Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Braz. j. biol ; 83: 1-5, 2023. ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468930

RESUMO

Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimer’s disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.


Assuntos
Humanos , Diabetes Mellitus/enzimologia , Fluoroquinolonas/análise , /análise
2.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563478

RESUMO

Lysyl oxidases are multifunctional proteins derived from five lysyl oxidase paralogues (LOX) and lysyl oxidase-like 1 through lysyl oxidase-like 4 (LOXL1-LOXL4). All participate in the biosynthesis of and maturation of connective tissues by catalyzing the oxidative deamination of lysine residues in collagens and elastin, which ultimately results in the development of cross-links required to function. In addition, the five LOX genes have been linked to fibrosis and cancer when overexpressed, while tumor suppression by the propeptide derived from pro-LOX has been documented. Similarly, in diabetic retinopathy, LOX overexpression, activity, and elevated LOX propeptide have been documented. The proteolytic processing of pro-forms of the respective proteins is beginning to draw attention as the resultant peptides appear to exhibit their own biological activities. In this review we focus on the LOX paralogue, and what is known regarding its extracellular biosynthetic processing and the still incomplete knowledge regarding the activities and mechanisms of the released lysyl oxidase propeptide (LOX-PP). In addition, a summary of the roles of both LOX and LOX-PP in diabetic retinopathy, and brief mentions of the roles for LOX and closely related LOXL1 in glaucoma, and keratoconus, respectively, are included.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Neoplasias , Proteína-Lisina 6-Oxidase , Colágeno/metabolismo , Diabetes Mellitus/enzimologia , Diabetes Mellitus/metabolismo , Retinopatia Diabética/enzimologia , Retinopatia Diabética/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Peptídeos , Proteína-Lisina 6-Oxidase/metabolismo
3.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830187

RESUMO

1,2,4-Oxadiazole is a heterocycle with wide reactivity and many useful applications. The reactive O-N bond is usually reduced using molecular hydrogen to obtain amidine derivatives. NH4CO2H-Pd/C is here demonstrated as a new system for the O-N reduction, allowing us to obtain differently substituted acylamidine, acylguanidine and diacylguanidine derivatives. The proposed system is also effective for the achievement of a reductive rearrangement of 5-(2'-aminophenyl)-1,2,4-oxadiazoles into 1-alkylquinazolin-4(1H)-ones. The alkaloid glycosine was also obtained with this method. The obtained compounds were preliminarily tested for their biological activity in terms of their cytotoxicity, induced oxidative stress, α-glucosidase and DPP4 inhibition, showing potential application as anti-diabetics.


Assuntos
Formiatos/química , Guanidinas/química , Hipoglicemiantes/química , Oxidiazóis/química , Paládio/química , Quinazolinonas/química , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus/enzimologia , Diabetes Mellitus/prevenção & controle , Dipeptidil Peptidase 4/metabolismo , Guanidinas/síntese química , Humanos , Hipoglicemiantes/farmacologia , Modelos Químicos , Estrutura Molecular , Oxirredução , alfa-Glucosidases/metabolismo
4.
Clin Sci (Lond) ; 135(19): 2243-2263, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34569605

RESUMO

The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Mesilato de Imatinib/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Enoil-CoA Hidratase/metabolismo , Ativação Enzimática , Humanos , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos NOD , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Fosforilação , Ratos Sprague-Dawley , Proteína S6 Ribossômica/metabolismo
5.
Expert Rev Proteomics ; 18(8): 707-717, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34468272

RESUMO

INTRODUCTION: Active matrix metalloproteinase (aMMP)-8 utilized in point-of-care testing (POCT) is regarded as a potential biomarker for periodontal and peri-implant diseases. Various host and microbial factors eventually influence the expression, degranulation, levels and activation of aMMP-8. The type of oral fluids (saliva, mouthrinse, gingival crevicular, and peri-implant sulcular fluids [GCF/PISF], respectively) affect the analysis. AREAS COVERED: With this background, we aimed to review here the recent studies on practical, inexpensive, noninvasive and quantitative mouthrinse and GCF/PISF chair-side POCT lateral flow aMMP-8 immunoassays (PerioSafe and ImplantSafe/ORALyzer) and how they help to detect, predict, monitor the course, treatment and prevention of periodontitis and peri-implantitis. The correlations of aMMP-8 POCT to other independent and catalytic activity assays of MMP-8 are also addressed. EXPERT OPINION: The mouthrinse aMMP-8 POCT can also detect prediabetes/diabetes and tissue destructive oral side-effects due to the head and neck cancers' radiotherapy. Chlorhexidine and doxycycline can inhibit collagenolytic human neutrophil and GCF aMMP-8. Furthermore, by a set of case-series we demonstrate the potential of mouthrinse aMMP-8 POCT to real-time/online detect periodontitis as a potential risk disease for coronavirus disease 2019 (COVID-19). The clinical interdisciplinary utilization of aMMP-8 POCT requires additional oral, medical, and interdisciplinary studies.


Assuntos
COVID-19/enzimologia , Metaloproteinase 8 da Matriz/metabolismo , Pandemias , SARS-CoV-2 , Biomarcadores/análise , Biomarcadores/metabolismo , COVID-19/complicações , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/enzimologia , Doxiciclina/uso terapêutico , Humanos , Imunoensaio/métodos , Metaloproteinase 8 da Matriz/análise , Antissépticos Bucais , Higiene Bucal , Peri-Implantite/diagnóstico , Peri-Implantite/enzimologia , Periodontite/complicações , Periodontite/diagnóstico , Periodontite/enzimologia , Testes Imediatos , Radioterapia/efeitos adversos , Fatores de Risco , Tratamento Farmacológico da COVID-19
6.
Biomolecules ; 11(7)2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34356640

RESUMO

Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Ácidos Graxos/metabolismo , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Diabetes Mellitus/enzimologia , Cardiomiopatias Diabéticas/patologia , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos , Lipase Lipoproteica/genética , Miocárdio/enzimologia , Processamento de Proteína Pós-Traducional
7.
Eur J Pharmacol ; 899: 174011, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705803

RESUMO

Forkhead transcription factor forkhead box O1 (FoxO1) plays an important role in glucose and lipid metabolism, contributing to the pathogenesis of metabolic disorders. This study aimed to discover a novel FoxO1 inhibitor as a potential new anti-diabetic drug candidate, and describes the biological effects of JY-2, 5-(2,4-dichlorophenyl)-3-(pyridin-2-yl)-1,2,4-oxadiazole in vitro and in vivo. JY-2 inhibited FoxO1 transcriptional activity in a concentration-dependent manner, with an IC50 value of 22 µM. The inhibitory effects of JY-2 on FoxO3a and FoxO4 appeared to be weaker than that on FoxO1. Consistent with its inhibitory effect on FoxO1, JY-2 reduced the palmitic acid (PA)-stimulated mRNA expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), two key enzymes involved in gluconeogenesis in HepG2 cells. In association with the reduced expression of lipid metabolism genes, triglyceride accumulation was also reduced by JY-2, as determined by Oil Red O staining. In addition, JY-2 restored PA-impaired glucose-stimulated insulin secretion (GSIS), in conjunction with an increased mRNA expression of PDX1, MafA, and insulin in INS-1 cells. The in vivo efficacy of JY-2 was examined using C57BL/6J, db/db, and high fat-diet induced obese and diabetic (DIO) mice models, and showed that JY-2 improved glucose tolerance, in parallel with a reduced mRNA expression of gluconeogenic genes. Pharmacokinetic analysis revealed that JY-2 exhibited excellent oral bioavailability (98%), with little adverse effects. These results demonstrated that the novel FoxO1 inhibitor, JY-2, may exert beneficial anti-diabetic effects and that it warrants further investigation as a novel anti-diabetic drug candidate.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Gluconeogênese/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Oxidiazóis/farmacologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Células Hep G2 , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Hipoglicemiantes/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Obesidade/complicações , Oxidiazóis/farmacocinética , Ácido Palmítico/toxicidade , Ratos , Transdução de Sinais
8.
Arterioscler Thromb Vasc Biol ; 41(4): e208-e223, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33535788
9.
Molecules ; 26(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435264

RESUMO

Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs. Starting from our previous findings that highlighted the possibility to target both aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two enzymes strictly implicated in the development of DM and its complications, we synthesised 3-(5-arylidene-4-oxothiazolidin-3-yl)propanoic acids and analogous 2-butenoic acid derivatives, with the aim of balancing the effectiveness of dual AR/PTP1B inhibitors which we had identified as designed multiple ligands (DMLs). Out of the tested compounds, 4f exhibited well-balanced AR/PTP1B inhibitory effects at low micromolar concentrations, along with interesting insulin-sensitizing activity in murine C2C12 cell cultures. The SARs here highlighted along with their rationalization by in silico docking experiments into both target enzymes provide further insights into this class of inhibitors for their development as potential DML antidiabetic candidates.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Diabetes Mellitus/tratamento farmacológico , Inibidores Enzimáticos , Hipoglicemiantes , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Aldeído Redutase/metabolismo , Animais , Diabetes Mellitus/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligantes , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
10.
Cardiovasc Res ; 117(6): 1546-1556, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32653904

RESUMO

AIMS: Receptor-type vascular endothelial protein tyrosine phosphatase (VE-PTP) dephosphorylates Tie-2 as well as CD31, VE-cadherin, and vascular endothelial growth factor receptor 2 (VEGFR2). The latter form a signal transduction complex that mediates the endothelial cell response to shear stress, including the activation of the endothelial nitric oxide (NO) synthase (eNOS). As VE-PTP expression is increased in diabetes, we investigated the consequences of VE-PTP inhibition (using AKB-9778) on blood pressure in diabetic patients and the role of VE-PTP in the regulation of eNOS activity and vascular reactivity. METHODS AND RESULTS: In diabetic patients AKB-9778 significantly lowered systolic and diastolic blood pressure. This could be linked to elevated NO production, as AKB increased NO generation by cultured endothelial cells and elicited the NOS inhibitor-sensitive relaxation of endothelium-intact rings of mouse aorta. At the molecular level, VE-PTP inhibition increased the phosphorylation of eNOS on Tyr81 and Ser1177 (human sequence). The PIEZO1 activator Yoda1, which was used to mimic the response to shear stress, also increased eNOS Tyr81 phosphorylation, an effect that was enhanced by VE-PTP inhibition. Two kinases, i.e. abelson-tyrosine protein kinase (ABL)1 and Src were identified as eNOS Tyr81 kinases as their inhibition and down-regulation significantly reduced the basal and Yoda1-induced tyrosine phosphorylation and activity of eNOS. VE-PTP, on the other hand, formed a complex with eNOS in endothelial cells and directly dephosphorylated eNOS Tyr81 in vitro. Finally, phosphorylation of eNOS on Tyr80 (murine sequence) was found to be reduced in diabetic mice and diabetes-induced endothelial dysfunction (isolated aortic rings) was blunted by VE-PTP inhibition. CONCLUSIONS: VE-PTP inhibition enhances eNOS activity to improve endothelial function and decrease blood pressure indirectly, through the activation of Tie-2 and the CD31/VE-cadherin/VEGFR2 complex, and directly by dephosphorylating eNOS Tyr81. VE-PTP inhibition, therefore, represents an attractive novel therapeutic option for diabetes-induced endothelial dysfunction and hypertension.


Assuntos
Compostos de Anilina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Hipertensão/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/antagonistas & inibidores , Ácidos Sulfônicos/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus/enzimologia , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Humanos , Hipertensão/enzimologia , Hipertensão/genética , Hipertensão/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Resultado do Tratamento , Estados Unidos
11.
Sci Rep ; 10(1): 20415, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230173

RESUMO

Catalpol has gained increasing attention for its potential contributions in controlling glycolipid metabolism and diabetic complications, which makes used as a very promising scaffold for seeking new anti-diabetic drug candidates. Acylation derivatives of catalpol crotonate (CCs) were designed as drug ligands of glutathione peroxidase (GSH-Px) based on molecular docking (MD) using Surfex-Docking method. Catalpol hexacrotonate (CC-6) was synthesized using microwave assisted method and characterized by FT-IR, NMR, HPLC and HRMS. The MD results indicate that with the increasing of esterification degree of hydroxyl, the C log P of CCs increased significantly, and the calculated total scores (Total_score) of CCs are all higher than that of catalpol. It shows that CCs maybe served as potential lead compounds for neuroprotective agents. It was found that the maximum Total_score of isomers in one group CCs is often not that the molecule with minimum energy. MD calculations show that there are five hydrogen bonds formed between CC-6 and the surrounding amino acid residues. Molecular dynamics simulation results show that the binding of CC-6 with GSH-Px is stable. CC-6 was screened for SH-SY5Y cells viability by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay, the result indicates CC-6 can effectively reverse SZT induced cells apoptosis with dose-dependent manner, which can indirectly show that CC-6 is a potential neuroprotective agent.


Assuntos
Crotonatos/farmacologia , Glutationa Peroxidase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Glucosídeos Iridoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Sítios de Ligação , Encefalopatias/tratamento farmacológico , Encefalopatias/enzimologia , Encefalopatias/etiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Crotonatos/síntese química , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/enzimologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/enzimologia , Glutationa Peroxidase/química , Glutationa Peroxidase/metabolismo , Humanos , Ligação de Hidrogênio , Hipoglicemiantes/síntese química , Glucosídeos Iridoides/síntese química , Micro-Ondas , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/síntese química , Ligação Proteica
12.
Cell Rep ; 32(12): 108160, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966793

RESUMO

The glyoxalase system is a highly conserved and ubiquitously expressed enzyme system, which is responsible for the detoxification of methylglyoxal (MG), a spontaneous by-product of energy metabolism. This study is able to show that a phosphorylation of threonine-107 (T107) in the (rate-limiting) Glyoxalase 1 (Glo1) protein, mediated by Ca2+/calmodulin-dependent kinase II delta (CamKIIδ), is associated with elevated catalytic efficiency of Glo1 (lower KM; higher Vmax). Additionally, we observe proteasomal degradation of non-phosphorylated Glo1 via ubiquitination does occur more rapidly as compared with native Glo1. The absence of CamKIIδ is associated with poor detoxification capacity and decreased protein content of Glo1 in a murine CamKIIδ knockout model. Therefore, phosphorylation of T107 in the Glo1 protein by CamKIIδ is a quick and precise mechanism regulating Glo1 activity, which is experimentally linked to an altered Glo1 status in cancer, diabetes, and during aging.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Lactoilglutationa Liase/metabolismo , Fosfotreonina/metabolismo , Proteômica , Envelhecimento/patologia , Animais , Linhagem Celular , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Humanos , Inativação Metabólica , Cinética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/enzimologia , Neoplasias/patologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Aldeído Pirúvico/metabolismo
13.
Life Sci ; 257: 118115, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32698073

RESUMO

Telomerase plays a significant role to maintain and regulate the telomere length, cellular immortality and senescence by the addition of guanine-rich repetitive sequences. Chronic inflammation or oxidative stress-induced infection downregulates TERT gene modifying telomerase activity thus contributing to the early steps of gastric carcinogenesis process. Furthermore, telomere-telomerase system performs fundamental role in the pathogenesis and progression of diabetes mellitus as well as in its vascular intricacy. The cessation of cell proliferation in cultured cells by inhibiting the telomerase activity of transformed cells renders the rationale for culling of telomerase as a target therapy for the treatment of metabolic disorders and various types of cancers. In this article, we have briefly described the role of immune system and malignant cells in the expression of telomerase with critical analysis on the gaps and potential for future studies. The key findings regarding the secrets of the telomerase summarized in this article will help in future treatment modalities for the prevention of various types of cancers and metabolic disorders notably diabetes mellitus.


Assuntos
Telomerase/metabolismo , Envelhecimento/metabolismo , Animais , Diabetes Mellitus/enzimologia , Humanos , Neoplasias/enzimologia , Telomerase/antagonistas & inibidores , Telomerase/fisiologia , Encurtamento do Telômero
14.
Biomolecules ; 10(8)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32708046

RESUMO

Cu-dependent lysyl oxidase (LOX) plays a catalytic activity-related, primary role in the assembly of the extracellular matrix (ECM), a dynamic structural and regulatory framework which is essential for cell fate, differentiation and communication during development, tissue maintenance and repair. LOX, additionally, plays both activity-dependent and independent extracellular, intracellular and nuclear roles that fulfill significant functions in normal tissues, and contribute to vascular, cardiac, pulmonary, dermal, placenta, diaphragm, kidney and pelvic floor disorders. LOX activities have also been recognized in glioblastoma, diabetic neovascularization, osteogenic differentiation, bone matrix formation, ligament remodeling, polycystic ovary syndrome, fetal membrane rupture and tumor progression and metastasis. In an inflammatory context, LOX plays a role in diminishing pluripotent mesenchymal cell pools which are relevant to the pathology of diabetes, osteoporosis and rheumatoid arthritis. Most of these conditions involve mechanisms with complex cell and tissue type-specific interactions of LOX with signaling pathways, not only as a regulatory target, but also as an active player, including LOX-mediated alterations of cell surface receptor functions and mutual regulatory activities within signaling loops. In this review, we aim to provide insight into the diverse ways in which LOX participates in signaling events, and explore the mechanistic details and functional significance of the regulatory and cross-regulatory interactions of LOX with the EGFR, PDGF, VEGF, TGF-ß, mechano-transduction, inflammatory and steroid signaling pathways.


Assuntos
Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Matriz Extracelular/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais/fisiologia , Animais , Artrite Reumatoide/enzimologia , Artrite Reumatoide/patologia , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Humanos , Neoplasias/enzimologia , Neoplasias/patologia
15.
Crit Rev Biochem Mol Biol ; 55(4): 354-371, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32646244

RESUMO

Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibits multiple functions separate and distinct from its historic role in energy production. Further, it exhibits dynamic changes in its subcellular localization which is an a priori requirement for its multiple activities. Separately, moonlighting GAPDH may function in the pathology of human disease, involved in tumorigenesis, diabetes, and age-related neurodegenerative disorders. It is suggested that moonlighting GAPDH function may be related to specific modifications of its protein structure as well as the formation of GAPDH protein: protein or GAPDH protein: nucleic acid complexes.


Assuntos
Carcinogênese/metabolismo , Diabetes Mellitus/enzimologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Proteínas de Neoplasias/metabolismo , Doenças Neurodegenerativas/enzimologia , Ácidos Nucleicos/metabolismo , Processamento de Proteína Pós-Traducional , Envelhecimento/metabolismo , Envelhecimento/patologia , Carcinogênese/genética , Carcinogênese/patologia , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Metabolismo Energético , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Humanos , Proteínas de Neoplasias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia
16.
Oxid Med Cell Longev ; 2020: 5197376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411328

RESUMO

INTRODUCTION: Calcific aortic valve stenosis (CAVS) is a common disease associated with aging. Oxidative stress participates in the valve calcification process in CAVS. Semicarbazide-sensitive amine oxidase (SSAO), also referred to as vascular adhesion protein 1 (VAP-1), transforms primary amines into aldehydes, generating hydrogen peroxide and ammonia. SSAO is expressed in calcified aortic valves, but its role in valve calcification has remained largely unexplored. The aims of this study were to characterize the expression and the activity of SSAO during aortic valve calcification and to establish the effects of SSAO inhibition on human valvular interstitial cell (VIC) calcification. METHODS: Human aortic valves from n = 80 patients were used for mRNA extraction and expression analysis, Western blot, SSAO activity determination, immunohistochemistry, and the isolation of primary VIC cultures. RESULTS: SSAO mRNA, protein, and activity were increased with increasing calcification within human aortic valves and localized in the vicinity of the calcified zones. The valvular SSAO upregulation was consistent after stratification of the subjects according to cardiovascular and CAVS risk factors associated with increased oxidative stress: body mass index, diabetes, and smoking. SSAO mRNA levels were significantly associated with poly(ADP-ribose) polymerase 1 (PARP1) in calcified tissue. Calcification of VIC was inhibited in the presence of the specific SSAO inhibitor LJP1586. CONCLUSION: The association of SSAO expression and activity with valvular calcification and oxidative stress as well as the decreased VIC calcification by SSAO inhibition points to SSAO as a possible marker and therapeutic target to be further explored in CAVS.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Estenose da Valva Aórtica/enzimologia , Estenose da Valva Aórtica/patologia , Valva Aórtica/enzimologia , Valva Aórtica/patologia , Calcinose/enzimologia , Calcinose/patologia , Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Amina Oxidase (contendo Cobre)/genética , Estenose da Valva Aórtica/genética , Calcinose/genética , Diabetes Mellitus/enzimologia , Diabetes Mellitus/genética , Humanos , Obesidade/enzimologia , Obesidade/genética , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fumar/efeitos adversos
17.
BMC Complement Med Ther ; 20(1): 129, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345272

RESUMO

BACKGROUND: Evolvulus alsinoides (Linn.) Linn. (Convolvulaceae) is a therapeutic herb alleviating brain patterns associated with three categories of regulatory principles of the body, mind, and behaviour. In the current research, enzyme inhibition and cytotoxic potentials of E. alsinoides (L.) L. leaf extract has been studied validating its potential application. METHODS: The plant phenolics in the leaf extracts obtained via cold-maceration with solvents viz.: n-hexane, chloroform, ethyl acetate, methanol, and water were quantitatively analyzed. The antioxidant potency was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Ability of Plasma (FRAP) assays at five concentrations (100-500 µg). The enzyme inhibition potential was performed with α-amylase, α-glucosidase, and acetylcholinesterase at seven concentrations (25-500 µg). The experiments were done in triplicates and statistically validated using Minitab-17 and SPSS 22. RESULTS: Water extract contain 45.08 ± 0.02 mg GAE/g, 49.30 ± 0.07 mg GAE/g, 211.21 ± 0.02 mg QE/g tannins, phenolics, flavonoids respectively. Its antioxidant activity was supported by IC50 52.43 ± 0.2 µg/mL (DPPH assay) and 41.58 ± 0.03 (FRAP assay). Methanolic extract inhibits α-amylase with IC50 1.33 ± 0.05 µg/mL. Water extract inhibits α-glucosidase and acetylcholinesterase with IC50 3.58 ± 0.02 µg/mL and 4.46 ± 0.03 µg/mL. Cytotoxicity studies with SH-SY5Y cell-line substantiate the inhibition potential of water extract with IC50 103.0035 µg/mL. DISCUSSION AND CONCLUSIONS: The extracts with potent antioxidant and enzyme-inhibiting activity were determined. The findings of the research are the first report about the inhibition effects of Evolvulus alsinoides (Linn.) Linn extracts against α-amylase, α-glucosidase and acetylcholinesterase. The extracts shall be examined in future studies to evaluate its pharmaceutical potential.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Diabetes Mellitus/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores , Acetilcolinesterase , Doença de Alzheimer/enzimologia , Linhagem Celular Tumoral , Convolvulaceae/química , Diabetes Mellitus/enzimologia , Humanos , Índia , Ayurveda , Extratos Vegetais/química , Folhas de Planta/química , alfa-Glucosidases
18.
Molecules ; 25(8)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294979

RESUMO

In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.


Assuntos
Doenças do Sistema Nervoso Central/enzimologia , Ciliopatias/enzimologia , Diabetes Mellitus/enzimologia , Inflamação/enzimologia , Quinases Relacionadas a NIMA/metabolismo , Neoplasias/enzimologia , Animais , Proteínas de Ciclo Celular/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Ciliopatias/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Inflamação/metabolismo , Quinases Relacionadas a NIMA/antagonistas & inibidores , Quinases Relacionadas a NIMA/genética , Neoplasias/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/genética
19.
Cardiovasc Diabetol ; 19(1): 33, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169071

RESUMO

The proprotein convertase subtilisin/kexin type 9 (PCSK9) acts via a canonical pathway to regulate circulating low-density lipoprotein-cholesterol (LDL-C) via degradation of the LDL receptor (LDLR) on the liver cell surface. Published research has shown that PCSK9 is involved in atherosclerosis via a variety of non-classical mechanisms that involve lysosomal, inflammatory, apoptotic, mitochondrial, and immune pathways. In this review paper, we summarized these additional mechanisms and described how anti-PCSK9 therapy exerts effects through these mechanisms. These additional pathways further illustrate the regulatory role of PCSK9 in atherosclerosis and offer an in-depth interpretation of how the PCSK9 inhibitor exerts effects on the treatment of atherosclerosis.


Assuntos
Aterosclerose/enzimologia , LDL-Colesterol/sangue , Diabetes Mellitus/enzimologia , Dislipidemias/enzimologia , Inflamação/enzimologia , Pró-Proteína Convertase 9/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Diabetes Mellitus/sangue , Diabetes Mellitus/patologia , Dislipidemias/sangue , Dislipidemias/tratamento farmacológico , Dislipidemias/patologia , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Humanos , Inflamação/sangue , Inflamação/patologia , Macrófagos/enzimologia , Macrófagos/patologia , Inibidores de PCSK9 , Placa Aterosclerótica , Inibidores de Serina Proteinase/uso terapêutico
20.
Curr Mol Pharmacol ; 13(1): 17-30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31339082

RESUMO

BACKGROUND: Protein tyrosine phosphatases are enzymes which help in the signal transduction in diabetes, obesity, cancer, liver diseases and neurodegenerative diseases. PTP1B is the main member of this enzyme from the protein extract of human placenta. In phosphate inhibitors development, significant progress has been made over the last 10 years. In early-stage clinical trials, few compounds have reached whereas in the later stage trials or registration, yet none have progressed. Many researchers investigate different ways to improve the pharmacological properties of PTP1B inhibitors. OBJECTIVE: In the present review, authors have summarized various aspects related to the involvement of PTP1B in various types of signal transduction mechanisms and its prominent role in various diseases like cancer, liver diseases and diabetes mellitus. CONCLUSION: There are still certain challenges for the selection of PTP1B as a drug target. Therefore, continuous future efforts are required to explore this target for the development of PTP inhibitors to treat the prevailing diseases associated with it.


Assuntos
Inibidores Enzimáticos/farmacologia , Terapia de Alvo Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/enzimologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Feminino , Previsões , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/fisiologia , Leptina/fisiologia , Camundongos , Modelos Moleculares , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Fármacos Neuroprotetores/uso terapêutico , Placenta/enzimologia , Gravidez , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA