Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.425
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1387126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736752

RESUMO

Introduction: We examined the gut microbiota of travellers returning from tropical areas with and without traveller's diarrhoea (TD) and its association with faecal lipocalin-2 (LCN2) levels. Methods: Participants were recruited at the Hospital Clinic of Barcelona, Spain, and a single stool sample was collected from each individual to perform the diagnostic of the etiological agent causing gastrointestinal symptoms as well as to measure levels of faecal LCN2 as a biomarker of gut inflammation. We also characterised the composition of the gut microbiota by sequencing the region V3-V4 from the 16S rRNA gene, and assessed its relation with the clinical presentation of TD and LCN2 levels using a combination of conventional statistical tests and unsupervised machine learning approaches. Results: Among 61 participants, 45 had TD, with 40% having identifiable etiological agents. Surprisingly, LCN2 levels were similar across groups, suggesting gut inflammation occurs without clinical TD symptoms. Differential abundance (DA) testing highlighted a microbial profile tied to high LCN2 levels, marked by increased Proteobacteria and Escherichia-Shigella, and decreased Firmicutes, notably Oscillospiraceae. UMAP analysis confirmed this profile's association, revealing distinct clusters based on LCN2 levels. The study underscores the discriminatory power of UMAP in capturing meaningful microbial patterns related to clinical variables. No relevant differences in the gut microbiota composition were found between travellers with or without TD. Discussion: The findings suggest a correlation between gut microbiome and LCN2 levels during travel, emphasising the need for further research to discern the nature of this relationship.


Assuntos
Diarreia , Fezes , Microbioma Gastrointestinal , Lipocalina-2 , RNA Ribossômico 16S , Humanos , Lipocalina-2/metabolismo , Fezes/microbiologia , Fezes/química , Masculino , Adulto , Feminino , RNA Ribossômico 16S/genética , Pessoa de Meia-Idade , Diarreia/microbiologia , Espanha , Viagem , Biomarcadores , Inflamação/microbiologia , Adulto Jovem , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
2.
Sci Rep ; 14(1): 10926, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740833

RESUMO

In contrast to acute diarrhoea, the aetiology of persistent digestive disorders (≥ 14 days) is poorly understood in low-resource settings and conventional diagnostic approaches lack accuracy. In this multi-country study, we compared multiplex real-time PCR for enteric bacterial, parasitic and viral pathogens in stool samples from symptomatic patients and matched asymptomatic controls in Côte d'Ivoire, Mali and Nepal. Among 1826 stool samples, the prevalence of most pathogens was highest in Mali, being up to threefold higher than in Côte d'Ivoire and up to tenfold higher than in Nepal. In all settings, the most prevalent bacteria were EAEC (13.0-39.9%) and Campylobacter spp. (3.9-35.3%). Giardia intestinalis was the predominant intestinal protozoon (2.9-20.5%), and adenovirus 40/41 was the most frequently observed viral pathogen (6.3-25.1%). Significantly different prevalences between symptomatic and asymptomatic individuals were observed for Campylobacter, EIEC and ETEC in the two African sites, and for norovirus in Nepal. Multiple species pathogen infection was common in Côte d'Ivoire and Mali, but rarely found in Nepal. We observed that molecular testing detected multiple enteric pathogens and showed low discriminatory accuracy to distinguish between symptomatic and asymptomatic individuals. Yet, multiplex PCR allowed for direct comparison between different countries and revealed considerable setting-specificity.


Assuntos
Dor Abdominal , Diarreia , Fezes , Reação em Cadeia da Polimerase Multiplex , Humanos , Côte d'Ivoire/epidemiologia , Diarreia/microbiologia , Diarreia/parasitologia , Diarreia/virologia , Diarreia/epidemiologia , Diarreia/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Nepal/epidemiologia , Mali/epidemiologia , Masculino , Feminino , Adulto , Fezes/microbiologia , Fezes/parasitologia , Fezes/virologia , Adolescente , Criança , Pessoa de Meia-Idade , Pré-Escolar , Adulto Jovem , Lactente , Prevalência , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Idoso , Giardia lamblia/isolamento & purificação , Giardia lamblia/genética
3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38629856

RESUMO

Frequent incidence of postweaning enterotoxigenic Escherichia coli (ETEC) diarrhea in the swine industry contributes to high mortality rates and associated economic losses. In this study, a combination of butyric, caprylic, and capric fatty acid monoglycerides was investigated to promote intestinal integrity and host defenses in weanling pigs infected with ETEC. A total of 160 pigs were allotted to treatment groups based on weight and sex. Throughout the 17-d study, three treatment groups were maintained: sham-inoculated pigs fed a control diet (uninfected control [UC], n = 40), ETEC-inoculated pigs fed the same control diet (infected control [IC], n = 60), and ETEC-inoculated pigs fed the control diet supplemented with monoglycerides included at 0.3% of the diet (infected supplemented [MG], n = 60). After a 7-d acclimation period, pigs were orally inoculated on each of three consecutive days with either 3 mL of a sham-control (saline) or live ETEC culture (3 × 109 colony-forming units/mL). The first day of inoculations was designated as 0 d postinoculation (DPI), and all study outcomes reference this time point. Fecal, tissue, and blood samples were collected from 48 individual pigs (UC, n = 12; IC, n = 18; MG, n = 18) on 5 and 10 DPI for analysis of dry matter (DM), bacterial enumeration, inflammatory markers, and intestinal permeability. ETEC-inoculated pigs in both the IC and MG groups exhibited clear signs of infection including lower (P < 0.05) gain:feed and fecal DM, indicative of excess water in the feces, and elevated (P < 0.05) rectal temperatures, total bacteria, total E. coli, and total F18 ETEC during the peak-infection period (5 DPI). Reduced (P < 0.05) expression of the occludin, tumor necrosis factor α, and vascular endothelial growth factor A genes was observed in both ETEC-inoculated groups at the 5 DPI time point. There were no meaningful differences between treatments for any of the outcomes measured at 10 DPI. Overall, all significant changes were the result of the ETEC infection, not monoglyceride supplementation.


Infection caused by the bacterium known as enterotoxigenic Escherichia coli (ETEC) is a common disruptor of weaned pigs' health, leading to economic losses for the producers. To determine if nutritional supplementation could help protect against these losses, weaned pigs were assigned to one of three treatments: 1) uninfected and fed a standard nursery pig diet, 2) infected with ETEC and fed the same standard diet, or 3) infected with ETEC and fed the standard diet supplemented with a combination of butyric, caprylic, and capric fatty acid monoglycerides. Growth performance was tracked throughout the 17-d study and health outcomes were measured at the peak and resolution of ETEC infection. At the peak-infection time point, pigs that were infected with ETEC had lower fecal moisture content, greater fecal bacterial concentrations, and elevated body temperatures compared with uninfected pigs. Additionally, infection reduced expression of genes related to inflammation, angiogenesis, and the intestinal barrier during the peak-infection period. Overall, all significant changes were the result of the ETEC infection, and there were no meaningful differences observed between the different treatments.


Assuntos
Ração Animal , Suplementos Nutricionais , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Monoglicerídeos , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/prevenção & controle , Escherichia coli Enterotoxigênica/fisiologia , Masculino , Feminino , Ração Animal/análise , Dieta/veterinária , Intestinos/microbiologia , Diarreia/veterinária , Diarreia/microbiologia , Fezes/microbiologia , Desmame
4.
J Ethnopharmacol ; 328: 118050, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38518966

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Linderae Radix (Lindera aggregata (Sims) Kosterm) is a traditional Chinese medicine known for its capability to regulate qi and relieve pain, particularly in the context of gastrointestinal disorders. AIM OF THE STUDY: While our previous research has demonstrated the efficacy of the Linderae Radix water extract (LRWE) in the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), the precise mechanisms remain elusive. This study aims to provide a comprehensive understanding of the therapeutic effects of LRWE on IBS-D through multi-omics techniques. MATERIALS AND METHODS: 16 S rRNA gene sequencing combined with LC-MS metabolomics was employed to investigate the effect of LRWE on the gut microbiota and metabolites of IBS-D rats. Spearman correlation analysis was performed on the gut microbiota and metabolites. RESULTS: LRWE administration significantly ameliorated IBS-D rats' symptoms, including diarrhea, visceral hypersensitivity, and low-grade intestinal inflammation. Gut microbiota analysis revealed that LRWE influenced the diversity of the gut microbiota in IBS-D rats by significantly reducing the relative abundance of Patescibacteria and Candidatus Saccharimonas, while increasing the relative abundance of Jeotgalicoccus. Serum metabolomic analysis identified 16 differential metabolites, associated with LRWE's positive effects on IBS-D symptoms, focusing on glyoxylate and dicarboxylic acid metabolism, and cysteine and methionine metabolism. Spearman analysis demonstrated a strong correlation between cecal microbiota composition and serum metabolite levels. CONCLUSIONS: This study elucidates that LRWE plays a crucial role in the comprehensive therapeutic approach to IBS-D by restoring the relative abundance of gut microbiota and addressing the disturbed metabolism of endogenous biomarkers. The identified bacteria and metabolites present potential therapeutic targets for IBS-D.


Assuntos
Síndrome do Intestino Irritável , Ratos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Multiômica , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Metabolômica/métodos , Biomarcadores
5.
J Agric Food Chem ; 72(13): 7219-7229, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507577

RESUMO

Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Humanos , Animais , Suínos , Ovomucina , Aderência Bacteriana , Células CACO-2 , NF-kappa B/genética , NF-kappa B/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Diarreia/microbiologia , Células Epiteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mucosa Intestinal/metabolismo
6.
PLoS One ; 19(2): e0297924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330002

RESUMO

Acute haemorrhagic diarrhoea is a common complaint in dogs. In addition to causes like intestinal parasites, dietary indiscretion, intestinal foreign bodies, canine parvovirus infection, or hypoadrenocorticism, acute haemorrhagic diarrhoea syndrome (AHDS) is an important and sometimes life-threatening differential diagnosis. There is some evidence supporting the link between Clostridium perfringens toxins and AHDS. These toxins may be partially responsible for the epithelial cell injury, but the pathogenesis of AHDS is still not fully understood. Recent studies have suggested that severe damage to the intestinal mucosa and associated barrier dysfunction can trigger chronic gastrointestinal illnesses. Besides bloodwork and classical markers for AHDS such as protein loss and intestinal bacterial dysbiosis, we focused mainly on the plasma-proteome to identify systemic pathological alterations during this disease and searched for potential biomarkers to improve the diagnosis. To accomplish the goals, we used liquid chromatography-mass spectrometry. We compared the proteomic profiles of 20 dogs with AHDS to 20 age-, breed-, and sex-matched control dogs. All dogs were examined, and several blood work parameters were determined and compared, including plasma biochemistry and cell counts. We identified and quantified (relative quantification) 207 plasmatic proteins, from which dozens showed significantly altered levels in AHDS. Serpina3, Lipopolysaccharide-binding protein, several Ig-like domain-containing proteins, Glyceraldehyde-3-phosphate dehydrogenase and Serum amyloid A were more abundant in plasma from AHDS affected dogs. In contrast, other proteins such as Paraoxonase, Selenoprotein, Amine oxidases, and Apolipoprotein C-IV were significantly less abundant. Many of the identified and quantified proteins are known to be associated with inflammation. Other proteins like Serpina3 and RPLP1 have a relevant role in oncogenesis. Some proteins and their roles have not yet been described in dogs with diarrhoea. Our study opens new avenues that could contribute to the understanding of the aetiology and pathophysiology of AHDS.


Assuntos
Doenças do Cão , Proteoma , Cães , Animais , Proteômica , Hemorragia Gastrointestinal/microbiologia , Síndrome , Diarreia/microbiologia , Doenças do Cão/patologia
7.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198728

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Óleos Voláteis , Doenças dos Suínos , Suínos , Masculino , Animais , Saccharomyces cerevisiae , Fator de Necrose Tumoral alfa , Óleos Voláteis/farmacologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Diarreia/microbiologia , Diarreia/veterinária , Dieta/veterinária , Inflamação/veterinária , Superóxido Dismutase , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Ração Animal/análise , Desmame
8.
Egypt J Immunol ; 31(1): 1-9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224030

RESUMO

The rapid diagnosis of infectious diarrhea is lifesaving for intensive care unit (ICU) patients. This study evaluated a commercially available multiplex polymerase chain reaction (PCR) (BioFire FilmArray) for the diagnosis of parasitic and bacterial infections in ICU patients with secretory diarrhea in comparison to other traditional methods. This cross-sectional study included 50 subjects with infectious diarrhea. Their stool samples were subjected to macroscopic and microscopic examinations, concentration techniques, permanent staining techniques, stool culture, identification of bacterial infection by the Vitek 2 Compact 15 System, and molecular diagnosis of bacterial or parasitic infections by BioFire FilmArray multiplex PCR. Parasitological examination showed that the sensitivity and specificity of BioFire FilmArray multiplex PCR in the diagnosis of Cryptosporidium oocysts were 83.33% and 100.0%, respectively compared with 100% and 92.5% in diagnosis of G. lamblia cysts. Bacteriological examination showed that the sensitivity and specificity of BioFire FilmArray multiplex PCR in the diagnosis of E. coli and salmonella were 100% and 100.0%, respectively. The BioFire FilmArray multiplex PCR gastrointestinal (GI) panel assay was more sensitive and specific in the diagnosis of bacterial infections than parasitic infections. The BioFire FilmArray multiplex PCR GI panel assay was less sensitive in the detection of Cryptosporidium oocysts than traditional methods. In conclusion, the BioFire FilmArray multiplex PCR may be useful for rapid diagnosis of ICU patients with infectious diarrhea.


Assuntos
Infecções Bacterianas , Criptosporidiose , Cryptosporidium , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Escherichia coli , Estudos Transversais , Egito , Fezes/microbiologia , Fezes/parasitologia , Cryptosporidium/genética , Diarreia/diagnóstico , Diarreia/microbiologia , Unidades de Terapia Intensiva
9.
Vet Microbiol ; 288: 109923, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061277

RESUMO

Escherichia coli and Salmonella Typhimurium are the main pathogens of diarrhea in weaned piglets. The prevention of bacterial diarrhea in weaned piglets by phage is rarely reported. We conducted this study to evaluate the preventive effect of phages on mixed Escherichia coli and Salmonella Typhimurium infections in weaned piglets. A novel phage named NJ12 was isolated by using Salmonella Typhimurium SM022 as host bacteria and characterized by electron microscopy, genomic analysis and in vitro bacteriostatic activity. Phage NJ12 and a previously reported phage EP01 were microencapsulated with sodium alginate to make phage cocktail. Microencapsulated phage cocktail and PBS (Phosphate buffer solution) were used to piglets the phage and phage-free group through oral administration before bacterial infection 2 h, respectively. Piglets of the phage and phage-free group were consumed with feed contaminated with 6 mL (108CFU/mL) Escherichia coli O157:H7 GN07 (GXEC-N07) and 6 mL (108CFU/mL) SM022 every day for seven consecutive days. The results showed that piglets in the phage-free group had more severe diarrhea, larger decreased average weight gain and higher levels of neutrophils compared with piglets in phage group. Meanwhile, piglets in the phage-free group had higher load of SM022 and GN07 in jejunal tissue and more severe intestinal damage compared with piglets in group phage in vivo. In addition, oral administration phage can significant decreased the relative abundance of Enterobacteriaceae but hardly repaired the changes of diversity and composition of gut microbiota caused by the mixed infection of SM022 and GN07. This implies that phage used as a feed additive have a marvelous preventive effect on bacterial diarrhea during weaning of piglets.


Assuntos
Bacteriófagos , Disenteria , Infecções por Escherichia coli , Escherichia coli O157 , Infecções por Salmonella , Doenças dos Suínos , Animais , Suínos , Salmonella typhimurium , Escherichia coli O157/genética , Desmame , Diarreia/prevenção & controle , Diarreia/veterinária , Diarreia/microbiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Disenteria/veterinária , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia
10.
Pol J Vet Sci ; 26(4): 559-569, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088300

RESUMO

Racecadotril, used as an antidiarrheal drug in humans and some animals such as the dog, inhibits peripheral enkephalinase, which degrades enkephalins and enkephalinase inhibition induces a selective increase in chloride absorption from the intestines. The study material consisted of 46 calves with infectious diarrhea and 14 healthy calves in the age 2-20 days. The calves were divided into eight groups; healthy calves (HG), healthy calves administered racecadotril (HRG), calves with E.coli-associated diarrhea (ECG), calves with E.coli-associated diarrhea administered racecadotril (ECRG), calves with bovine Rotavirus/Coronavirus-associated diarrhea (VG), calves with bovine Rotavirus/Coronavirus-associated diarrhea administered racecadotril (VRG), calves with C. parvum-associated diarrhea (CG) and calves with C. parvum-associated diarrhea administered racecadotril (CRG). Calves in the racecadotril groups received oral racecadotril at a dose of 2.5 mg/kg twice a day for 3 days. A routine clinical examination of all calves was performed. Hemogram and blood gas measurements were made from the blood samples. Standard diarrhea treatment was applied to the HG, ECG, CG, and VG groups. Clinical score parameters such as appetite, feces quality, dehydration, standing and death and some blood gas and hemogram parameters were evaluated to determine the clinical efficacy of racecadotril. Clinical score parameters were determined observationally. Blood gas measurements were performed using a blood gas analyzer. The hemogram was performed using an automated hematologic analyzer. Statistically significant differences were determined in the blood pH, bicarbonate, base deficit, lactate, and total leukocyte count in calves with diarrhea compared to healthy calves. After the treatments, these parameters were found to be within normal limits. At the end of treatment, 42 of the 46 diarrheal calves recovered, while 4 died. We found that racecadotril was effective in improving both clinical recovery and feces consistency in neonatal calves with diarrhea caused by E. coli. As a result, it can be stated that racecadotril, which has an antisecretory effect, is beneficial in the treatment of bacterial diarrhea caused by such as E. coli.


Assuntos
Doenças dos Bovinos , Coronavirus Bovino , Doenças do Cão , Rotavirus , Humanos , Animais , Bovinos , Cães , Escherichia coli , Neprilisina/uso terapêutico , Diarreia/tratamento farmacológico , Diarreia/veterinária , Diarreia/microbiologia , Resultado do Tratamento , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Fezes/microbiologia
11.
Food Funct ; 14(24): 10731-10746, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933488

RESUMO

Antibiotic-associated diarrhea is mediated by antibiotic treatment and is usually caused by the disruption of the intestinal barrier, gut microbiota, and metabolic balance. To identify a dietary strategy that can mitigate the side effects of antibiotics, this study investigated the effect of tangeretin on antibiotic-associated diarrhea in C57BL/6 mice. The results revealed that dietary tangeretin significantly ameliorated symptoms of antibiotic-associated diarrhea, as evidenced by the decreased diarrhea status scores, the reduced fecal water content, the decreased caecum/body weight ratio, and the alleviated colonic tissue damage. Dietary tangeretin also exhibited a protective effect on the intestinal barrier function by upregulating the mRNA and protein expression of claudin-1 and ZO-1. Furthermore, analysis of the gut microbiota using 16S rRNA gene sequencing indicated that dietary tangeretin modulated the gut microbiota of mice with antibiotic-associated diarrhea via increasing the gut microbiota diversity and the abundance of beneficial bacteria, e.g., Lactobacillaceae and Ruminococcaceae, and decreasing the abundance of harmful bacteria, e.g., Enterococcus and Terrisporobacter. Additionally, dietary tangeretin restored the levels of short-chain fatty acids and modulated metabolic pathways by enriching purine metabolism, bile acid metabolism, ABC transporters, and choline metabolism in cancer. Collectively, these findings provide a solid scientific basis for the rational use of tangeretin as a preventive and therapeutic agent for antibiotic-associated diarrhea.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Função da Barreira Intestinal , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Antibacterianos/farmacologia , Homeostase
12.
Microb Pathog ; 184: 106380, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821049

RESUMO

In developing countries, diarrhoea is a major issue of concern, where consistent use of antibiotics has resulted in several side effects along with development of resistance among pathogens against these antibiotics. Since natural products are becoming the treatment of choice, therefore present investigation involves mechanistic evaluation of antidiarrhoeal potential of Begonia roxburghii and its marker rutin against Shigella flexneri (SF) induced diarrhoea in rats following in vitro, in vivo and in silico protocols. The roots of the plant are used as vegetable in the North East India and are also used traditionally in treating diarrhoea. Phytochemically standardized ethanolic extract of B. roxburghii (EBR) roots and its marker rutin were first subjected to in vitro antibacterial evaluation against SF. Diarrhoea was induced in rats using suspension of SF and various diarrhoeagenic parameters were examined after first, third and fifth day of treatment at 100, 200 and 300 mg/kg, p.o. with EBR and 50 mg/kg, p.o. with rutin respectively. Additionally, density of SF in stools, stool water content, haematological and biochemical parameters, cytokine profiling, ion concentration, histopathology and Na+/K+-ATPase activity were also performed. Molecular docking and dynamics simulation studies of ligand rutin was studied against secreted extracellular protein A (Sep A, PDB: 5J44) from SF and Inducible nitric oxide synthase (iNOS, PDB: 1DD7) followed by network pharmacology. EBR and rutin demonstrated a potent antibacterial activity against SF and also showed significant recovery from diarrhoea (EBR: 81.29 ± 0.91% and rutin: 75.27 ± 0.89%) in rats after five days of treatment. EBR and rutin also showed significant decline in SF density in stools, decreased cytokine expression, potential antioxidant activity, cellular proliferative nature and recovered ion loss due to enhanced Na+/K+-ATPase activity, which was also supported by histopathology. Rutin showed a very high docking score of -11.61 and -9.98 kcal/mol against iNOS and Sep A respectively and their stable complex was also confirmed through dynamics, while network pharmacology suggested that, rutin is quite capable of modulating the pathways of iNOS and Sep A. Thus, we may presume that rutin played a key role in the observed antidiarrhoeal activity of B. roxburghii against SF induced diarrhoea.


Assuntos
Begoniaceae , Rutina , Ratos , Animais , Rutina/farmacologia , Rutina/uso terapêutico , Shigella flexneri , Begoniaceae/metabolismo , Antidiarreicos/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Simulação de Acoplamento Molecular , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Citocinas/metabolismo , Adenosina Trifosfatases/metabolismo
13.
BMC Infect Dis ; 23(1): 625, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749501

RESUMO

BACKGROUND: Salmonellosis is a major cause of morbidity and mortality and one of the most frequent etiologies of diarrhea in the world. Mortality due to Salmonellosis in Latin America still poorly understood, and there is a lack of studies that evaluate resistance and clinical manifestations. The aims of this study were to characterize patients infected with Salmonella spp. seen in a university hospital in Colombia between 2012 and 2021, to evaluate trends in antibiotic resistance and to determine the proportion of overall mortality and related factors. METHODS: Retrospective observational study. All patients with microbiological diagnosis of Salmonella spp. were included. The sociodemographic, clinical and microbiological characteristics were described, and the proportion of antibiotic resistant isolates per year was estimated. The prevalence of mortality according to age groups was calculated. Log binomial regression models were used to establish factors associated with mortality. RESULTS: Five hundred twenty-two patients were analyzed. Salmonellosis accounted for 0.01% of all medical consultations. The median age was 16 years old. The most common clinical presentation was gastroenteric syndrome (77.1%) and symptoms included diarrhea (79.1%), fever (66.7%), abdominal pain (39.6%) and vomiting (35.2%). Of the Salmonella spp. isolates, 78.2% were not classified, 19.1% corresponded to non-typhoidal Salmonella and 2.7% to Salmonella typhi. Mortality occurs in 4.02% of the patients and was higher in patients with hematologic malignancy (11.6%). When analyzing by age group, the proportion of deaths was 2.8% in patients aged 15 years or younger, while in those older than 15 years it was 5.4%. Factors associated to mortality where bacteremia (aPR = 3.41 CI95%: 1.08-10.76) and to require treatment in the ICU (aPR = 8.13 CI95%: 1.82-37.76). In the last 10 years there has been a steady increase in resistance rates to ciprofloxacin, ampicillin, ampicillin/sulbactam and ceftriaxone, reaching rates above 60% in recent years. CONCLUSIONS: Despite improved availability of antibiotics for the treatment of salmonellosis in the past decades, mortality due to salmonellosis continues occurring in children and adults, mainly in patients with hematological malignancies and bacteremia. Antibiotic resistance rates have increased significantly over the last 10 years. Public health strategies for the control of this disease should be strengthened, especially in vulnerable populations.


Assuntos
Bacteriemia , Infecções por Salmonella , Adolescente , Adulto , Criança , Humanos , Ampicilina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Estudos de Coortes , Diarreia/microbiologia , Hospitais Universitários , Salmonella , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , América do Sul , Estudos Retrospectivos
14.
Epidemiol Infect ; 151: e150, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694773

RESUMO

A foodborne outbreak related to milk cartons served in school lunches occurred in June 2021, which involved more than 1,800 cases from 25 schools. The major symptoms were abdominal pain, diarrhoea, vomiting, and fever. Although major foodborne toxins and pathogens were not detected, a specific Escherichia coli strain, serotype OUT (OgGp9):H18, was predominantly isolated from milk samples related to the outbreak and most patients tested. The strains from milk and patient stool samples were identified as the same clone by core genome multilocus sequence typing and single-nucleotide polymorphism analysis. The strain was detected in milk samples served for two days related to the foodborne outbreak at a rate of 69.6% and levels of less than ten most probable number/100 mL but not on days unrelated to the outbreak. The acid tolerance of the strain for survival in the stomach was similar to that of enterohaemorrhagic E. coli O157:H7, and the same inserts in the chu gene cluster in the acid fitness island were genetically revealed. The pathogenicity of the strain was not clear; however, it was indicated that the causative pathogen was atypical diarrhoeagenic E. coli OUT (OgGp9):H18.


Assuntos
Dor Abdominal , Diarreia , Infecções por Escherichia coli , Escherichia coli O157 , Animais , Humanos , Dor Abdominal/etiologia , Surtos de Doenças , Escherichia coli Êntero-Hemorrágica , Leite/microbiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Japão/epidemiologia , Infecções por Escherichia coli/epidemiologia
15.
Front Cell Infect Microbiol ; 13: 1190910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577378

RESUMO

Introduction: Low diversity gut dysbiosis can take different forms depending on the disease context. In this study, we used shotgun metagenomic sequencing and gas chromatography-mass spectrometry (GC-MS) to compared the metagenomic and metabolomic profiles of Clostridioides (Clostridium) difficile diarrheal cancer and inflammatory bowel disease (IBD) patients and defined the additive effect of C. difficile infection (CDI) on intestinal dysbiosis. Results: The study cohort consisted of 138 case-mix cancer patients, 43 IBD patients, and 45 healthy control individuals. Thirty-three patients were also infected with C. difficile. In the control group, three well-known enterotypes were identified, while the other groups presented with an additional Escherichia-driven enterotype. Bacterial diversity was significantly lower in all groups than in healthy controls, while the highest level of bacterial species richness was observed in cancer patients. Fifty-six bacterial species had abundance levels that differentiated diarrheal patient groups from the control group. Of these species, 52 and 4 (Bacteroides fragilis, Escherichia coli, Klebsiella pneumoniae, and Ruminococcus gnavus) were under-represented and over-represented, respectively, in all diarrheal patient groups. The relative abundances of propionate and butyrate were significantly lower in fecal samples from IBD and CDI patients than in control samples. Isobutyrate, propanate, and butyrate concentrations were lower in cancer, IBD, and CDI samples, respectively. Glycine and valine amino acids were over- represented in diarrheal patients. Conclusion: Our data indicate that different external and internal factors drive comparable profiles of low diversity dysbiosis. While diarrheal-related low diversity dysbiosis may be a consequence of systemic cancer therapy, a similar phenotype is observed in cases of moderate to severe IBD, and in both cases, dysbiosis is exacerbated by incidence of CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Doenças Inflamatórias Intestinais , Neoplasias , Humanos , Clostridioides difficile/genética , Disbiose/complicações , Disbiose/microbiologia , Infecções por Clostridium/microbiologia , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/microbiologia , Diarreia/microbiologia , Bactérias/genética , Butiratos , Neoplasias/complicações
16.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511183

RESUMO

Diarrhea is associated with gut microbiota, immunity, and metabolic alterations in goat kids and lambs. This study used 28 lambs (11 healthy and 17 diarrheic) and 20 goat kids (10 healthy and 10 diarrheic) to investigate the association between diarrhea occurrence and changes in gut microbiota, metabolism, and immunity in goat kids and lambs. The results revealed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in goat kids and lambs. In addition, Enterobacteriaceae and Lachnospiraceae families were identified in both diarrheic goat kids and lambs. Furthermore, functional prediction of microbiota showed that it was involved in cell motility and cancer pathways. The identified differential metabolites were implicated in the bile secretion pathway. Lambs had significant differences in immunoglobulin G (IgG), immunoglobulin M (IgM), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) compared to goat kids. IgG and IL-1ß were positively correlated to Patescibacteria, Clostridiaceae, and unclassified_Muribaculaceae in both diarrheic goat kids and lambs. In addition, weighted gene co-expression network analysis (WGCNA) revealed that the MEgreen module was positively associated with IgG, IgM, IL-1ß, TNF-α, and triglyceride (TG). In conclusion, our results characterized the gut microbiota, metabolism, and immune status of lambs and goat kids suffering from diarrhea.


Assuntos
Microbioma Gastrointestinal , Ovinos , Animais , RNA Ribossômico 16S/genética , Fator de Necrose Tumoral alfa , Diarreia/microbiologia , Cabras , Metabolômica , Imunoglobulina G
17.
Eur J Clin Microbiol Infect Dis ; 42(9): 1091-1101, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468662

RESUMO

The aim of this study was to investigate the value of syndromic diagnostic testing for a better understanding of the epidemiology of gastrointestinal infections in Denmark. Here we evaluated the QIAstat-Dx® Gastrointestinal (GI) Panel 1 assay on 18,610 fecal samples requested for analysis for enteric pathogens in Region Zealand, Denmark, in 1 year (October 1, 2021, to September 30, 2022). In total, 6905 (37%) samples were detected positive for one or more diarrhoeal bacteria, viruses, and protozoa. The most common bacterial, viral, and parasitic pathogens detected with the QIAstat-Dx® Gastrointestinal Panel 1 were EPEC (in patients ≥ 2 years of age) (n = 1420 (20.6%)), rotavirus (n = 948 (13.7%)), and Cryptosporidium spp. (n = 196 (2.84%)). We identified a large diversity in infections likely reflecting substantial differences in the epidemiology including origin of infections, mode of transmission, seasonality, age-dependent susceptibility to disease, severity, and travel history. All pathogens were detected as both single and coinfections. Viral infections peaked in March with a positive rate of 31.6%, and bacterial infections peaked in August with a positive rate of 35.3%. ETEC, Shigella/EIEC, EAEC, and P. shigelloides were most related to travel activity, and coinfections were frequent. The distribution of Ct values varied significantly between the pathogens, with the lowest Ct values (median 17-18) observed in astrovirus, adenovirus, and rotavirus. Our results highlight the value of providing extensive diagnostic testing on fecal samples for sufficient detection of relevant diarrhoeal pathogens for optimal clinical care.


Assuntos
Bacteriófagos , Coinfecção , Doenças Transmissíveis , Criptosporidiose , Cryptosporidium , Gastroenteropatias , Rotavirus , Humanos , Coinfecção/microbiologia , Criptosporidiose/diagnóstico , Criptosporidiose/epidemiologia , Diarreia/microbiologia , Fezes/microbiologia , Dinamarca/epidemiologia
18.
Front Immunol ; 14: 1152910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275900

RESUMO

Background: Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea through two enterotoxins, a heat-labile toxin and a heat-stable toxin. These toxins alter the cellular signaling pathways, ultimately triggering an increase in chloride secretion and watery diarrhea. Objective: For the development of an ETEC vaccine, we attempted to construct a peptide-specific monoclonal antibody library against heat-labile enterotoxin A subunit (LT-A) by epitope mapping using synthetic peptides. Methods: Sera produced by five mice immunized with recombinant LT-A protein were examined for specific recognition with synthetic 15-mer and 34-mer peptides of LT-A proteins using enzyme-linked immunosorbent assay. The analysis revealed that the synthetic peptides number 8, 16, 24, 33, 36, 38, and 39 reacted with an anti-LT-A polyclonal antibody. For the possible prediction of LT-A epitopes, each full-length protein sequence was subjected to BCPreds analysis and three-dimensional protein structure analysis. The data showed that three peptides (synthetic peptide numbers: 33, 36, and 38-39) have identical antigenic specificities with LT-A protein, suggesting the usefulness of these linear peptide epitopes. Results: Based on these peptides, we produced monoclonal antibodies to improve the specificity of LT-A detection. Monoclonal antibodies produced from two peptides (numbers 33 and 36) showed affinity for an LT-A recombinant antigen. Moreover, peptide epitope prediction analysis showed that the sites of the three peptides were identical to those exhibiting actual antigenicity. Also, it was confirmed that the amino acid sequence that actually showed antigenicity was included in the peptide predicted only by ETEC-LT-A-33. Also, the specificity of the antibody for ETEC-LT-A-33 was validated using bacterial cells, and the neutralizing effect of the antibody was determined by assessing cytokine release in infected HCT-8 cells. Conclusion: The monoclonal antibodies produced in this study are useful toolsfor vaccine production against ETEC and can be used to identify peptide antigencandidates.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Vacinas contra Escherichia coli , Animais , Camundongos , Anticorpos Monoclonais , Mapeamento de Epitopos , Temperatura Alta , Proteínas de Escherichia coli/genética , Anticorpos Antibacterianos , Enterotoxinas , Diarreia/microbiologia , Antígenos , Epitopos , Peptídeos
19.
Cells ; 12(7)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048109

RESUMO

Piglet diarrhea caused by Clostridium perfringens (C. perfringens) type C (CpC) seriously endangers the development of the pig production industry. C. perfringens beta2 (CPB2) toxin is a virulent toxin produced by CpC. Long non-coding RNAs (lncRNAs) are key regulators in the immune inflammatory response to bacterial infection. Nevertheless, the functional mechanism of lncRNAs in bacterial piglet diarrhea is unclear. Herein, a novel lncRNA lnc001776 expression was confirmed to be substantially elevated in the ileum tissue of CpC-infected diarrhea piglets and in CPB2 toxin-treated porcine small intestinal epithelial cells (IPEC-J2). lnc001776 knockdown restrained CPB2 toxin-induced apoptosis, inflammatory injury, barrier dysfunction and activation of JNK/NF-kB pathway in IPEC-J2 cells. Additionally, ssc-let-7i-5p was identified as sponge for lnc001776. Overexpression of ssc-let-7i-5p repressed CPB2-induced injury in IPEC-J2 cells. Interleukin 6 (IL-6), a target gene of ssc-let-7i-5p, was enhanced in CPB2 toxin-treated IPEC-J2 cells. Rescue experiments demonstrated that a ssc-let-7i-5p mimic reversed the effect of lnc001776 overexpression on CPB2 toxin-induced IPEC-J2 cell injury and JNK/NF-kB pathway, whereas IL-6 overexpression partially restored the impact of lnc001776. Overall, lnc001776 overexpression exacerbated CPB2 toxin-induced IPEC-J2 cell damage by sponging ssc-let-7i-5p to regulate IL-6 to activate JNK/NF-kB pathway, indicating that lnc001776 could be a key target for piglet resistance to CpC-induced diarrhea.


Assuntos
Toxinas Bacterianas , RNA Longo não Codificante , Animais , Suínos , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Células Epiteliais/metabolismo , Diarreia/microbiologia
20.
Nutrients ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049457

RESUMO

Neonatal diarrhea is one of the most severe diseases in human beings and pigs, leading to high mortality and growth faltering. Gut microbiome-related studies mostly focus on the relationship between bacteria and neonatal diarrhea onset, and no research study has investigated the role of the gut virome in neonatal diarrhea. Here, using metagenomic sequencing, we characterized the fecal viral community of diarrheal and healthy neonatal piglets. We found that the viral community of diarrheal piglets showed higher individual heterogeneity and elevated abundance of Myoviridae. By predicting the bacterial host of the identified viral genomes, phages infecting Proteobacteria, especially E. coli, were the dominant taxa in neonatal diarrheal piglets. Consistent with this, the antibiotic resistance gene of E. coli origin was also enriched in neonatal diarrheal piglets. Finally, we established a random forest model to accurately discriminate between neonatal diarrheal piglets and healthy controls and identified genus E. coli- and genus listeria-infecting bacteriophages, including psa and C5 viruses, as key biomarkers. In conclusion, we provide the first glance of viral community and function characteristics in diarrheal and healthy neonatal piglets. These findings expand our understanding of the relationship among phages, bacteria and diarrhea, and may facilitate the development of therapeutics for the prevention and treatment of neonatal diarrhea.


Assuntos
Bacteriófagos , Escherichia coli , Animais , Suínos , Recém-Nascido , Humanos , Bacteriófagos/genética , Diarreia/veterinária , Diarreia/microbiologia , Bactérias , Fezes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA