Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
Front Immunol ; 15: 1295150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384456

RESUMO

Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with Salmonella typhimurium. The scavenging of mitochondrial reactive oxygen species by mitochondria-targeted antioxidants MitoQ and SkQ1, as well as inhibition of their production by mitochondrial inhibitors, inhibit the synthesis of leukotrienes regardless of the cessation of oxidative phosphorylation. On the contrary, antioxidants N-acetylcysteine and sodium hydrosulfide promoting reductive shift in the reversible thiol-disulfide system stimulate the synthesis of leukotrienes. Diamide that oxidizes glutathione at high concentrations inhibits leukotriene synthesis, and the glutathione precursor S-adenosyl-L-methionine prevents this inhibition. Diamide-dependent inhibition is also prevented by diphenyleneiodonium, presumably through inhibition of NADPH oxidase and NADPH accumulation. Thus, during bacterial infection, maintaining the reduced state of glutathione in neutrophils plays a decisive role in the synthesis of leukotriene B4. Suppression of excess leukotriene synthesis is an effective strategy for treating various inflammatory pathologies. Our data suggest that the use of mitochondria-targeted antioxidants may be promising for this purpose, whereas known thiol-based antioxidants, such as N-acetylcysteine, may dangerously stimulate leukotriene synthesis by neutrophils during severe pathogenic infection.


Assuntos
Leucotrieno B4 , Neutrófilos , Salmonella typhimurium , Acetilcisteína/farmacologia , Diamida/farmacologia , Leucotrienos/farmacologia , Fatores Quimiotáticos , Oxirredução , Antioxidantes/farmacologia , Glutationa/farmacologia , Compostos de Sulfidrila/farmacologia
2.
Pest Manag Sci ; 79(10): 3693-3699, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37184302

RESUMO

BACKGROUND: The common cutworm, Spodoptera litura (Fabricius), is one of the most widespread and destructive polyphagous pests in tropical and subtropical Asia. S. litura has evolved resistance to different insecticides, including diamide insecticides. Here, we identified a ryanodine receptor (RyR) mutation (I4728M) associated with target site resistance to diamides in a field-collected population of S. litura. The contribution of this mutation to diamide resistance was investigated through establishing a near-isogenic resistant strain of S. litura. RESULTS: The ND21 population of S. litura, collected from Ningde, Fujian province of China in 2021, exhibited 130.6-fold resistance to chlorantraniliprole compared to the susceptible NJ-S strain. S. litura RyR mutation I4728M, corresponding to Plutella xylostella RyR I4790M, was identified in the ND21 population. SlRyR I4728M mutation of ND21 was introgressed into a susceptible background strain (NJ-S) with marker-assisted backcrossing. The introgressed strain named ND21-R, which was homozygous for the mutant 4728M allele, shared about 94% of the genetic background with the NJ-S strain. ND21-R strain showed moderate levels of resistance to two anthranilic diamides (19.1-fold to chlorantraniliprole, 19.7-fold to cyantraniliprole) and the phthalic diamide flubendiamide (23.4-fold). Genetic analysis showed that chlorantraniliprole resistance was autosomal, incompletely recessive and tightly linked with SlRyR I4728M mutation in the introgressed ND21-R strain of S. litura. CONCLUSION: Identification of the I4728M mutation and its contribution to diamide resistance in S. litura will help develop allelic discrimination assays for resistance monitoring and guide resistance management practices for diamides in S. litura. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Spodoptera/genética , Inseticidas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Diamida/farmacologia , Resistência a Inseticidas/genética , ortoaminobenzoatos/farmacologia , Mutação , Mariposas/genética
3.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677619

RESUMO

Thirty novel diamide compounds combining pyrazolyl and polyfluoro-substituted phenyl groups into alanine or 2-aminobutyric acid skeletons were designed and synthesized with pyflubumide as the lead compound to develop potent and environmentally friendly pesticides. The preliminary bioassay results indicated that the new compounds containing the para-hexa/heptafluoroisopropylphenyl moiety exhibit fungicidal, insecticidal, and acaricidal activities. This is the first time that the para-hexa/heptafluoroisopropylphenyl group is a key fragment of the fungicidal activity of new N-phenyl amide compounds. Most of the target compounds exhibited moderate to good insecticidal activity against Aphis craccivora at a concentration of 400 µg/mL, and some showed moderate activity at a concentration of 200 µg/mL; in particular, compounds I-4, II-a-10, and III-26 displayed higher than 78% lethal rates at 200 µg/mL. Compound II-a-14 exhibited a 61.1% inhibition at 200 µg/mL for Tetranychus cinnabarinus. In addition, some of the target compounds exhibited good insecticidal activities against Plutella xylostella at a concentration of 200 µg/mL; the mortalities of compounds I-1, and II-a-15 were 76.7% and 70.0%, respectively. Preliminary analysis of the structure-activity relationship (SAR) indicated that the insecticidal and acaricidal activities varied significantly depending on the type of substituent and substitution pattern. The fungicidal activity results showed that compounds I-1, II-a-10, II-a-17, and III-26 exhibited good antifungal effects. Enzymatic activity experiments and in vivo efficacy of compound II-a-10 were conducted and discussed.


Assuntos
Acaricidas , Fungicidas Industriais , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Diamida/farmacologia , Alanina/farmacologia , Desenho de Fármacos , Relação Estrutura-Atividade , Fungicidas Industriais/farmacologia , Estrutura Molecular
4.
PLoS One ; 17(8): e0272388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35913917

RESUMO

Stenotrophomonas maltophilia contains an operon comprising mfsB and mfsC, which encode membrane transporters in the major facilitator superfamily (MFS). The results of the topological analysis predicted that both MfsB and MfsC possess 12 transmembrane helices with the N- and C-termini located inside the cells. The deletion of mfsC increased the susceptibility to diamide, a chemical oxidizing agent, but not to antibiotics and oxidative stress-generating substances relative to wild-type K279a. Moreover, no altered phenotype was observed against all tested substances for the ΔmfsB mutant. The results of the expression analysis revealed that the mfsBC expression was significantly induced by exposure to diamide. The diamide-induced gene expression was mediated by DitR, a TetR-type transcriptional regulator encoded by smlt0547. A constitutively high expression of mfsC in the ditR mutant indicated that DitR acts as a transcriptional repressor of mfsBC under physiological conditions. Purified DitR was bound to three sites spanning from position + 21 to -57, corresponding to the putative mfsBC promoter sequence, thereby interfering with the binding of RNA polymerase. The results of electrophoretic mobility shift assays illustrated that the treatment of purified DitR with diamide caused the release of DitR from the mfsBC promoter region, and the diamide sensing mechanism of DitR required two conserved cysteine residues, Cys92 and Cys127. This suggests that exposure to diamide can oxidize DitR through the oxidation of cysteine residues, leading to its release from the promoter, thus allowing mfsBC transcription. Overall, MfsC and DitR play a role in adaptive resistance against the diamide of S. maltophilia.


Assuntos
Stenotrophomonas maltophilia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Diamida/metabolismo , Diamida/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Regiões Promotoras Genéticas , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo
5.
Pest Manag Sci ; 78(11): 4517-4532, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35810341

RESUMO

BACKGROUND: Chlorantraniliprole (CAP) is an efficient anthranilic diamide insecticide against economically important pests such as the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Resistance to CAP may develop due to enhanced enzymatic detoxification. The glutathione S-transferase (GST) superfamily in M. separata has not been systematically characterized. The aim of this study was therefore to explore the effects of lethal and sublethal doses of CAP on M. separata larvae, screen differentially expressed genes (DEGs) responding to CAP exposure, identify and characterize the GST superfamily, and analyze the metabolism of CAP by recombinant GSTs. RESULTS: The toxicity bioassay showed that CAP was active against M. separata third-instar larvae. LC50 was 17.615, 3.127, and 1.336 mg/L after 24, 48, and 72 h, respectively. Poisoned larvae showed contracted somites and disrupted midgut. Total GST activity in larvae was significantly elevated 24 h after CAP exposure. RNA-sequencing generated 43 055 unigenes with an average length of 1010 bp, and 567 up-regulated and 692 down-regulated DEGs responding to CAP treatment were screened. Thirty-five GST genes were identified from unigenes, including 31 cytosolic, three microsomal, and one unclassified. The expression profile of GST genes was analyzed using samples from different developmental stages, adult tissues, and CAP treatments. Metabolic assays indicated that CAP was depleted by recombinant MseGSTe2 and MseGSTs6. CONCLUSIONS: This study provides insight into the toxicological and transcriptomic effects in M. separata larvae exposed to CAP. The identification and functional characterization of the GST superfamily will improve our understanding of CAP detoxification by GSTs. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Animais , Diamida/farmacologia , Glutationa , Glutationa Transferase/genética , Inseticidas/farmacologia , Larva/genética , Mariposas/genética , RNA/farmacologia , Transcriptoma , ortoaminobenzoatos
6.
Biochem Biophys Res Commun ; 577: 89-94, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34509083

RESUMO

The protozoan Plasmodium falciparum is the main aetiological agent of tropical malaria. Characteristic of the phylum is the presence of a plastid-like organelle which hosts several homologs of plant proteins, including a ferredoxin (PfFd) and its NADPH-dependent reductase (PfFNR). The PfFNR/PfFd redox system is essential for the parasite, while mammals share no homologous proteins, making the enzyme an attractive target for novel and much needed antimalarial drugs. Based on previous findings, three chemically reactive residues important for PfFNR activity were identified: namely, the active-site Cys99, responsible for hydride transfer; Cys284, whose oxidation leads to an inactive dimeric form of the protein; and His286, which is involved in NADPH binding. These amino acid residues were probed by several residue-specific reagents and the two cysteines were shown to be promising targets for covalent inhibition. The quantitative and qualitative description of the reactivity of few compounds, including a repurposed drug, set the bases for the development of more potent and specific antimalarial leads.


Assuntos
Inibidores Enzimáticos/farmacologia , Ferredoxina-NADP Redutase/antagonistas & inibidores , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacologia , Biocatálise/efeitos dos fármacos , Carmustina/química , Carmustina/metabolismo , Carmustina/farmacologia , Domínio Catalítico , Cisteína/química , Cisteína/metabolismo , Diamida/química , Diamida/metabolismo , Diamida/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Cinética , Malária Falciparum/parasitologia , Estrutura Molecular , NADP/metabolismo , Compostos Organomercúricos/química , Compostos Organomercúricos/metabolismo , Compostos Organomercúricos/farmacologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/fisiologia , Ligação Proteica , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Especificidade por Substrato
7.
Eur J Med Chem ; 226: 113838, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571173

RESUMO

The P2X7 receptor (P2X7R) stands out among the purinergic receptors due to its strong involvement in the regulation of tumor growth and metastasis formation as well as in innate immune responses and afferent signal transmission. Numerous studies have pointed out the beneficial effects of P2X7R antagonism for the treatment of a variety of cancer types, inflammatory diseases, and chronic pain. Herein we describe the development of novel P2X7R antagonists, incorporating piperazine squaric diamides as a central element. Besides improving the antagonists' potency from pIC50 values of 5.7-7.6, ADME properties (logD7.4 value, plasma protein binding, in vitro metabolic stability) of the generated compounds were investigated and optimized to provide novel P2X7R antagonists with drug-like properties. Furthermore, docking studies revealed the antagonists binding to the allosteric binding pocket in two distinct binding poses, depending on the substitution of the central piperazine moiety.


Assuntos
Ciclobutanos/farmacologia , Diamida/farmacologia , Piperazina/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X/metabolismo , Ciclobutanos/síntese química , Ciclobutanos/química , Diamida/síntese química , Diamida/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Piperazina/síntese química , Piperazina/química , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Planta ; 253(1): 10, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389194

RESUMO

MAIN CONCLUSION: The plasma membrane H+-ATPase can be considered as a redox-dependent enzyme, because diamide-mediated inhibition of its hydrolytic and transport activities is accompanied by alkalization of the rhizosphere and retardation of root growth. Plasma membranes were isolated from roots of etiolated pea seedlings treated in the presence of an oxidant-diamide and an inhibitor of redox-sensitive protein phosphatase-phenylarsine oxide. Hydrolytic and proton transport activities of H+-ATPase were determined. The effects of diamide appeared in inhibition of both ATP hydrolysis and the proton transport. However, root treatment with phenylarsine oxide only slightly reduced Vmax, but did not affect ATP-dependent proton transport. The thiol groups of cysteines in the proteins can act as molecular targets for both compounds. However, treatment of isolated membranes with diamide or dithiothreitol did not have any effect on the H+ transport. It can be assumed that water-soluble diamide acts indirectly and its effects are not associated with oxidation of H+-ATPase cysteines. Therefore, plasmalemma was subjected to PEGylation-process where reduced cysteines available for PEG maleimide (5 kDa) were alkylated. Detection of such cysteines was carried out by Western blot analysis with anti-ATPase antibodies. It was found that shifts in the apparent molecular weight were detected only for denaturated proteins. These data suggest that available thiols are not localized on the enzyme surfaces. BN-PAGE analysis showed that the molecular weights of the ATPase complexes are almost identical in all samples. Therefore, oligomerization is probably not the reason for the inhibition of ATPase activity. Roots treated with these inhibitors in vivo exhibited stunted growth; however, a strong alkaline zone around the roots was formed only in the presence of diamide. Involvement of H+-ATPase redox regulation in this process is discussed.


Assuntos
Diamida , Pisum sativum , Raízes de Plantas , ATPases Translocadoras de Prótons , Membrana Celular/enzimologia , Diamida/farmacologia , Pisum sativum/enzimologia , Raízes de Plantas/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia
9.
Insect Sci ; 28(3): 627-638, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32558234

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a major pest native to the Americas that has recently invaded the Old World. Point mutations in the target-site proteins acetylcholinesterase-1 (ace-1), voltage-gated sodium channel (VGSC) and ryanodine receptor (RyR) have been identified in S. frugiperda as major resistance mechanisms to organophosphate, pyrethroid and diamide insecticides respectively. Mutations in the adenosine triphosphate-binding cassette transporter C2 gene (ABCC2) have also been identified to confer resistance to Cry1F protein. In this study, we applied a whole-genome sequencing (WGS) approach to identify point mutations in the target-site genes in 150 FAW individuals collected from China, Malawi, Uganda and Brazil. This approach revealed three amino acid substitutions (A201S, G227A and F290V) of S. frugiperda ace-1, which are known to be associated with organophosphate resistance. The Brazilian population had all three ace-1 point mutations and the 227A allele (mean frequency = 0.54) was the most common. Populations from China, Malawi and Uganda harbored two of the three ace-1 point mutations (A201S and F290V) with the 290V allele (0.47-0.58) as the dominant allele. Point mutations in VGSC (T929I, L932F and L1014F) and RyR (I4790M and G4946E) were not detected in any of the 150 individuals. A novel 12-bp insertion mutation in exon 15 of the ABCC2 gene was identified in some of the Brazilian individuals but absent in the invasive populations. Our results not only demonstrate robustness of the WGS-based genomic approach for detection of resistance mutations, but also provide insights for improvement of resistance management tactics in S. frugiperda.


Assuntos
Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Spodoptera , Acetilcolinesterase/genética , Animais , Diamida/farmacologia , Genes de Insetos , Genoma de Inseto , Organofosfatos/farmacologia , Mutação Puntual/genética , Mutação Puntual/fisiologia , Piretrinas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Canais de Sódio Disparados por Voltagem/genética , Sequenciamento Completo do Genoma
10.
J Biol Chem ; 295(45): 15342-15365, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32868295

RESUMO

The contraction and relaxation of the heart is controlled by stimulation of the ß1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of ß1-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Oxidantes/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais , Acetatos/farmacologia , Animais , Bovinos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diamida/farmacologia , Humanos , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Compostos Nitrosos/farmacologia , Oxirredução , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Coelhos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
11.
Bioorg Med Chem ; 28(19): 115679, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32912430

RESUMO

The therapy of chronic hepatitis C virus infections has significantly improved with the development of direct-acting antivirals (DAAs), which contain NS3/4A protease, NS5A, and NS5B polymerase inhibitors. However, mutations in specific residues in these viral target genes are associated with resistance to the DAAs. Especially inhibitors of NS3/4A protease and NS5A, such as grazoprevir and velpatasvir, have a low barrier to resistant mutations. As a result, the mutations influence the virological outcomes after DAA treatment. CypA inhibitors, as host-targeted agents, act on host factors to inhibit HCV replication, exhibiting a high resistance barrier and pan-genotype activities against HCV. Therefore, they can be developed into alternative, more effective anti-HCV agents. However, CypA inhibitors are natural products and analogs. Based on previous studies, bisamide derivatives were designed and synthesized to develop a novel class of CypA inhibitors. Bisamide derivative 7c is a promising compound with potent anti-HCV activity at subtoxic concentrations. Surface plasmon resonance experiments revealed that 7c directly binds to CypA. All these studies indicated that the derivative 7c is a potent CypA inhibitor, which can be used as a host-targeted agent in combination with other antiviral agents for anti-HCV treatment.


Assuntos
Antivirais/farmacologia , Ciclofilina A/antagonistas & inibidores , Diamida/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Terapia de Alvo Molecular , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Ciclofilina A/genética , Ciclofilina A/metabolismo , Diamida/síntese química , Diamida/química , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Hepatite C Crônica/metabolismo , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
12.
Res Microbiol ; 171(8): 331-340, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32750493

RESUMO

The whiA (NCgl1527) gene from Corynebacterium glutamicum plays a crucial role during cell growth, and WhiA is recognized as the transcription factor for genes involved in cell division. In this study, we assessed the regulatory role of the gene in cell physiology. Transcription of the gene was specifically downregulated by the thiol-specific oxidant, diamide, and by heat stress. Cells exposed to diamide showed decreased transcription of genes involved in cell division and these effects were more profound in ΔwhiA cells. In addition, the ΔwhiA cells showed sensitivity to thiol-specific oxidants, DNA-damaging agents, and high temperature. Further, downregulation of sigH (NCgl0733), the central regulator in stress responses, along with master regulatory genes in cell metabolism, was observed in the ΔwhiA strain. Moreover, the amount of cAMP in the ΔwhiA cells in the early stationary phase was only at 30% level of that for the wild-type strain. Collectively, our data indicate that the role of whiA is to downregulate genes associated with cell division in response to heat or thiol-specific oxidative stress, and may suggest a role for the gene in downshifting cell metabolism by downregulating global regulatory genes when growth condition is not optimal for cells.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/fisiologia , Proteínas de Ligação a DNA/genética , Diamida/farmacologia , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Microbiologia Industrial , Oxidantes/farmacologia , Estresse Oxidativo/genética , Compostos de Sulfidrila/química , Reagentes de Sulfidrila/farmacologia , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
Biochem Biophys Res Commun ; 526(4): 973-977, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32295714

RESUMO

Alternative splicing of the pyruvate kinase M (PKM) pre-mRNA generates two isoforms, PKM1 and PKM2. PKM catalyzes the conversion of phosphoenol-pyruvate to pyruvate in glycolytic pathway. PKM1 exist as a stable tetramer that is at an active enzyme state, while PKM2 is in equilibrium among monomer, dimer and tetramer under the regulation of its allosteric activators. Many cancer cells show the feature of higher glucose uptake and lactate production in spite of oxygen availability, which is known as the Warburg effect. PKM2 is upregulated in most cancer types and the inactive PKM2 lead to the cancer metabolism. In addition, dimeric PKM2 induces its nuclear translocation through posttranslational modification and acts as a transcriptional co-activator for the expression of oncogenes. Therefore, it is important to elucidate mechanisms for modulation of an active or inactive state of PKM2, namely the tetramer-to-dimer-transition. The definitive difference between PKM1 and PKM2 is to constitutively form tetramer or not in the cytoplasm, which is ascribed to 22 amino acids derived from exon 9 (PKM1) or exon 10 (PKM2). In this study, we generated 22 different PKM1-mimetic point mutants of PKM2, and demonstrated that replacement of cysteine424 residue of PKM2 with leucine424 conserved in PKM1 (C424L) promote its tetramerization. PKM2(C424L) formed a tetramer without allosteric activator, and escaped the inhibitory effects by oxidative stress, like PKM1. Our findings intensely suggest that C424 or L424 determines the different catalytic and modulatory properties between PKM splicing isoforms.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Multimerização Proteica , Hormônios Tireóideos/química , Hormônios Tireóideos/metabolismo , Sequência de Aminoácidos , Diamida/farmacologia , Células HeLa , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Proteínas de Ligação a Hormônio da Tireoide
14.
J Agric Food Chem ; 67(48): 13344-13352, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31721573

RESUMO

A series of novel anthranilic diamide derivatives (5a-5ab) containing moieties of trifluoromethylpyridine and hydrazone was designed and synthesized. The synthesized compounds were evaluated in vivo for their activities against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). Most of the synthesized compounds displayed good to excellent antiviral activities. The compounds 5i, 5k, 5s, 5w, 5x, and 5z had the curative activity over 65% against TMV at the concentration of 500 µg/mL, which were significantly higher than those of ningnanmycin (55.0%) and ribavirin (37.9%). Notably, the curative activity of compound 5i was up to 79.5%, with the EC50 value of 75.9 µg/mL, whereas the EC50 value of ningnanmycin was 362.4 µg/mL. The pot experiments also further demonstrated the significantly curative effect of 5i. Meanwhile, compounds 5h, 5p and 5x displayed more protective activities on TMV than that of ningnanmycin. Moreover, compounds 5a, 5e, 5f, and 5i showed inactivation activity similar to ningnanmycin at 500 µg/mL, and the EC50 value of 5e (41.5 µg/mL) was lower than ningnanmycin (50.0 µg/mL). The findings of transmission electron microscopic (TEM) indicated that the synthesized compounds exhibited strong and significant binding affinity to TMV coat protein (CP) and could obstruct the self-assembly and increment of TMV particles. Microscale thermophoresis (MST) studies on TMV-CP and CMV CP revealed that some of the active compounds, particularly 5i, exhibited a strong binding capability to TMV-CP or CMV-CP. This study revealed that anthranilic diamide derivatives containing moieties of trifluoromethylpyridine and hydrazone could be used as novel antiviral agents for controlling the plant viruses.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Diamida/química , Hidrazonas/química , Vírus de Plantas/efeitos dos fármacos , Piridinas/química , Antivirais/química , Cucumovirus/efeitos dos fármacos , Cucumovirus/crescimento & desenvolvimento , Diamida/farmacologia , Desenho de Fármacos , Hidrazonas/farmacologia , Testes de Sensibilidade Microbiana , Vírus de Plantas/crescimento & desenvolvimento , Piridinas/síntese química , Piridinas/farmacologia , Relação Estrutura-Atividade , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento
15.
Bioorg Chem ; 84: 399-409, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30551066

RESUMO

A new series of diamide functional compounds has been designed, synthesized and confirmed by spectroscopic methods and elemental analyses. All the synthesized compounds were evaluated for their antiproliferative activity on HepG2 cell line. Compounds 3k and 3l were proved to have potent anticancer activity equipotent or more potent than reference compound Combretastatin A-4. The results of DNA flow cytometry analysis demonstrated cell cycle arrest at G2/M phase. The extent of apoptosis induced by 3k and 3l was also determined. Moreover, the compounds produced a significant reduction in cellular microtubules for microtubule loss and potently inhibited the binding of [3H]colchicine to tubulin. Compounds 3k and 3l were proved to upregulate expression of proteins triggering apoptosis, such as p53, Bax, and decreased Bcl-2 overexpression as well as increased the expression of effector caspase- 3/7.


Assuntos
Antimitóticos/síntese química , Apoptose , Diamida/química , Desenho de Fármacos , Moduladores de Tubulina/síntese química , Antimitóticos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Diamida/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
16.
Bioorg Med Chem ; 26(12): 3541-3550, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29866480

RESUMO

A series of novel anthranilic diamides derivatives (7a-s) containing halogen, trifluoromethyl group and cyano group were designed, synthesized, and characterized by melting point, 1H NMR, 13C NMR and elemental analyses. The bioactivity revealed that most of them showed moderate to excellent activities against oriental armyworm (Mythimna separata) and diamondback moth (Plutella xylostella). Above all, the larvicidal activity of 7o against oriental armyworm was 100% and 40% at 0.25 and 0.1 mg L-1, comparable to that of the standard chlorantraniliprole (100%, 0.25 mg L-1 and 20%, 0.1 mg L-1). What is more, 7o against diamondback moth displayed 90% insecticidal activity at 0.01 mg L-1, superior to chlorantraniliprole (45%, 0.01 mg L-1). The experiments 7o on the American cockroach (Periplaneta Americana) heart beating rates (Dorsal vessel) and contractile force were compared with chlorantraniliprole. In addition, 7o could affect the calcium homeostasis in the central neurons of the third larvae of oriental armyworm, which revealed that the ryanodine receptor is the potential target of 7o. The density functional theory (DFT) calculation results revealed the amide bridge, the benzene ring of anthraniloyl moiety and pyrazole ring might play an important role in the insecticidal activity through hydrophobic interactions and π-π conjugations.


Assuntos
Diamida/química , Inseticidas/síntese química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Baratas/efeitos dos fármacos , Baratas/fisiologia , Diamida/síntese química , Diamida/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Inseticidas/química , Inseticidas/toxicidade , Isoxazóis/química , Larva/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Teoria Quântica , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Relação Estrutura-Atividade
17.
Biochem J ; 475(11): 1909-1937, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626155

RESUMO

In all living organisms, coenzyme A (CoA) is an essential cofactor with a unique design allowing it to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. It is synthesized in a highly conserved process in prokaryotes and eukaryotes that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA and its thioester derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. A novel unconventional function of CoA in redox regulation has been recently discovered in mammalian cells and termed protein CoAlation. Here, we report for the first time that protein CoAlation occurs at a background level in exponentially growing bacteria and is strongly induced in response to oxidizing agents and metabolic stress. Over 12% of Staphylococcus aureus gene products were shown to be CoAlated in response to diamide-induced stress. In vitro CoAlation of S. aureus glyceraldehyde-3-phosphate dehydrogenase was found to inhibit its enzymatic activity and to protect the catalytic cysteine 151 from overoxidation by hydrogen peroxide. These findings suggest that in exponentially growing bacteria, CoA functions to generate metabolically active thioesters, while it also has the potential to act as a low-molecular-weight antioxidant in response to oxidative and metabolic stress.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Coenzima A/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Coenzima A/genética , Diamida/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Oxirredução , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
18.
Nat Commun ; 8: 15868, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28627510

RESUMO

A high-sugar diet has been associated with reduced lifespan in organisms ranging from worms to mammals. However, the mechanisms underlying the harmful effects of glucose are poorly understood. Here we establish a causative relationship between endogenous glucose storage in the form of glycogen, resistance to oxidative stress and organismal aging in Caenorhabditis elegans. We find that glycogen accumulated on high dietary glucose limits C. elegans longevity. Glucose released from glycogen and used for NADPH/glutathione reduction renders nematodes and human hepatocytes more resistant against oxidative stress. Exposure to low levels of oxidants or genetic inhibition of glycogen synthase depletes glycogen stores and extends the lifespan of animals fed a high glucose diet in an AMPK-dependent manner. Moreover, glycogen interferes with low insulin signalling and accelerates aging of long-lived daf-2 worms fed a high glucose diet. Considering its extensive evolutionary conservation, our results suggest that glycogen metabolism might also have a role in mammalian aging.


Assuntos
Caenorhabditis elegans/fisiologia , Glucose/metabolismo , Glicogênio/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Geneticamente Modificados , Antioxidantes/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diamida/farmacologia , Glucose/farmacologia , Glutationa/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Células Hep G2 , Humanos , Longevidade/fisiologia , NADP/metabolismo , Oxidantes/farmacologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
19.
Exp Parasitol ; 180: 64-70, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28242353

RESUMO

The redox metabolism of the malaria parasite Plasmodium falciparum and its human host has been suggested to play a central role for parasite survival and clearance. A common approach to test hypotheses in redox research is to challenge or rescue cells with pro- and antioxidants. However, quantitative data on the susceptibility of infected erythrocytes towards standard redox agents is surprisingly scarce. Here we determined the IC50 values of P. falciparum strains 3D7 and Dd2 for a set of redox agents using a SYBR green-based growth assay. Parasite killing in this assay required extremely high concentrations of hydrogen peroxide with a millimolar IC50 value, whereas IC50 values for tert-butyl hydroperoxide and diamide were between 67 and 121 µM. Thus, in contrast to tert-butyl hydroperoxide and the disulfide-inducing agent diamide, the host-parasite unit appears to be very robust against challenges with hydrogen peroxide with implications for host defense mechanisms. N-acetylcysteine, ascorbate, and dithiothreitol also had antiproliferative instead of growth-promoting effects with IC50 values around 12, 3 and 0.4 mM, respectively. So-called antioxidants can therefore also inhibit parasite growth with implications for clinical trials and studies on 'oxidative stress'. Furthermore, the addition of reductants to parasite cultures resulted in the gelation of albumin, the formation of methemoglobin and hemolysis. These effects can alter the fluorescence in SYBR green assays and have to be taken into account for the determination of IC50 values. In summary, standard oxidants and reductants both inhibit the growth of P. falciparum with IC50 values differing by three orders of magnitude.


Assuntos
Antioxidantes/farmacologia , Oxidantes/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Acetilcisteína/farmacologia , Ácido Ascórbico/farmacologia , Benzotiazóis , Diamida/farmacologia , Diaminas , Ditiotreitol/farmacologia , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Corantes Fluorescentes , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Concentração Inibidora 50 , Malária Falciparum/parasitologia , Compostos Orgânicos , Oxirredução , Estresse Oxidativo , Parasitemia/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Quinolinas , Fatores de Tempo , terc-Butil Hidroperóxido/farmacologia
20.
Antioxid Redox Signal ; 27(9): 517-533, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28338335

RESUMO

AIMS: Trypanosomatids have a unique trypanothione-based thiol redox metabolism. The parasite-specific dithiol is synthesized from glutathione and spermidine, with glutathionylspermidine as intermediate catalyzed by trypanothione synthetase. In this study, we address the oxidative stress response of African trypanosomes with special focus on putative protein S-thiolation. RESULTS: Challenging bloodstream Trypanosoma brucei with diamide, H2O2 or hypochlorite results in distinct levels of reversible overall protein S-thiolation. Quantitative proteome analyses reveal 84 proteins oxidized in diamide-stressed parasites. Fourteen of them, including several essential thiol redox proteins and chaperones, are also enriched when glutathione/glutaredoxin serves as a reducing system indicating S-thiolation. In parasites exposed to H2O2, other sets of proteins are modified. Only three proteins are S-thiolated under all stress conditions studied in accordance with a highly specific response. H2O2 causes primarily the formation of free disulfides. In contrast, in diamide-treated cells, glutathione, glutathionylspermidine, and trypanothione are almost completely protein bound. Remarkably, the total level of trypanothione is decreased, whereas those of glutathione and glutathionylspermidine are increased, indicating partial hydrolysis of protein-bound trypanothione. Depletion of trypanothione synthetase exclusively induces protein S-glutathionylation. Total mass analyses of a recombinant peroxidase treated with T(SH)2 and either diamide or hydrogen peroxide verify protein S-trypanothionylation as stable modification. INNOVATION: Our data reveal for the first time that trypanosomes employ protein S-thiolation when exposed to exogenous and endogenous oxidative stresses and trypanothione, despite its dithiol character, forms protein-mixed disulfides. CONCLUSION: The stress-specific responses shown here emphasize protein S-trypanothionylation and S-glutathionylation as reversible protection mechanism in these parasites. Antioxid. Redox Signal. 27, 517-533.


Assuntos
Glutationa/análogos & derivados , Glutationa/metabolismo , Proteína S/metabolismo , Espermidina/análogos & derivados , Trypanosoma brucei brucei/metabolismo , Diamida/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Ácido Hipocloroso/farmacologia , Estresse Oxidativo , Proteoma/análise , Proteínas de Protozoários/análise , Espermidina/metabolismo , Compostos de Sulfidrila/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA