Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Aging (Albany NY) ; 15(23): 13581-13592, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38095616

RESUMO

Smoking is the main risk factor for many lung diseases including chronic obstructive pulmonary disease. Cigarette smoke (CS) contains carcinogenic and reactive oxygen species that favor DNA mutations and perturb the homeostasis and environment of cells. CS induces lung cell senescence resulting in a stable proliferation arrest and a senescence-associated secretory phenotype. It was recently reported that senescent cell accumulation promotes several lung diseases. In this study, we performed a chemical screen, using an FDA-approved drug library, to identify compounds selectively promoting the death of CS-induced senescent lung cells. Aside from the well-known senolytic, ABT-263, we identified other potentially new senescence-eliminating compounds, including a new class of molecules, the dihydropyridine family of calcium voltage-gated channel (CaV) blockers. Among these blockers, Benidipine, decreased senescent lung cells and ameliorates lung emphysema in a mouse model. The dihydropyridine family of CaV blockers thus constitutes a new class of senolytics that could improve lung diseases. Hence, our work paves the way for further studies on the senolytic activity of CaV blockers in different senescence contexts and age-related diseases.


Assuntos
Fumar Cigarros , Di-Hidropiridinas , Enfisema , Enfisema Pulmonar , Camundongos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/genética , Pulmão/metabolismo , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/uso terapêutico , Di-Hidropiridinas/metabolismo , Enfisema/metabolismo , Senescência Celular
2.
Mini Rev Med Chem ; 20(9): 801-816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31538896

RESUMO

OBJECTIVE: Novel bis(1,4-dihydropyridine-3,5-dicarbonitrile) derivatives linked to aliphatic or aromatic cores via amide or ester-amide linkages were prepared and their structures were confirmed by several spectral tools. METHODS: The synthesis of novel N,N'-(alkanediyl)bis(2-(2-(3,5-dicyano-2,6-dimethyl-1,4-dihydropyridin- 4-yl)phenoxy)acetamide) by acid-catalyzed condensation of the bis-aldehydes with four equivalents of 3-aminocrotononitrile was reported. RESULTS: The structures of the synthesized compounds were confirmed by different spectral tools. The molecular docking stimulation studies indicated that the prepared compounds bind to the active site of cellular inhibitor apoptotic protein (cIAP1-BIR3). MTT assay for the novel bis(1,4-dihydropyridines) was performed on two different human cell lines (A549 and HCT116). CONCLUSION: Compound 5a showed higher cytotoxic activity against A549. Compound 5d showed moderate activity against HCT116. The rest of compounds indicated lower or no activity against both cell lines.


Assuntos
Amidas/química , Antineoplásicos/síntese química , Di-Hidropiridinas/química , Ésteres/química , Simulação de Acoplamento Molecular , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Humanos , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Relação Estrutura-Atividade
3.
Life Sci ; 239: 116878, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31669736

RESUMO

AIMS: We previously demonstrated that iron-overload in non-thalassemic rats induced neurotoxicity and cognitive decline. However, the effect of iron-overload on the brain of thalassemic condition has never been investigated. An iron chelator (deferiprone) provides neuroprotective effects against metal toxicity. Furthermore, a T-type calcium channels blocker (efonidipine) effectively attenuates cardiac dysfunction in thalassemic mice with iron-overload. However, the effects of both drugs on brain of iron-overload thalassemia has not been determined. We hypothesize that iron-overload induces neurotoxicity in Thalassemic and wild-type mice, and not only deferiprone, but also efonidipine, provides neuroprotection against iron-overload condition. MAIN METHODS: Mice from both wild-type (WT) and ß-thalassemic type (HT) groups were assigned to be fed with a standard-diet or high-iron diet containing 0.2% ferrocene/kg of diet (HFe) for 4 months consecutively. After three months of HFe, 75-mg/kg/d deferiprone or 4-mg/kg/d efonidipine were administered to the HFe-fed WT and HT mice for 1 month. KEY FINDINGS: HFe consumption caused an equal impact on circulating iron-overload, oxidative stress, and inflammation in WT and HT mice. Brain iron-overload and iron-mediated neurotoxicity, such as oxidative stress, inflammation, glial activation, mitochondrial dysfunction, and Alzheimer's like pathologies, were observed to an equal degree in HFe fed WT and HT mice. These pathological conditions were mitigated by both deferiprone and efonidipine. SIGNIFICANCE: These findings indicate that iron-overload itself caused neurotoxicity, and T-type calcium channels may play a role in this condition.


Assuntos
Deferiprona/farmacologia , Di-Hidropiridinas/farmacologia , Ferro/toxicidade , Nitrofenóis/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Deferiprona/metabolismo , Di-Hidropiridinas/metabolismo , Modelos Animais de Doenças , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/patologia , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Compostos Organofosforados/farmacologia , Talassemia/patologia
4.
J Mol Model ; 24(12): 340, 2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30448921

RESUMO

The NAD+-dependent deacetylase SIRT1 plays important roles in several physiological processes such as transcription, genome stability, stress responses, and aging. Due to its diverse role in metabolisms, SIRT1 has emerged as a potential therapeutic target in many human disorders such as type II diabetes, cardiovascular and neurodegenerative diseases, and cancer. Recent studies have reported that modulation of SIRT1 activity by phenolic activators like resveratrol and some 1,4-dihydropyridines (1,4-DHPs) can inhibit tumor growth by promoting apoptosis in cancer cells. However, the mechanism of SIRT1 activation is still not clear. In this report, we have tried to elucidate the mechanism of SIRT1 activation from studies on its interaction with a synthetic 1,4-DHP derivative (DHP-8; 3,5-diethoxy carbonyl-4-(4-nitrophenyl)-2,6-dimethyl-1,4-dihydropyridine) using molecular modeling, docking, simulation, and free energy analyses. Owing to the absence of full-length human SIRT1 structure, multi-template based modeling approach was opted followed by docking of DHP-8 at its allosteric site. In presence of DHP-8, the overall conformation of SIRT1 was found to be more stable (especially at its substrate binding sites) with a large structural variation at its N-terminal domain while bound to substrate p53 or p53-W. Determination of the MM/PBSA free energy indicated that the binding of DHP-8 to SIRT1 significantly increased the binding affinity of SIRT1 to its substrate p53-W as well as to NAD+. Overall, this study depicts the atomistic detailed mechanism for the direct activation of SIRT1 by a 1,4-DHP. This would serve to develop new SIRT1 activators for future therapeutic perspectives.


Assuntos
Di-Hidropiridinas/química , Simulação de Acoplamento Molecular , Sirtuína 1/química , Termodinâmica , Sítios de Ligação , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Humanos , Estrutura Molecular , NAD/química , NAD/metabolismo , Ligação Proteica , Domínios Proteicos , Sirtuína 1/metabolismo , Especificidade por Substrato
5.
Nature ; 556(7702): 520-524, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670288

RESUMO

Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y1 receptor (Y1R) 4 . A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.


Assuntos
Arginina/análogos & derivados , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Ácidos Difenilacéticos/química , Ácidos Difenilacéticos/metabolismo , Neuropeptídeo Y/metabolismo , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/química , Arginina/química , Arginina/metabolismo , Arginina/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Di-Hidropiridinas/farmacologia , Ácidos Difenilacéticos/farmacologia , Humanos , Fosfatos de Inositol/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Neuropeptídeo Y/química , Neuropeptídeo Y/farmacologia , Ressonância Magnética Nuclear Biomolecular , Compostos de Fenilureia/farmacologia , Ligação Proteica , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
6.
Bioorg Med Chem ; 25(14): 3835-3844, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554730

RESUMO

P2X4 receptor has become an interesting molecular target for treatment and PET imaging of neuroinflammation and associated brain diseases such as Alzheimer's disease. This study reports the first design, synthesis, radiolabeling and biological evaluation of new candidate PET P2X4 receptor radioligands using 5-BDBD, a specific P2X4 receptor antagonist, as a scaffold. 5-(3-Hydroxyphenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD analog, [11C]9) and 5-(3-Bromophenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD, [11C]8c) were prepared from their corresponding desmethylated precursors with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with SPE in 30-50% decay corrected radiochemical yields with 370-1110GBq/µmol specific activity at EOB. 5-(3-[18F]Fluorophenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]F-5-BDBD, [18F]5a) and 5-(3-(2-[18F]fluoroethoxy)phenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]FE-5-BDBD, [18F]11) were prepared from their corresponding nitro- and tosylated precursors by nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC-SPE in 5-25% decay corrected radiochemical yields with 111-740GBq/µmol specific activity at EOB. The preliminary biological evaluation of radiolabeled 5-BDBD analogs indicated these new radioligands have similar biological activity with their parent compound 5-BDBD.


Assuntos
Azirinas/química , Di-Hidropiridinas/química , Compostos Radiofarmacêuticos/síntese química , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Azirinas/síntese química , Azirinas/metabolismo , Ligação Competitiva , Radioisótopos de Carbono/química , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/metabolismo , Radioisótopos de Flúor/química , Células HEK293 , Humanos , Marcação por Isótopo , Tomografia por Emissão de Pósitrons , Ligação Proteica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
7.
Eur J Med Chem ; 124: 480-489, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27598236

RESUMO

MLL1-WDR5 protein-protein interaction is essential for MLL1 H3K4 methyltransferase activity. Targeting MLL1 enzymatic activity to regulate expression level of MLL-dependent genes represents a therapeutic strategy for acute leukemia harboring MLL fusion proteins. Herein we reported a series of biphenyl compounds disturbed MLL1-WDR5 interaction. These compounds effectively inhibited MLL1 histone methyltransferase (HMT) activity in vitro and in MV4-11 cell line. The representative compound 30 (DDO-2084) inhibited proliferation and induced apoptosis of MV4-11 cells through deregulating expression level of Hoxa9 and Meis-1 genes, which emphasized our compounds were on-target. Optimization of compound 30 led to high-affinity inhibitors. Especially, compound 42 (DDO-2117, IC50 = 7.6 nM) bearing an amino and a 4-aminobutanamido group was the most potent inhibitor reported to-date, and showed the most potent inhibitory activity (IC50 = 0.19 µM) in HMT assay.


Assuntos
Compostos de Bifenilo/farmacologia , Di-Hidropiridinas/farmacologia , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/metabolismo , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/química , Histonas/química , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Simulação de Acoplamento Molecular , Proteína Meis1 , Proteínas de Neoplasias/genética , Ligação Proteica/efeitos dos fármacos , Conformação Proteica
8.
Eur J Med Chem ; 93: 338-48, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25707014

RESUMO

In spite of remarkable advances in the knowledge on Trypanosoma cruzi biology, no medications to treat Chagas disease have been approved in the last 40 years and almost 8 million people remain infected. Since the public sector and non-profit organizations play a significant role in the research efforts on Chagas disease, it is important to implement research strategies that promote translation of basic research into the clinical practice. Recent international public-private initiatives address the potential of drug repositioning (i.e. finding second or further medical uses for known-medications) which can substantially improve the success at clinical trials and the innovation in the pharmaceutical field. In this work, we present the computer-aided identification of approved drugs clofazimine, benidipine and saquinavir as potential trypanocidal compounds and test their effects at biochemical as much as cellular level on different parasite stages. According to the obtained results, we discuss biopharmaceutical, toxicological and physiopathological criteria applied to decide to move clofazimine and benidipine into preclinical phase, in an acute model of infection. The article illustrates the potential of computer-guided drug repositioning to integrate and optimize drug discovery and preclinical development; it also proposes rational rules to select which among repositioned candidates should advance to investigational drug status and offers a new insight on clofazimine and benidipine as candidate treatments for Chagas disease. One Sentence Summary: We present the computer-guided drug repositioning of three approved drugs as potential new treatments for Chagas disease, integrating computer-aided drug screening and biochemical, cellular and preclinical tests.


Assuntos
Reposicionamento de Medicamentos/métodos , Tripanossomicidas/farmacologia , Animais , Clofazimina/metabolismo , Clofazimina/farmacologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Feminino , Masculino , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Proteínas de Protozoários , Saquinavir/metabolismo , Saquinavir/farmacologia , Tripanossomicidas/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
9.
Chem Biol Interact ; 220: 200-7, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25016077

RESUMO

UNLABELLED: The ability to intercalate between DNA strands determines the cytotoxic activity of numerous anticancer drugs. Strikingly, intercalating activity was also reported for some compounds considered to be antimutagenic. The aim of this study was to determine the mode of interaction of DNA with the antimutagenic and DNA repair-stimulating dihydropyridine (DHP) AV-153. DNA and AV-153 interactions were studied by means of UV/VIS spectroscopy, fluorimetry and infrared spectroscopy. Compound AV-153 is a 1,4 dihydropyridine with ethoxycarbonyl groups in positions 3 and 5. Computer modeling of AV-153 and DNA interactions suggested an ability of the compound to dock between DNA strands at a single strand break site in the vicinity of two pyrimidines, which was confirmed in the present study. AV-153 evidently interacted with DNA, as addition of DNA to AV-153 solutions resulted in pronounced hyperchromic and bathochromic effects on the spectra. Base modification in a plasmid by peroxynitrite only minimally changed binding affinity of the compound; however, induction of single-strand breaks using Fenton's reaction greatly increased binding affinity. The affinity did not change when the ionic strength of the solution was changed from 5 to 150 mM NaCl, although it increased somewhat at 300 mM. Neither was it influenced by temperature changes from 25 to 40°C, however, it decreased when the pH of the solution was changed from 7.4 to 4.7. AV-153 competed with EBr for intercalation sites in DNA: 116 mM of the compound caused a two-fold decrease in fluorescence intensity. FT-IR spectral data analyses indicated formation of complexes between DNA and AV-153. The second derivative spectra analyses indicated interaction of AV-153 with guanine, cytosine and thymine bases, but no interaction with adenine was detected. CONCLUSIONS: The antimutagenic substance AV-153 appears to intercalate between the DNA strands at the site of a DNA nick in the vicinity of two pyrimidines.


Assuntos
Antimutagênicos/química , DNA/química , Di-Hidropiridinas/química , Niacina/análogos & derivados , Animais , Antimutagênicos/metabolismo , Sítios de Ligação , DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Fígado/química , Estrutura Molecular , Niacina/química , Niacina/metabolismo , Niacina/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Med Chem ; 55(16): 7090-103, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22889170

RESUMO

Desferrithiocin (DFT, 1) is a very efficient iron chelator when given orally. However, it is severely nephrotoxic. Structure-activity studies with 1 demonstrated that removal of the aromatic nitrogen to provide desazadesferrithiocin (DADFT, 2) and introduction of either a hydroxyl group or a polyether fragment onto the aromatic ring resulted in orally active iron chelators that were much less toxic than 1. The purpose of the current study was to determine if a comparable reduction in renal toxicity could be achieved by performing the same structural manipulations on 1 itself. Accordingly, three DFT analogues were synthesized. The iron-clearing efficiency and ferrokinetics were evaluated in rats and primates; toxicity assessments were carried out in rodents. The resulting DFT ligands demonstrated a reduction in toxicity that was equivalent to that of the DADFT analogues and presented with excellent iron-clearing properties.


Assuntos
Di-Hidropiridinas/farmacologia , Quelantes de Ferro/farmacologia , Tiazóis/farmacologia , Administração Oral , Animais , Cebus , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/toxicidade , Éteres/química , Éteres/metabolismo , Éteres/farmacologia , Éteres/toxicidade , Compostos Férricos/química , Compostos Férricos/metabolismo , Hidroxilação , Quelantes de Ferro/química , Quelantes de Ferro/metabolismo , Quelantes de Ferro/toxicidade , Sobrecarga de Ferro/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologia , Ligantes , Masculino , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/toxicidade
11.
Eur J Med Chem ; 55: 188-94, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22889557

RESUMO

The altered gating of the mutant CFTR chloride channel cystic fibrosis (CF) may be corrected by small molecules called potentiators. We present a molecular scale simulation system for the discovery of ΔF508-CFTR soluble potentiators. Results report the design, ADME-Tox prediction, synthesis, solubility determination and in vitro biological evaluation of two 1,4-dihydropyridines (DHPs). Compound 1 shows a promising ADME-Tox profile and good potency.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Biologia Computacional , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Desenho de Fármacos , Absorção , Animais , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/toxicidade , Técnicas de Química Sintética , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/toxicidade , Humanos , Ligantes , Modelos Moleculares , Mutação , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Ratos , Solubilidade
12.
Arch Pharm Res ; 34(7): 1171-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21811924

RESUMO

The aim of this study was to investigate the influence of nitrendipine (NIT), a dihydropyridine derived calcium channel antagonist, on polycyclic aromatic hydrocarbon benzo(a)pyrene (BAP)-induced oxidative stress. Male Sprague Dawley rats (155-220 g) were divided into four groups: Control (corn oil, i.p.); BAP (200 mg/kg, i.p.), BAP + NIT (200 mg/kg, i.p. + 50 mg/kg, i.p.), and NIT (50 mg/kg, i.p.) groups. Twenty-four hours after the injection of BAP, the rats were sacrificed and blood samples, liver, lung, and brain tissues were removed to determine serum alanine transaminase (ALT), aspartate transferase (AST), and gamma-glutamyltransferase (GGT) activities and tissue thiobarbituric acid reactive substances (TBARS), glutathione (GSH), and superoxide dismutase (SOD) levels. BAP significantly elevated serum ALT and TBARS levels in all tissues. However, NIT pre-treatment protected against increasing TBARS levels in lung and brain tissues. In addition, NIT pre-treatment significantly increased SOD levels in lung and liver tissues, as well as GSH levels in the lungs, compared to the BAP group. Thus, in conclusion, further studies are required to confirm the protective effects of calcium channel blockers, especially in liver tissue.


Assuntos
Benzo(a)pireno/toxicidade , Bloqueadores dos Canais de Cálcio/farmacologia , Substâncias Perigosas/toxicidade , Nitrendipino/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/análise , Antioxidantes/fisiologia , Aspartato Aminotransferases/metabolismo , Benzo(a)pireno/metabolismo , Encéfalo/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/metabolismo , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Glutationa/metabolismo , Substâncias Perigosas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Testes de Função Hepática , Pulmão/efeitos dos fármacos , Masculino , Nitrendipino/metabolismo , Substâncias Protetoras/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
13.
Invert Neurosci ; 11(1): 43-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21523449

RESUMO

Studies have suggested that neuronal loss in Parkinson's disease (PD) could be related to the pacemaker activity of the substantia nigra pars compacta generated by L-type Ca(v) 1.3 calcium channels, which progressively substitute voltage-dependent sodium channels in this region during aging. Besides this mechanism, which leads to increases in intracellular calcium, other factors are also known to play a role in dopaminergic cell death due to overproduction of reactive oxygen species. Thus, dihydropyridines, a class of calcium channel blockers, and resveratrol, a polyphenol that presents antioxidant properties, may represent therapeutic alternatives for the prevention of PD. In the present study, we tested the effects of the dihydropyridines, isradipine, nifedipine, and nimodipine and of resveratrol upon locomotor behavior in Drosophila melanogaster. As previously described, paraquat induced parkinsonian-like motor deficits. Moreover, none of the drugs tested were able to prevent the motor deficits produced by paraquat. Additionally, isradipine, nifedipine, resveratrol, and ethanol (vehicle), when used in isolation, induced motor deficits in flies. This study is the first demonstration that dyhidropyridines and resveratrol are unable to reverse the locomotor impairments induced by paraquat in Drosophila melanogaster.


Assuntos
Antioxidantes , Bloqueadores dos Canais de Cálcio/administração & dosagem , Di-Hidropiridinas , Degeneração Neural/induzido quimicamente , Estilbenos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Di-Hidropiridinas/administração & dosagem , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/uso terapêutico , Modelos Animais de Doenças , Dopamina/metabolismo , Drosophila melanogaster/metabolismo , Degeneração Neural/metabolismo , Paraquat , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Resveratrol , Estilbenos/administração & dosagem , Estilbenos/metabolismo , Estilbenos/uso terapêutico , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
14.
J Med Chem ; 53(7): 2843-53, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20232803

RESUMO

(S)-2-(2,4-Dihydroxyphenyl)-4,5-dihydro-4-methyl-4-thiazolecarboxylic acid (2) was abandoned in clinical trials as an iron chelator for the treatment of iron overload disease because of its nephrotoxicity. However, subsequent investigations revealed that replacing the 4'-(HO) of 2 with a 3,6,9-trioxadecyloxy group, ligand 4, increased iron clearing efficiency (ICE) and ameliorated the renal toxicity of 2. This compelled a closer look at additional polyether analogues, the subject of this work. The 3,6,9,12-tetraoxatridecyloxy analogue of 4, chelator 5, an oil, had twice the ICE in rodents of 4, although its ICE in primates was reduced relative to 4. The corresponding 3,6-dioxaheptyloxy analogue of 2, 6 (a crystalline solid), had high ICEs in both the rodent and primate models. It significantly decorporated hepatic, renal, and cardiac iron, with no obvious histopathologies. These findings suggest that polyether chain length has a profound effect on ICE, tissue iron decorporation, and ligand physiochemical properties.


Assuntos
Fenômenos Químicos , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Éteres/química , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia , Ferro/isolamento & purificação , Tiazóis/química , Tiazóis/farmacologia , Animais , Ductos Biliares/metabolismo , Cebus , Cristalografia por Raios X , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/toxicidade , Desenho de Fármacos , Éter/química , Humanos , Ferro/metabolismo , Quelantes de Ferro/metabolismo , Quelantes de Ferro/toxicidade , Sobrecarga de Ferro/metabolismo , Rim/efeitos dos fármacos , Ligantes , Masculino , Octanóis/química , Ratos , Tiazóis/metabolismo , Tiazóis/toxicidade , Água/química
15.
J Med Chem ; 52(9): 2724-32, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19374444

RESUMO

Tacripyrines (1-14) have been designed by combining an AChE inhibitor (tacrine) with a calcium antagonist such as nimodipine and are targeted to develop a multitarget therapeutic strategy to confront AD. Tacripyrines are selective and potent AChE inhibitors in the nanomolar range. The mixed type inhibition of hAChE activity of compound 11 (IC(50) 105 +/- 15 nM) is associated to a 30.7 +/- 8.6% inhibition of the proaggregating action of AChE on the Abeta and a moderate inhibition of Abeta self-aggregation (34.9 +/- 5.4%). Molecular modeling indicates that binding of compound 11 to the AChE PAS mainly involves the (R)-11 enantiomer, which also agrees with the noncompetitive inhibition mechanism exhibited by p-methoxytacripyrine 11. Tacripyrines are neuroprotective agents, show moderate Ca(2+) channel blocking effect, and cross the blood-brain barrier, emerging as lead candidates for treating AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Tacrina/análogos & derivados , Acetilcolinesterase/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/metabolismo , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Citosol/efeitos dos fármacos , Citosol/metabolismo , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/uso terapêutico , Humanos , Peróxido de Hidrogênio/metabolismo , Cinética , Ligantes , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Permeabilidade/efeitos dos fármacos
16.
Anal Sci ; 25(4): 553-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19359798

RESUMO

Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary-tract symptoms secondary to benign prostatic hyperplasia. The mechanisms of pharmacological effects of SPE include the inhibition of 5alpha-reductase, anti-androgenic effects, anti-proliferative effects, and anti-inflammatory effects. Previously, we showed that SPE bound actively to alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine calcium channel (1,4-DHP) receptors in the prostate and bladder of rats, whereas its active constituents have not been fully clarified. The present investigation is aimed to identify the main active components contained in hexane and diethyl ether extracts of SPE with the use of column chromatography and preparative HPLC. Based on the binding activity with alpha(1)-adrenergic, muscarinic, and 1,4-DHP receptors, both isolated oleic and lauric acids were deduced to be active components. Authentic samples of oleic and lauric acids also exhibited similar binding activities to these receptors as the fatty acids isolated from SPE, consistent with our findings. In addition, oleic and lauric acids inhibited 5alpha-reductase, possibly leading to therapeutic effects against benign prostatic hyperplasia and related lower urinary-tract symptoms.


Assuntos
Ácidos Graxos/isolamento & purificação , Ácidos Graxos/farmacologia , Extratos Vegetais/química , Animais , Canais de Cálcio/metabolismo , Colestenona 5 alfa-Redutase/metabolismo , Cromatografia Líquida de Alta Pressão , Di-Hidropiridinas/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/uso terapêutico , Masculino , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Ratos , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Muscarínicos/metabolismo , Serenoa , Doenças Urológicas/tratamento farmacológico , Doenças Urológicas/metabolismo
17.
PLoS One ; 3(3): e1762, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18516256

RESUMO

BACKGROUND: In dystrophic mdx skeletal muscle, aberrant Ca2+ homeostasis and fibre degeneration are found. The absence of dystrophin in models of Duchenne muscular dystrophy (DMD) has been connected to altered ion channel properties e.g. impaired L-type Ca2+ currents. In regenerating mdx muscle, 'revertant' fibres restore dystrophin expression. Their functionality involving DHPR-Ca2+-channels is elusive. METHODS AND RESULTS: We developed a novel 'in-situ' confocal immuno-fluorescence and imaging technique that allows, for the first time, quantitative subcellular dystrophin-DHPR colocalization in individual, non-fixed, muscle fibres. Tubular DHPR signals alternated with second harmonic generation signals originating from myosin. Dystrophin-DHPR colocalization was substantial in wt fibres, but diminished in most mdx fibres. Mini-dystrophin (MinD) expressing fibres successfully restored colocalization. Interestingly, in some aged mdx fibres, colocalization was similar to wt fibres. Most mdx fibres showed very weak membrane dystrophin staining and were classified 'mdx-like'. Some mdx fibres, however, had strong 'wt-like' dystrophin signals and were identified as 'revertants'. Split mdx fibres were mostly 'mdx-like' and are not generally 'revertants'. Correlations between membrane dystrophin and DHPR colocalization suggest a restored putative link in 'revertants'. Using the two-micro-electrode-voltage clamp technique, Ca2+-current amplitudes (i(max)) showed very similar behaviours: reduced amplitudes in most aged mdx fibres (as seen exclusively in young mdx mice) and a few mdx fibres, most likely 'revertants', with amplitudes similar to wt or MinD fibres. Ca2+ current activation curves were similar in 'wt-like' and 'mdx-like' aged mdx fibres and are not the cause for the differences in current amplitudes. i(max) amplitudes were fully restored in MinD fibres. CONCLUSIONS: We present evidence for a direct/indirect DHPR-dystrophin interaction present in wt, MinD and 'revertant' mdx fibres but absent in remaining mdx fibres. Our imaging technique reliably detects single isolated 'revertant' fibres that could be used for subsequent physiological experiments to study mechanisms and therapy concepts in DMD.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Distrofina/genética , Regulação da Expressão Gênica/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Di-Hidropiridinas/metabolismo , Distrofina/biossíntese , Distrofina/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Microscopia Confocal , Distrofia Muscular de Duchenne/metabolismo , Miosinas/fisiologia , Transdução de Sinais
18.
J Int Med Res ; 35(6): 886-91, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18084847

RESUMO

Dihydropyridine-based calcium antagonists (DHPs) are widely used to treat hypertension. We have previously shown that nifedipine, one of the most popular DHPs, blocks tumour necrosis factor-alpha (TNF-alpha)-induced monocyte chemoattractant protein-1 as well as vascular cell adhesion molecule-1 (VCAM-1) expression in endothelial cells by suppressing reactive oxygen species generation (ROS). The molecular mechanism is still to be elucidated, however, because endothelial cells do not possess voltage-operated L-type calcium channels. The aim of this study was to determine in TNF-alpha-exposed human umbilical vein endothelial cells (HUVECs) whether and how Bay w 9798, a dihydropyridine structurally related to nifedipine with no calcium antagonistic properties, may suppress VCAM-1 expression, a key molecule which mediates the adhesion of monocytes to vasculature in the early stages of atherosclerosis. In HUVECs, 10 ng/ml TNF-alpha for 4 h stimulated ROS generation and subsequently upregulated VCAM-1 mRNA levels, both of which were dose-dependently blocked by Bay w 9798. The results demonstrated that Bay w 9798 inhibited VCAM-1 expression in TNF-alpha-exposed cells by suppressing ROS generation. They suggest that the anti-inflammatory and anti-oxidative properties of nifedipine and Bay w 9798 may be ascribed to the dihydropyridine structure, which is common to both molecules and has no calcium antagonistic ability.


Assuntos
Di-Hidropiridinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Nifedipino/química , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/metabolismo , Linhagem Celular , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Humanos , Estrutura Molecular , Nifedipino/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
19.
Chem Biol Drug Des ; 70(4): 337-46, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17937779

RESUMO

Multidrug resistance (MDR) is defined as resistance of tumor cells to the cytotoxic action of multiple structurally dissimilar and functionally divergent drugs commonly used in chemotherapy. Until now, there is no evidence for the effect of 1,4-dihydropyridines (DHPs) on atypical MDR, although there are some indications about the effect of DHPs on p-glycoprotein-mediated MDR. However, it was reported that a DHP derivative (Dexniguldipine) inhibited human DNA topoisomerase I through a non-competitive mechanism. Therefore, some derivatives of DHP were synthesized and their effect in reversing atypical MDR was evaluated. The results showed that two compounds were the potent reversals of atypical MDR. In addition, the intrinsic cytotoxicity of compounds was determined on four different cell lines. Furthermore, their Ca2+ channel blocking activity was evaluated and showed a clear structure-activity relationship (SAR) trend according to the moieties in C-4 position which confirmed the importance of C-4 moiety on Ca2+ channel blocking.


Assuntos
Di-Hidropiridinas , Resistência a Múltiplos Medicamentos , Relação Quantitativa Estrutura-Atividade , Animais , Linhagem Celular , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Cobaias , Humanos , Masculino , Modelos Moleculares , Estrutura Molecular
20.
Med Hypotheses ; 68(5): 1096-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17097822

RESUMO

Vascular calcification is a common feature in advanced atherosclerosis and also a predictor of future cardiovascular events such as unstable angina and myocardial infarction, especially in diabetes. There is a growing body of evidence that advanced glycation end products (AGEs), senescent macroprotein derivatives formed at an accelerated rate in diabetes, exist within atherosclerotic lesions, thereby being implicated in the pathogenesis of accelerated atherosclerosis in diabetes. Indeed, we have previously shown that AGE - their receptor (RAGE) interaction could induce angiogenesis through autocrine production of vascular endothelial growth factor, suggesting its role for plaque formation and enlargement in diabetes. Furthermore, we have found that AGEs have the ability to induce the osteoblatic differentiation of pericytes, thus contributing to the development of vascular calcification as well. These observations suggest that the inhibition of AGE formation or blockade of the downstream signaling of RAGE may be a novel therapeutic target for the inhibition of vascular calcification in diabetic atherosclerosis. Since we, along with others, have shown that nifedipine inhibits glycation of low-density lipoprotein in vitro and blocks the AGE-induced RAGE expression in endothelial cells through its anti-oxidative properties, nifedipine could inhibit vascular calcification by blocking the AGE formation or the downstream signaling in diabetes. In this paper, we would like to propose the possible ways of testing our hypothesis. Does nifedipine treatment slow down the progression of coronary calcification in diabetic patients? If the answer is yes, is this beneficial effect of nifedipine superior to that of other DHPs with equihypotensive properties? Does nifedipine treatment decrease expression levels of AGEs and RAGE in diabetic atherosclerosis? Is the unique effect of nifedipine on vascular calcification correlated with its AGE or RAGE-suppressing properties? These prospective studies will provide further valuable information whether nifedipine could prevent vascular calcification in diabetic atherosclerosis by blockade the AGE-RAGE signaling in vascular wall cells.


Assuntos
Calcinose/prevenção & controle , Bloqueadores dos Canais de Cálcio/farmacologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Modelos Biológicos , Nifedipino/farmacologia , Di-Hidropiridinas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA