Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(37): 7172-7183, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36041230

RESUMO

Diacylglycerol kinases (DGKs) are important enzymes in molecular membrane biology, as they can lower the concentration of diacylglycerol through phosphorylation while at the same time producing phosphatidic acid. Dysfunction of DGK is linked with multiple diseases including cancer and autoimmune disorders. Currently, the high-resolution structures have not been determined for any of the 10 human DGK paralogs, which has made it difficult to gain a more complete understanding of the enzyme's mechanism of action and regulation. In the present study, we have taken advantage of the significant developments in protein structural prediction technology by artificial intelligence (i.e., Alphafold 2.0), to conduct a comprehensive investigation on the properties of all 10 human DGK paralogs. Structural alignment of the predictions reveals that the C1, catalytic, and accessory domains are conserved in their spatial arrangement relative to each other, across all paralogs. This suggests a critical role played by this domain architecture in DGK function. Moreover, docking studies corroborate the existence of a conserved ATP-binding site between the catalytic and accessory domains. Interestingly, the ATP bound to the interdomain cleft was also found to be in proximity of the conserved glycine-rich motif, which in protein kinases has been suggested to function in ATP binding. Lastly, the spatial arrangement of DGK, with respect to the membrane, reveals that most paralogs possess a more energetically favorable interaction with curved membranes. In conclusion, AlphaFold predictions of human DGKs provide novel insights into the enzyme's structural and functional properties while also paving the way for future experimentation.


Assuntos
Diacilglicerol Quinase , Diglicerídeos , Trifosfato de Adenosina , Inteligência Artificial , Diacilglicerol Quinase/química , Diacilglicerol Quinase/metabolismo , Diglicerídeos/química , Glicina , Humanos , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/metabolismo , Proteínas Quinases
2.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072296

RESUMO

Diacylglycerol kinases are intracellular enzymes that control the balance between the secondary messengers diacylglycerol and phosphatidic acid. DGKα and DGKζ are the prominent isoforms that restrain the intensity of T cell receptor signalling by metabolizing PLCγ generated diacylglycerol. Thus, their activity must be tightly controlled to grant cellular homeostasis and refine immune responses. DGKα is specifically inhibited by strong T cell activating signals to allow for full diacylglycerol signalling which mediates T cell response. In X-linked lymphoproliferative disease 1, deficiency of the adaptor protein SAP results in altered T cell receptor signalling, due in part to persistent DGKα activity. This activity constrains diacylglycerol levels, attenuating downstream pathways such as PKCθ and Ras/MAPK and decreasing T cell restimulation induced cell death. This is a form of apoptosis triggered by prolonged T cell activation that is indeed defective in CD8+ cells of X-linked lymphoproliferative disease type 1 patients. Accordingly, inhibition or downregulation of DGKα activity restores in vitro a correct diacylglycerol dependent signal transduction, cytokines production and restimulation induced apoptosis. In animal disease models, DGKα inhibitors limit CD8+ expansion and immune-mediated tissue damage, suggesting the possibility of using inhibitors of diacylglycerol kinase as a new therapeutic approach.


Assuntos
Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Suscetibilidade a Doenças , Genes Ligados ao Cromossomo X , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/metabolismo , Animais , Biomarcadores , Diacilglicerol Quinase/química , Ativação Enzimática , Estudos de Associação Genética/métodos , Loci Gênicos , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Transtornos Linfoproliferativos/diagnóstico , Ligação Proteica , Transdução de Sinais , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
FASEB J ; 35(6): e21602, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33977628

RESUMO

Diacylglycerol kinases catalyze the ATP-dependent phosphorylation of diacylglycerol (DAG) to produce phosphatidic acid (PA). In humans, the alpha isoform (DGKα) has emerged as a potential target in the treatment of cancer due to its anti-tumor and pro-immune responses. However, its mechanism of action at a molecular level is not fully understood. In this work, a systematic investigation of the role played by the membrane in the regulation of the enzymatic properties of human DGKα is presented. By using a cell-free system with purified DGKα and model membranes of variable physical and chemical properties, it is shown that membrane physical properties determine human DGKα substrate acyl chain specificity. In model membranes with a flat morphology; DGKα presents high enzymatic activity, but it is not able to differentiate DAG molecular species. Furthermore, DGKα enzymatic properties are insensitive to membrane intrinsic curvature. However, in the presence of model membranes with altered morphology, specifically the presence of physically curved membrane structures, DGKα bears substrate acyl chain specificity for palmitic acid-containing DAG. The present results identify changes in membrane morphology as one possible mechanism for the depletion of specific pools of DAG as well as the production of specific pools of PA by DGKα, adding an extra layer of regulation on the interconversion of these two potent lipid-signaling molecules. It is proposed that the interplay between membrane physical (shape) and chemical (lipid composition) properties guarantee a fine-tuned signal transduction system dependent on the levels and molecular species of DAG and PA.


Assuntos
Membrana Celular/química , Diacilglicerol Quinase/química , Diglicerídeos/química , Ácidos Fosfatídicos/química , Domínio Catalítico , Membrana Celular/metabolismo , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Humanos , Ácidos Fosfatídicos/metabolismo , Fosforilação , Especificidade por Substrato
4.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962151

RESUMO

The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.


Assuntos
Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Ácidos Fosfatídicos/metabolismo , Transdução de Sinais/genética , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/química , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Isoformas de Proteínas , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia
5.
Protein Sci ; 28(4): 694-706, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653270

RESUMO

Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that phosphorylate diacylglycerol into phosphatidic acid, modulating the levels of these key signaling lipids. Recently, increasing attention has been paid to DGKα isozyme as a potential target for cancer immunotherapy. We have previously shown that DGKα is positively regulated by Ca2+ binding to its N-terminal EF-hand domains (DGKα-EF). However, little progress has been made for the structural biology of mammalian DGKs and the molecular mechanism underlying the Ca2+ -triggered activation remains unclear. Here we report the first crystal structure of Ca2+ -bound DGKα-EF and analyze the structural changes upon binding to Ca2+ . DGKα-EF adopts a canonical EF-hand fold, but unexpectedly, has an additional α-helix (often called a ligand mimic [LM] helix), which is packed into the hydrophobic core. Biophysical and biochemical analyses reveal that DGKα-EF adopts a protease-susceptible "open" conformation without Ca2+ that tends to form a dimer. Cooperative binding of two Ca2+ ions dissociates the dimer into a well-folded monomer, which resists to proteolysis. Taken together, our results provide experimental evidence that Ca2+ binding induces substantial conformational changes in DGKα-EF, which likely regulates intra-molecular interactions responsible for the activation of DGKα and suggest a possible role of the LM helix for the Ca2+ -induced conformational changes. SIGNIFICANCE STATEMENT: Diacylglycerol kinases (DGKs), which modulates the levels of two lipid second messengers, diacylglycerol and phosphatidic acid, is still structurally enigmatic enzymes since its first identification in 1959. We here present the first crystal structure of EF-hand domains of diacylglycerol kinase α in its Ca2+ bound form and characterize Ca2+ -induced conformational changes, which likely regulates intra-molecular interactions. Our study paves the way for future studies to understand the structural basis of DGK isozymes.


Assuntos
Cálcio/metabolismo , Diacilglicerol Quinase/metabolismo , Cálcio/química , Cristalografia por Raios X , Diacilglicerol Quinase/química , Motivos EF Hand , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
6.
Cell Chem Biol ; 24(7): 870-880.e5, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28712745

RESUMO

Diacylglycerol kinases (DGKs) are integral components of signal transduction cascades that regulate cell biology through ATP-dependent phosphorylation of the lipid messenger diacylglycerol. Methods for direct evaluation of DGK activity in native biological systems are lacking and needed to study isoform-specific functions of these multidomain lipid kinases. Here, we utilize ATP acyl phosphate activity-based probes and quantitative mass spectrometry to define, for the first time, ATP and small-molecule binding motifs of representative members from all five DGK subtypes. We use chemical proteomics to discover an unusual binding mode for the DGKα inhibitor, ritanserin, including interactions at the atypical C1 domain distinct from the ATP binding region. Unexpectedly, deconstruction of ritanserin yielded a fragment compound that blocks DGKα activity through a conserved binding mode and enhanced selectivity against the kinome. Collectively, our studies illustrate the power of chemical proteomics to profile protein-small molecule interactions of lipid kinases for fragment-based lead discovery.


Assuntos
Diacilglicerol Quinase/metabolismo , Ligantes , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Diacilglicerol Quinase/química , Diacilglicerol Quinase/genética , Células HEK293 , Humanos , Marcação por Isótopo , Ketanserina/química , Ketanserina/metabolismo , Peptídeos/análise , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ritanserina/química , Ritanserina/metabolismo , Espectrometria de Massas em Tandem
7.
Methods Enzymol ; 583: 231-253, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28063493

RESUMO

This section provides detailed protocols for the analysis of a mammalian diacylglycerol kinase, DGKθ, including an activity assay, a kinetic analysis, preparation of small unilamellar vesicles, and a vesicle pulldown assay. The goal of this section is to provide an overview of the unique challenges inherent in the study of an interfacial enzyme such as DGKθ and to outline methods useful for analysis. We include a short tutorial on selecting lipids for forming the interface since this is critical for a successful in vitro assay, and lipids are important regulators of this enzyme. The general principles can be applied to the study of other interfacial enzymes.


Assuntos
Trifosfato de Adenosina/química , Diacilglicerol Quinase/química , Ensaios Enzimáticos , Membranas Intracelulares/química , Lipossomas Unilamelares/química , Animais , Diacilglicerol Quinase/isolamento & purificação , Diglicerídeos/química , Isoenzimas/química , Isoenzimas/isolamento & purificação , Cinética , Mamíferos , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Propriedades de Superfície
8.
Acta Crystallogr D Struct Biol ; 72(Pt 3): 421-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26960129

RESUMO

Recent improvements in data-collection strategies have pushed the limits of native SAD (single-wavelength anomalous diffraction) phasing, a method that uses the weak anomalous signal of light elements naturally present in macromolecules. These involve the merging of multiple data sets from either multiple crystals or from a single crystal collected in multiple orientations at a low X-ray dose. Both approaches yield data of high multiplicity while minimizing radiation damage and systematic error, thus ensuring accurate measurements of the anomalous differences. Here, the combined use of these two strategies is described to solve cases of native SAD phasing that were particular challenges: the integral membrane diacylglycerol kinase (DgkA) with a low Bijvoet ratio of 1% and the large 200 kDa complex of the CRISPR-associated endonuclease (Cas9) bound to guide RNA and target DNA crystallized in the low-symmetry space group C2. The optimal native SAD data-collection strategy based on systematic measurements performed on the 266 kDa multiprotein/multiligand tubulin complex is discussed.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Animais , Proteínas Associadas a CRISPR/química , Bovinos , DNA/química , Diacilglicerol Quinase/química , Escherichia coli/química , Escherichia coli/enzimologia , Modelos Moleculares , Conformação Proteica , RNA Guia de Cinetoplastídeos/química , Ratos , Staphylococcus/química , Staphylococcus/enzimologia , Estatmina/química , Tubulina (Proteína)/química
9.
Nat Commun ; 6: 10140, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26673816

RESUMO

Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.


Assuntos
Membrana Celular/enzimologia , Diacilglicerol Quinase/química , Escherichia coli/enzimologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Domínio Catalítico , Membrana Celular/química , Cristalografia por Raios X , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Escherichia coli/química , Escherichia coli/genética , Modelos Moleculares , Conformação Proteica
10.
Clin Cancer Res ; 21(22): 5008-12, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26420856

RESUMO

Lipid kinases have largely been neglected as targets in cancer, and an increasing number of reports suggest diacylglycerol kinase alpha (DGKα) may be one with promising therapeutic potential. DGKα is one of 10 DGK family members that convert diacylglycerol (DAG) to phosphatidic acid (PA), and both DAG and PA are critical lipid second messengers in the plasma membrane. A host of important oncogenic proteins and pathways affect cancer cells in part through DGKα, including the c-Met and VEGF receptors. Others partially mediate the effects of DGKα inhibition in cancer, such as mTOR and HIF-1α. DGKα inhibition can directly impair cancer cell viability, inhibits angiogenesis, and notably may also boost T-cell activation and enhance cancer immunotherapies. Although two structurally similar inhibitors of DGKα were established decades ago, they have seen minimal in vivo usage, and it is unlikely that either of these older DGKα inhibitors will have utility for cancer. An abandoned compound that also inhibits serotonin receptors may have more translational potential as a DGKα inhibitor, but more potent and specific DGKα inhibitors are sorely needed. Other DGK family members may also provide therapeutic targets in cancer, but require further investigation.


Assuntos
Diacilglicerol Quinase/genética , Inibidores Enzimáticos/uso terapêutico , Imunoterapia , Neoplasias/genética , Diferenciação Celular/genética , Sobrevivência Celular/genética , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/química , Inibidores Enzimáticos/química , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Neoplasias/patologia , Neoplasias/terapia , Ácidos Fosfatídicos/genética , Proteínas Proto-Oncogênicas c-met/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
11.
Phys Chem Chem Phys ; 17(38): 25228-34, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352441

RESUMO

Diacylglycerol kinase is an integral membrane protein which catalyzes phosphoryl transfer from ATP to diacylglycerol. As the smallest kinase known, it shares no sequence homology with conventional kinases and possesses a distinct trimer structure. Thus far, its catalytic mechanism remains elusive. Using molecular dynamics and quantum mechanics calculations, we investigated the co-factor and the substrate binding and phosphoryl transfer mechanism. Based on the analysis of density functional theory calculations, we reveal that the phosphorylation reaction of diacylglycerol kinase features the same phosphoryl transfer mechanism as other kinases, despite its unique structural properties. Our results further show that the active site is relatively open and able to accommodate ligands in multiple orientations, suggesting that the optimization of binding orientations and conformational changes would occur prior to actual phosphoryl transfer.


Assuntos
Diacilglicerol Quinase/metabolismo , Fosfatos/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Biocatálise , Domínio Catalítico , Diacilglicerol Quinase/química , Escherichia coli/enzimologia , Simulação de Dinâmica Molecular , Fosfatos/química , Fosforilação , Teoria Quântica
12.
FEBS Lett ; 589(11): 1272-7, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25862496

RESUMO

Diacylglycerol kinase (DGK) η plays important roles in various patho-physiological events such as oncogenesis. In this study, we performed an enzymological characterization of DGKη splice variant 1 (DGKη1). The Km value for diacylglycerol was 0.14 mol%. Intriguingly, the Km value of DGKη1 for diacylglycerol was at least 9-fold lower than those of other DGK isozymes including DGKα, indicating that DGKη1 is a high affinity isozyme for diacylglycerol. Therefore, DGKη1 is a unique DGK isozyme, which may function at particular membrane sites where only low concentrations of diacylglycerol are supplied.


Assuntos
Diacilglicerol Quinase/química , Diglicerídeos/química , Animais , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Suínos
13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 104-22, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615865

RESUMO

Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method.


Assuntos
Proteínas de Membrana/química , Cristalização , Diacilglicerol Quinase/química , Diacilglicerol Quinase/genética , Escherichia coli/enzimologia , Conformação Proteica
14.
Biochem J ; 454(2): 267-74, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23767959

RESUMO

DGKs (diacylglycerol kinases) catalyse the conversion of diacylglycerol into PA (phosphatidic acid), a positive modulator of mTOR (mammalian target of rapamycin). We have found that chenodeoxycholic acid and the synthetic FXR (farnesoid X receptor) ligand GW4064 induce the mRNA and protein expression of DGKθ in the HepG2 cell line and in primary human hepatocytes. Reporter gene studies using 1.5 kB of the DGKθ promoter fused to the luciferase gene revealed that bile acids increase DGKθ transcriptional activity. Mutation of putative FXR-binding sites attenuated the ability of GW4046 to increase DGKθ luciferase activity. Consistent with this finding, ChIP (chromatin immunoprecipitation) assays demonstrated that bile acid signalling increased the recruitment of FXR to the DGKθ promoter. Furthermore, GW4064 evoked a time-dependent increase in the cellular concentration of PA. We also found that GW4064 and PA promote the phosphorylation of mTOR, Akt and FoxO1 (forkhead box O1), and that silencing DGKθ expression significantly abrogated the ability of GW4046 to promote the phosphorylation of these PA-regulated targets. DGKθ was also required for bile-acid-dependent decreased glucose production. Taken together, our results establish DGKθ as a key mediator of bile-acid-stimulated modulation of mTORC2 (mTOR complex 2), the Akt pathway and glucose homoeostasis.


Assuntos
Ácido Quenodesoxicólico/metabolismo , Diacilglicerol Quinase/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Células Cultivadas , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/química , Diacilglicerol Quinase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Genes Reporter , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoxazóis/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/metabolismo , Mutação , Ácidos Fosfatídicos/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
15.
Nature ; 497(7450): 521-4, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23676677

RESUMO

Diacylglycerol kinase catalyses the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid for use in shuttling water-soluble components to membrane-derived oligosaccharide and lipopolysaccharide in the cell envelope of Gram-negative bacteria. For half a century, this 121-residue kinase has served as a model for investigating membrane protein enzymology, folding, assembly and stability. Here we present crystal structures for three functional forms of this unique and paradigmatic kinase, one of which is wild type. These reveal a homo-trimeric enzyme with three transmembrane helices and an amino-terminal amphiphilic helix per monomer. Bound lipid substrate and docked ATP identify the putative active site that is of the composite, shared site type. The crystal structures rationalize extensive biochemical and biophysical data on the enzyme. They are, however, at variance with a published solution NMR model in that domain swapping, a key feature of the solution form, is not observed in the crystal structures.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/metabolismo , Diacilglicerol Quinase/química , Diacilglicerol Quinase/metabolismo , Proteínas de Membrana/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Diacilglicerol Quinase/genética , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática , Lipídeos , Magnésio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Zinco/farmacologia
16.
Biochem Biophys Res Commun ; 423(3): 571-6, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22695121

RESUMO

The type I diacylglycerol kinase (DGK) isozymes (α, ß and γ) contain a shared recoverin homology (RVH) domain, a tandem repeat of Ca2+-binding EF-hand motifs, two cysteine-rich C1 domains, and the catalytic domain. We previously reported that a DGKα mutant lacking the RVH domain and EF-hands was constitutively active, implying that the N-terminal region (NTR) of DGKα, consisting of the RVH domain and EF-hand motifs, intramolecularly interacts with and masks the activity of the C-terminal region (CTR), containing the C1 and catalytic domains. In this study, we demonstrate that a glutathione S-transferase (GST)-fused DGKα-NTR construct physically binds to a green fluorescent protein (GFP)-fused DGKα-CTR construct. Moreover, co-precipitation of GFP-DGKα-CTR with GST-DGKα-NTR was clearly attenuated by the addition of 1 µM Ca2+. This result indicates that Ca2+ induces dissociation of the physical interaction between DGKα-NTR and DGKα-CTR. In addition to previously reported calcium-dependent changes in the hydrophobicity and net surface charge, Ca2+ also appeared to induce a decrease in the α-helical content of DGKα-NTR. These results suggest that Ca2+-induced conformational changes in the NTR release the intramolecular association between the NTR and the CTR of DGKα.


Assuntos
Cálcio/química , Domínio Catalítico , Diacilglicerol Quinase/química , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Diacilglicerol Quinase/genética , Interações Hidrofóbicas e Hidrofílicas , Mutação , Suínos
17.
Biochem Biophys Res Commun ; 422(4): 758-63, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22627129

RESUMO

Lysophosphatidic acid (LPA) designates a family of bioactive phosphoglycerides that differ in the length and degree of saturation of their radyl chain. Additional diversity is provided by the linkage of the radyl chain to glycerol: acyl, alkyl, or alk-1-enyl. Acyl-LPAs are the predominate species in tissues and biological fluids. Alkyl-LPAs exhibit distinct pharmacodynamics at LPA receptors, potently drive platelet aggregation, and contribute to ovarian cancer aggressiveness. Multiple biosynthetic pathways exist for alkyl-LPA production. Herein we report that diacylglycerol kinases (DGKs) contribute to cell-associated alkyl-LPA production involving phosphorylation of 1-alkyl-2-acetyl glycerol and document the biosynthesis of alkyl-LPA by DGKs in SKOV-3 ovarian cancer cells, specifically identifying the contribution of DGKα. Concurrently, we discovered that treating SKOV-3 ovarian cancer cell with a sphingosine analog stimulates conversion of exogenous 1-alkyl-2-acetyl glycerol to alkyl-LPA, indicating that DGKα contributes significantly to the production of alkyl-LPA in SKOV-3 cells and identifying cross-talk between the sphingolipid and glycerol lipid pathways.


Assuntos
Diacilglicerol Quinase/metabolismo , Lisofosfolipídeos/biossíntese , Linhagem Celular Tumoral , Diacilglicerol Quinase/química , Ativação Enzimática , Células HEK293 , Humanos , Esfingosina/análogos & derivados
18.
J Biol Chem ; 287(8): 5507-17, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22199356

RESUMO

c-Abl is a tyrosine kinase involved in many cellular processes, including cell cycle control and proliferation. However, little is known about its substrates. Here, we show that c-Abl directly phosphorylates diacylglycerol kinase α (DGKα), an important regulator of many cellular events through its conversion of diacylglycerol to phosphatidic acid. We found that DGKα was transported from the cytoplasm to the nucleus in response to serum starvation, and serum restoration induced the nuclear export of the enzyme to the cytoplasm. This serum-induced export involves two tyrosine kinases, c-Src and c-Abl. The latter, c-Abl, is activated by c-Src, phosphorylates DGKα, and shuttles between the nucleus and the cytoplasm in a direction opposite to that of DGKα in response to serum restoration. Moreover, an in vitro phosphorylation assay using purified mutants of DGKα identified Tyr-218 as a site of phosphorylation by c-Abl. We confirmed these results for endogenous DGKα using an antibody specific for phospho-Tyr-218, and this phosphorylation was necessary for the serum-induced export of DGKα. These results demonstrate that the nucleo-cytoplasmic shuttling of DGKα is orchestrated by tyrosine phosphorylation by the Src-activated tyrosine kinase c-Abl and that this phosphorylation is important for regulating the function of cytoplasmic and/or nuclear DGKα.


Assuntos
Núcleo Celular/metabolismo , Diacilglicerol Quinase/química , Diacilglicerol Quinase/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Soro/metabolismo , Tirosina , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Células COS , Proteína Tirosina Quinase CSK , Chlorocebus aethiops , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Suínos , Quinases da Família src
20.
Nat Chem Biol ; 7(5): 263-70, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21423170

RESUMO

The simultaneous observation of interdependent reactions within different phases as catalyzed by membrane-bound enzymes is still a challenging task. One such enzyme, the Escherichia coli integral membrane protein diacylglycerol kinase (DGK), is a key player in lipid regulation. It catalyzes the generation of phosphatidic acid within the membrane through the transfer of the γ-phosphate from soluble MgATP to membrane-bound diacylglycerol. We demonstrate that time-resolved (31)P magic angle spinning NMR offers a unique opportunity to simultaneously and directly detect both ATP hydrolysis and diacylglycerol phosphorylation. This experiment demonstrates that solid-state NMR provides a general approach for the kinetic analysis of coupled reactions at the membrane interface regardless of their compartmentalization. The enzymatic activity of DGK was probed with different lipid substrates as well as ATP analogs. Our data yield conclusions about intersubunit cooperativity, reaction stoichiometries and phosphoryl transfer mechanism and are discussed in the context of known structural data.


Assuntos
Diacilglicerol Quinase/análise , Escherichia coli/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Trifosfato de Adenosina/metabolismo , Catálise , Diacilglicerol Quinase/química , Diacilglicerol Quinase/metabolismo , Escherichia coli/enzimologia , Hidrólise , Cinética , Ácidos Fosfatídicos/metabolismo , Fosforilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA