimental research by repurposing multiple space-flown datasets.


Assuntos
Dióxido de Carbono/toxicidade , Perfilação da Expressão Gênica , Voo Espacial , Estresse Fisiológico , Biologia de Sistemas , Transcriptoma , Animais , Feminino , Masculino , Camundongos , Radiação Ionizante , Ratos , Ausência de Peso/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA