Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Adv Pharmacol ; 100: 157-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034051

RESUMO

The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.


Assuntos
Diazo-Oxo-Norleucina , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Diazo-Oxo-Norleucina/farmacologia , Diazo-Oxo-Norleucina/uso terapêutico , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glutamina/metabolismo
2.
J Endocrinol Invest ; 47(8): 1953-1969, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38386265

RESUMO

BACKGROUND: Effective treatment for patients with advanced thyroid cancer is lacking. Metabolism reprogramming is required for cancer to undergo oncogenic transformation and rapid tumorigenic growth. Glutamine is frequently used by cancer cells for active bioenergetic and biosynthetic needs. This study aims to investigate whether targeting glutamine metabolism is a promising therapeutic strategy for thyroid cancer. METHODS: The expression of glutaminase (GLS) and glutamate dehydrogenase (GDH) in thyroid cancer tissues was evaluated by immunohistochemistry, and glutamine metabolism-related genes were assessed using real time-qPCR and western blotting. The effects of glutamine metabolism inhibitor 6-diazo-5-oxo-l-norleucine (DON) on thyroid cancer cells were determined by CCK-8, clone formation assay, Edu incorporation assay, flow cytometry, and Transwell assay. The mechanistic study was performed by real time-qPCR, western blotting, Seahorse assay, and gas chromatography-mass spectrometer assay. The effect of DON prodrug (JHU-083) on thyroid cancer in vivo was assessed using xenograft tumor models in BALB/c nude mice. RESULTS: GLS and GDH were over-expressed in thyroid cancer tissues, and GLS expression was positively associated with lymph-node metastasis and TNM stage. The growth of thyroid cancer cells was significantly inhibited when cultured in glutamine-free medium. Targeting glutamine metabolism with DON inhibited the proliferation of thyroid cancer cells. DON treatment did not promote apoptosis, but increased the proportion of cells in the S phase, accompanied by the decreased expression of cyclin-dependent kinase 2 and cyclin A. DON treatment also significantly inhibited the migration and invasion of thyroid cancer cells by reducing the expression of N-cadherin, Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-9. Non-essential amino acids, including proline, alanine, aspartate, asparagine, and glycine, were reduced in thyroid cancer cells treated with DON, which could explain the decrease of proteins involved in migration, invasion, and cell cycle. The efficacy and safety of DON prodrug (JHU-083) for thyroid cancer treatment were verified in a mouse model. In addition to suppressing the proliferation and metastasis potential of thyroid cancer in vivo, enhanced innate immune response was also observed in JHU-083-treated xenograft tumors as a result of decreased expression of cluster of differentiation 47 and programmed cell death ligand 1. CONCLUSIONS: Thyroid cancer exhibited enhanced glutamine metabolism, as evidenced by the glutamine dependence of thyroid cancer cells and high expression of multiple glutamine metabolism-related genes. Targeting glutamine metabolism with DON prodrug could be a promising therapeutic option for advanced thyroid cancer.


Assuntos
Proliferação de Células , Diazo-Oxo-Norleucina , Glutaminase , Glutamina , Neoplasias da Glândula Tireoide , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Glutamina/metabolismo , Animais , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Camundongos , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Proliferação de Células/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Feminino , Camundongos Nus , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Masculino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
J Control Release ; 368: 251-264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403173

RESUMO

Modulating the metabolism of cancer cells, immune cells, or both is a promising strategy to potentiate cancer immunotherapy in the nutrient-competitive tumor microenvironment. Glutamine has emerged as an ideal target as cancer cells highly rely on glutamine for replenishing the tricarboxylic acid cycle in the process of aerobic glycolysis. However, non-specific glutamine restriction may induce adverse effects in unconcerned tissues and therefore glutamine inhibitors have achieved limited success in the clinic so far. Here we report the synthesis and evaluation of a redox-responsive prodrug of 6-Diazo-5-oxo-L-norleucine (redox-DON) for tumor-targeted glutamine inhibition. When applied to treat mice bearing subcutaneous CT26 mouse colon carcinoma, redox-DON exhibited equivalent antitumor efficacy but a greatly improved safety profile, particularly, in spleen and gastrointestinal tract, as compared to the state-of-the-art DON prodrug, JHU083. Furthermore, redox-DON synergized with checkpoint blockade antibodies leading to durable cures in tumor-bearing mice. Our results suggest that redox-DON is a safe and effective therapeutic for tumor-targeted glutamine inhibition showing promise for enhanced metabolic modulatory immunotherapy. The approach of reversible chemical modification may be generalized to other metabolic modulatory drugs that suffer from overt toxicity.


Assuntos
Neoplasias do Colo , Pró-Fármacos , Animais , Camundongos , Diazo-Oxo-Norleucina/uso terapêutico , Diazo-Oxo-Norleucina/metabolismo , Diazo-Oxo-Norleucina/farmacologia , Pró-Fármacos/uso terapêutico , Glutamina/metabolismo , Glutamina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Oxirredução , Microambiente Tumoral
4.
Cancer Res ; 84(3): 349-350, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117482

RESUMO

A promising approach to treat solid tumors involves disrupting their reliance on glutamine, a key component for various metabolic processes. Traditional attempts using glutamine inhibitors like 6-diazo-5-oxo-L-norleucine (DON) and CB-839 were unsuccessful, but new hope arises with DRP-104, a prodrug of DON. This compound effectively targets tumor metabolism while minimizing side effects. In a recent study published in Nature Cancer, Encarnación-Rosado and colleagues demonstrated in preclinical models that pancreatic ductal adenocarcinoma (PDAC) responds well to DRP-104, although tumors adapt through the MEK/ERK signaling pathway, which can be countered by the MEK inhibitor trametinib. In a related study, Recouvreux and colleagues found that DON is effective against pancreatic tumors, revealing that PDAC tumors upregulate asparagine synthesis in response to DON, making them susceptible to asparaginase treatment. Both studies underscore the potential of inhibiting glutamine metabolism and adaptive pathways as a promising strategy against PDAC. These findings pave the way for upcoming clinical trials utilizing DRP-104 and similar glutamine antagonists in the battle against solid tumors.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Glutamina/metabolismo , Diazo-Oxo-Norleucina/farmacologia , Diazo-Oxo-Norleucina/uso terapêutico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno
5.
J Immunol ; 211(4): 563-575, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37341499

RESUMO

Activated T cells undergo metabolic reprogramming to meet anabolic, differentiation, and functional demands. Glutamine supports many processes in activated T cells, and inhibition of glutamine metabolism alters T cell function in autoimmune disease and cancer. Multiple glutamine-targeting molecules are under investigation, yet the precise mechanisms of glutamine-dependent CD8 T cell differentiation remain unclear. We show that distinct strategies of glutamine inhibition by glutaminase-specific inhibition with small molecule CB-839, pan-glutamine inhibition with 6-diazo-5-oxo-l-norleucine (DON), or by glutamine-depleted conditions (No Q) produce distinct metabolic differentiation trajectories in murine CD8 T cells. T cell activation with CB-839 treatment had a milder effect than did DON or No Q treatment. A key difference was that CB-839-treated cells compensated with increased glycolytic metabolism, whereas DON and No Q-treated cells increased oxidative metabolism. However, all glutamine treatment strategies elevated CD8 T cell dependence on glucose metabolism, and No Q treatment caused adaptation toward reduced glutamine dependence. DON treatment reduced histone modifications and numbers of persisting cells in adoptive transfer studies, but those T cells that remained could expand normally upon secondary Ag encounter. In contrast, No Q-treated cells persisted well yet demonstrated decreased secondary expansion. Consistent with reduced persistence, CD8 T cells activated in the presence of DON had reduced ability to control tumor growth and reduced tumor infiltration in adoptive cell therapy. Overall, each approach to inhibit glutamine metabolism confers distinct effects on CD8 T cells and highlights that targeting the same pathway in different ways can elicit opposing metabolic and functional outcomes.


Assuntos
Diazo-Oxo-Norleucina , Neoplasias , Animais , Camundongos , Diazo-Oxo-Norleucina/farmacologia , Glutamina/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos T CD8-Positivos/metabolismo
6.
Sci Adv ; 8(46): eabq5925, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383674

RESUMO

6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist that suppresses cancer cell metabolism but concurrently enhances the metabolic fitness of tumor CD8+ T cells. DON showed promising efficacy in clinical trials; however, its development was halted by dose-limiting gastrointestinal (GI) toxicities. Given its clinical potential, we designed DON peptide prodrugs and found DRP-104 [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] that was preferentially bioactivated to DON in tumor while bioinactivated to an inert metabolite in GI tissues. In drug distribution studies, DRP-104 delivered a prodigious 11-fold greater exposure of DON to tumor versus GI tissues. DRP-104 affected multiple metabolic pathways in tumor, including decreased glutamine flux into the TCA cycle. In efficacy studies, both DRP-104 and DON caused complete tumor regression; however, DRP-104 had a markedly improved tolerability profile. DRP-104's effect was CD8+ T cell dependent and resulted in robust immunologic memory. DRP-104 represents a first-in-class prodrug with differential metabolism in target versus toxicity tissue. DRP-104 is now in clinical trials under the FDA Fast Track designation.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Diazo-Oxo-Norleucina/farmacologia , Diazo-Oxo-Norleucina/uso terapêutico , Glutamina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico
7.
Mol Cancer Ther ; 21(10): 1561-1572, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35930753

RESUMO

Glutamine is a conditionally essential amino acid consumed by rapidly proliferating cancer cells, which deprives the same fuel from immune cells and contributes to tumor immune evasion. As such, the broad antagonism of glutamine in tumors and the tumor microenvironment may lead to direct antitumor activity and stimulation of antitumoral immune responses. DRP-104 (sirpiglenastat) was designed as a novel prodrug of the broad-acting glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON). DRP-104 is an inactive form that is preferentially converted to DON within tumors. Metabolomic profiling of tumors treated with DRP-104 revealed widespread changes indicative of the disruption of tumor anabolism and canonical cancer metabolism pathways; including altered glutamine metabolism while several immunosuppressive metabolites were decreased. Gene expression profiling revealed broad immunological modulation, confirmed by flow cytometry indicating that DRP-104 treatment resulted in substantial and broad changes in various immune cell infiltrates, such as increased TIL, T, NK, and NK T cells. Functionally, T cells became more proliferative and less exhausted; tumor-associated macrophages were polarized to the M1 phenotype; MDSCs and protumorigenic proteins were decreased in TME. Finally, DRP-104 demonstrated significant antitumor activity as a monotherapy, which was further enhanced in combination with checkpoint blockade therapies, leading to improved survival and long-term durable cures. In summary, DRP-104 broadly remodels the tumor microenvironment by inducing extensive tumor metabolism effects and enhancing the infiltration and function of multiple immune cells distinct from those obtained by checkpoint inhibitor therapy. This unique mechanism of action supports the ongoing clinical development of DRP-104 alone and in combination with checkpoint inhibitors.


Assuntos
Neoplasias , Pró-Fármacos , Aminoácidos Essenciais/farmacologia , Aminoácidos Essenciais/uso terapêutico , Linhagem Celular Tumoral , Diazo-Oxo-Norleucina/farmacologia , Diazo-Oxo-Norleucina/uso terapêutico , Glutamina/metabolismo , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Neoplasias/patologia , Pró-Fármacos/farmacologia , Microambiente Tumoral
8.
Bioorg Med Chem Lett ; 50: 128321, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400301

RESUMO

Two distinct diazo precursors, imidazotetrazine and nitrous amide, were explored as promoieties in designing prodrugs of 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist. As a model for an imidazotetrazine-based prodrug, we synthesized (S)-2-acetamido-6-(8-carbamoyl-4-oxoimidazo[5,1-d][1,2,3,5]tetrazin-3(4H)-yl)-5-oxohexanoic acid (4) containing the entire scaffold of temozolomide, a precursor of the DNA-methylating agent clinically approved for the treatment of glioblastoma multiforme. For a nitrous amide-based prodrug, we synthesized 2-acetamido-6-(((benzyloxy)carbonyl)(nitroso)amino)-5-oxohexanoic acid (5) containing a N-nitrosocarbamate group, which can be converted to a diazo moiety via a mechanism similar to that of streptozotocin, a clinically approved diazomethane-releasing drug containing an N-nitrosourea group. Preliminary characterization confirmed formation of N-acetyl DON (6), also known as duazomycin A, from compound 4 in a pH-dependent manner while compound 5 did not exhibit sufficient stability to allow further characterization. Taken together, our model studies suggest that further improvements are needed to translate this prodrug approach into glutamine antagonist-based therapy.


Assuntos
Diazo-Oxo-Norleucina/análogos & derivados , Diazo-Oxo-Norleucina/farmacologia , Glutamina/antagonistas & inibidores , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Diazo-Oxo-Norleucina/química , Desenho de Fármacos , Estabilidade de Medicamentos , Estrutura Molecular
9.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070527

RESUMO

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of atherosclerosis and restenosis. Glycolysis and glutaminolysis are increased in rapidly proliferating VSMCs to support their increased energy requirements and biomass production. Thus, it is essential to develop new pharmacological tools that regulate metabolic reprogramming in VSMCs for treatment of atherosclerosis. The effects of 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, have been broadly investigated in highly proliferative cells; however, it is unclear whether DON inhibits proliferation of VSMCs and neointima formation. Here, we investigated the effects of DON on neointima formation in vivo as well as proliferation and migration of VSMCs in vitro. DON simultaneously inhibited FBS- or PDGF-stimulated glycolysis and glutaminolysis as well as mammalian target of rapamycin complex I activity in growth factor-stimulated VSMCs, and thereby suppressed their proliferation and migration. Furthermore, a DON-derived prodrug, named JHU-083, significantly attenuated carotid artery ligation-induced neointima formation in mice. Our results suggest that treatment with a glutamine antagonist is a promising approach to prevent progression of atherosclerosis and restenosis.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Glutamina/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Neointima/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Diazo-Oxo-Norleucina/análogos & derivados , Glutamina/metabolismo , Imuno-Histoquímica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/farmacologia
10.
J Neuropathol Exp Neurol ; 80(4): 336-344, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33712838

RESUMO

Medulloblastoma is the most common malignant pediatric brain tumor. Amplification of c-MYC is a hallmark of a subset of poor-prognosis medulloblastoma. MYC upregulates glutamine metabolism across many types of cancer. We modified the naturally occurring glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) by adding 2 promoeities to increase its lipophilicity and brain penetration creating the prodrug isopropyl 6-diazo-5-oxo-2-(((phenyl (pivaloyloxy) methoxy) - carbonyl) amino) hexanoate, termed JHU395. This prodrug was shown to have a 10-fold improved CSF-to-plasma ratio and brain-to-plasma ratio relative to DON. We hypothesized that JHU395 would have superior cell penetration compared with DON and would effectively and more potently kill MYC-expressing medulloblastoma. JHU395 treatment caused decreased growth and increased apoptosis in multiple human high-MYC medulloblastoma cell lines at lower concentrations than DON. Parenteral administration of JHU395 in Nu/Nu mice led to the accumulation of micromolar concentrations of DON in brain. Treatment of mice bearing orthotopic xenografts of human MYC-amplified medulloblastoma with JHU395 increased median survival from 26 to 45 days compared with vehicle control mice (p < 0.001 by log-rank test). These data provide preclinical justification for the ongoing development and testing of brain-targeted DON prodrugs for use in medulloblastoma.


Assuntos
Apoptose/efeitos dos fármacos , Caproatos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Diazo-Oxo-Norleucina/análogos & derivados , Diazo-Oxo-Norleucina/farmacologia , Glutamina/antagonistas & inibidores , Meduloblastoma/tratamento farmacológico , Animais , Apoptose/fisiologia , Caproatos/química , Caproatos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Cerebelares/patologia , Diazo-Oxo-Norleucina/uso terapêutico , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Feminino , Glutamina/metabolismo , Humanos , Meduloblastoma/patologia , Camundongos , Camundongos Nus
11.
J Cell Physiol ; 236(9): 6520-6533, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33576499

RESUMO

Pre-eclampsia (PE) is a pregnancy-related disorder that occurs after 20 weeks of gestation. It seriously affects the health of maternity and the fetus. However, the pathogenesis of PE is still unknown. Decidualization deficiency is considered a contributing factor to the development of PE. CTP synthetase (CTPS) which is the rate-limiting enzyme in the CTP de novo biosynthesis, is essential for nucleic acid synthesis and cellular energy metabolism, and often appears as cytoophidium in many cell types. Here, we found that the expression of CTPS was significantly downregulated in decidual tissues of patients with severe PE compared with healthy pregnant women. During in vitro decidualization, changes in CTPS were accompanied by opposite fluctuation of the AMPK signaling pathway. Moreover, the downregulation of CTPS by glutamine analogs or CTPS small interfering RNA inhibited the decidualization process and the AMPK signaling pathway. Investigating the underlying mechanism of action by co-immunoprecipitation coupled with mass spectrometry showed that CTPS interacted with ATP synthase (ATPS) and maintained the content of ATP on Day 3 of decidualization. However, when combined with mitochondrial stress protein STRESS-70 instead of ATPS, the concentration of ATP on Day 6 of induction was reduced. Corresponding to this, CTPS was mainly distributes in the cytoplasm on Day 3 of induction, while it appeared both in the cytoplasm and the nucleus on Day 6 in decidualized cells, which was similar to that in cells before induction. In summary, we believe that CTPS plays an important role in decidualization by participating in energy metabolism. Abnormal expression of CTPS in decidualization would lead to abnormal decidualization and consequently result in the occurrence of PE.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Decídua/enzimologia , Regulação para Baixo , Metabolismo Energético , Pré-Eclâmpsia/enzimologia , Adenilato Quinase/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Endométrio/patologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Inativação Gênica/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Gravidez , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
12.
Methods Mol Biol ; 2174: 45-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32813244

RESUMO

Colon cancer is a highly anabolic entity with upregulation of glycolysis, glutaminolysis, and de novo synthesis of fatty acids, which also induces a hypercatabolic state in the patient. The blockade of either cancer anabolism or host catabolism has been previously proven to be a successful anticancer experimental treatment. However, it is still unclear whether the simultaneous blockade of both metabolic counterparts can limit malignant survival and the energetic consequences of such an approach. In this chapter, by using the CT26.WT murine colon adenocarcinoma cell line as a model of study, we provide a method to simultaneously perform a pharmacological blockade of tumor anabolism and host catabolism, as a feasible therapeutic approach to treat cancer, and to limit its energetic supply.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Ácidos Graxos/metabolismo , Glutamina/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Diazo-Oxo-Norleucina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Glicólise/efeitos dos fármacos , Hexoquinase/antagonistas & inibidores , Hexoquinase/metabolismo , Indazóis/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/métodos , Orlistate/administração & dosagem , Smegmamorpha
13.
J Clin Invest ; 130(1): 451-465, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31613799

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered to be a highly immunosuppressive and heterogenous neoplasm. Despite improved knowledge regarding the genetic background of the tumor and better understanding of the tumor microenvironment, immune checkpoint inhibitor therapy (targeting CTLA4, PD1, PDL1) has not been very successful against PDAC. The robust desmoplastic stroma, along with an extensive extracellular matrix (ECM) that is rich in hyaluronan, plays an integral role in this immune evasion. Hexosamine biosynthesis pathway (HBP), a shunt pathway of glycolysis, is a metabolic node in cancer cells that can promote survival pathways on the one hand and influence the hyaluronan synthesis in the ECM on the other. The rate-limiting enzyme of the pathway, glutamine-fructose amidotransferase 1 (GFAT1), uses glutamine and fructose 6-phosphate to eventually synthesize uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). In the current manuscript, we targeted this glutamine-utilizing enzyme by a small molecule glutamine analog (6-diazo-5-oxo-l-norleucine [DON]). Our results showed that DON decreased the self-renewal potential and metastatic ability of tumor cells. Further, treatment with DON decreased hyaluronan and collagen in the tumor microenvironment, leading to an extensive remodeling of the ECM and an increased infiltration of CD8+ T cells. Additionally, treatment with DON sensitized pancreatic tumors to anti-PD1 therapy, resulting in tumor regression and prolonged survival.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Diazo-Oxo-Norleucina/farmacologia , Hexosaminas/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Reproduction ; 158(6): 543-554, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31652418

RESUMO

The developmental competence of in vitro-matured oocytes is still lower than that of the in vivo-matured oocytes due to precocious meiotic resumption and inappropriate cytoplasmic maturation. Although numerous efforts have been attempted to accomplish better in vitro maturation (IVM) condition, only limited progress has been achieved. Thus, a current study was conducted to examine the effects of 6-diazo-5-oxo-l-norleucine (DON, an inhibitor of hyaluronan synthesis) during the first half period of IVM on nuclear/cytoplasmic maturation of porcine oocytes and subsequent embryonic development. Based on the observation of the nucleus pattern, metaphase II (MII) oocyte production rate in 1 µM DON group was significantly higher than other groups at 44 h of IVM. The 1 µM of DON was suggested to be optimal for porcine IVM and was therefore used for further investigation. Meiotic arrest effect of DON was maximal at 6 h of IVM, which was supported by the maintenance of significantly higher intra-oocyte cAMP level. In addition, increased pERK1/2 levels and clear rearrangement of cortical granules in membrane of MII oocytes matured with DON provided the evidence for balanced meiosis progression between nuclear and cytoplasmic maturation. Subsequently, DON significantly improved blastocyst formation rate, total cell numbers, and cellular survival in blastocysts after parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Altogether, our results showed for the first time that 1 µM DON can be used to increase the yield of developmentally competent MII oocytes by synchronizing nuclear/cytoplasmic maturation, and it subsequently improves embryo developmental competence.


Assuntos
Núcleo Celular/fisiologia , Citoplasma/fisiologia , Diazo-Oxo-Norleucina/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Meiose , Oócitos/citologia , Animais , Antibióticos Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Feminino , Fertilização in vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Transferência Nuclear , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Gravidez , Suínos
15.
Clin Cancer Res ; 25(19): 5925-5936, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31300448

RESUMO

PURPOSE: Atypical teratoid/rhabdoid tumors (AT/RT) are aggressive infantile brain tumors with poor survival. Recent advancements have highlighted significant molecular heterogeneity in AT/RT with an aggressive subgroup featuring overexpression of the MYC proto-oncogene. We perform the first comprehensive metabolic profiling of patient-derived AT/RT cell lines to identify therapeutic susceptibilities in high MYC-expressing AT/RT. EXPERIMENTAL DESIGN: Metabolites were extracted from AT/RT cell lines and separated in ultra-high performance liquid chromatography mass spectrometry. Glutamine metabolic inhibition with 6-diazo-5-oxo-L-norleucine (DON) was tested with growth and cell death assays and survival studies in orthotopic mouse models of AT/RT. Metabolic flux analysis was completed to identify combination therapies to act synergistically to improve survival in high MYC AT/RT. RESULTS: Unbiased metabolic profiling of AT/RT cell models identified a unique dependence of high MYC AT/RT on glutamine for survival. The glutamine analogue, DON, selectively targeted high MYC cell lines, slowing cell growth, inducing apoptosis, and extending survival in orthotopic mouse models of AT/RT. Metabolic flux experiments with isotopically labeled glutamine revealed DON inhibition of glutathione (GSH) synthesis. DON combined with carboplatin further slowed cell growth, induced apoptosis, and extended survival in orthotopic mouse models of high MYC AT/RT. CONCLUSIONS: Unbiased metabolic profiling of AT/RT identified susceptibility of high MYC AT/RT to glutamine metabolic inhibition with DON therapy. DON inhibited glutamine-dependent synthesis of GSH and synergized with carboplatin to extend survival in high MYC AT/RT. These findings can rapidly translate into new clinical trials to improve survival in high MYC AT/RT.


Assuntos
Diazo-Oxo-Norleucina/farmacologia , Glutamina/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tumor Rabdoide/metabolismo , Teratoma/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Glutamina/metabolismo , Humanos , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Nus , Proto-Oncogene Mas , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/patologia , Teratoma/tratamento farmacológico , Teratoma/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Sci Rep ; 9(1): 6374, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31011190

RESUMO

Glutamine metabolism and the mechanistic target of rapamycin (mTOR) pathway are activated cooperatively in the differentiation and activation of inflammatory immune cells. But the combined inhibition of both pathways was rarely investigated. This study investigated how inhibiting both glutamine metabolism with 6-diazo-5-oxo-L-norleucine (DON) and mTOR with rapamycin affects immune cells and the arthritis in a mouse model. We revealed that rapamycin and DON additively suppressed CD4+ T cell proliferation, and both of them inhibited Th17 cell differentiation. While DON inhibited the differentiation of dendritic cells and macrophages and facilitated that of Ly6G+ granulocytic (G)-MDSCs more strongly than did rapamycin, G-MDSCs treated with rapamycin but not DON suppressed CD4+ T cell proliferation in vitro. The combination of rapamycin and DON significantly suppressed the arthritis in SKG mice more strongly than did each monotherapy in vivo. The numbers of CD4+ T and Th17 cells in the spleen were lowest in mice treated with the combination therapy. Thus, combined treatment with rapamycin and DON additively ameliorated the arthritis in SKG mice, possibly by suppressing CD4+ T cell proliferation and Th17 differentiation. These results suggest the combination of rapamycin and DON may be a potential novel therapy for arthritis.


Assuntos
Artrite/metabolismo , Glutamina/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Feminino , Terapia de Imunossupressão , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia
17.
Physiol Rep ; 7(5): e14019, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30821123

RESUMO

Despite recent advances, acute respiratory distress syndrome (ARDS) remains a severe and often fatal disease for which there is no therapy able to reduce the underlying excessive lung inflammation or enhance resolution of injury. Metabolic programming plays a critical role in regulating inflammatory responses. Due to their high metabolic needs, neutrophils, macrophages, and lymphocytes rely upon glutamine metabolism to support activation and function. Additionally, during times of physiologic stress, nearly all cells, including fibroblasts and epithelial cells, require glutamine metabolism. We hypothesized that inhibiting glutamine metabolism reduces lung inflammation and promotes resolution of acute lung injury. Lung injury was induced by instilling lipopolysaccharide (LPS) intratracheally. To inhibit glutamine metabolism, we administered a glutamine analogue, 6-diazo-5-oxo-L-norleucine (DON) that binds to glutamine-utilizing enzymes and transporters, after injury was well established. Treatment with DON led to less lung injury, fewer lung neutrophils, lung inflammatory and interstitial macrophages, and lower levels of proinflammatory cytokines and chemokines at 5 and/or 7 days after injury. Additionally, DON led to earlier expression of the growth factor amphiregulin and more rapid recovery of LPS-induced weight loss. Thus, DON reduced lung inflammation and promoted resolution of injury. These data contribute to our understanding of how glutamine metabolism regulates lung inflammation and repair, and identifies a novel target for future therapies for ARDS and other inflammatory lung diseases.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Antimetabólitos/farmacologia , Diazo-Oxo-Norleucina/farmacologia , Glutamina/metabolismo , Pulmão/efeitos dos fármacos , Pneumonia/prevenção & controle , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Anfirregulina/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Fatores de Tempo
18.
Mol Carcinog ; 58(6): 1046-1055, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30790354

RESUMO

Platinum anticancer agents are essential components in chemotherapeutic regimens for non-small-cell lung cancer (NSCLC) patients ineligible for targeted therapy. However, platinum-based regimens have reached a plateau of therapeutic efficacy; therefore, it is critical to implement novel approaches for improvement. The hexosamine biosynthesis pathway (HBP), which produces amino-sugar N-acetyl-glucosamine for protein glycosylation, is important for protein function and cell survival. Here we show a beneficial effect by the combination of cisplatin with HBP inhibition. Expression of glutamine:fructose-6-phosphate amidotransferase (GFAT), the rate-limiting enzyme of HBP, was increased in NSCLC cell lines and tissues. Pharmacological inhibition of GFAT activity or knockdown of GFATimpaired cell proliferation and exerted synergistic or additive cytotoxicity to the cells treated with cisplatin. Mechanistically, GFAT positively regulated the expression of binding immunoglobulin protein (BiP; also known as glucose-regulated protein 78, GRP78), an endoplasmic reticulum chaperone involved in unfolded protein response (UPR). Suppressing GFAT activity resulted in downregulation of BiP that activated inositol-requiring enzyme 1α, a sensor protein of UPR, and exacerbated cisplatin-induced cell apoptosis. These data identify GFAT-mediated HBP as a target for improving platinum-based chemotherapy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Diazo-Oxo-Norleucina/farmacologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hexosaminas/biossíntese , Humanos , Neoplasias Pulmonares/tratamento farmacológico
19.
Biochem Pharmacol ; 156: 204-214, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144404

RESUMO

Glutaminase-1 (GLS1) is a mitochondrial enzyme found in endothelial cells (ECs) that metabolizes glutamine to glutamate and ammonia. Although glutaminolysis modulates the function of human umbilical vein ECs, it is not known whether these findings extend to human ECs beyond the fetal circulation. Furthermore, the molecular mechanism by which GLS1 regulates EC function is not defined. In this study, we show that the absence of glutamine in the culture media or the inhibition of GLS1 activity or expression blocked the proliferation and migration of ECs derived from the human umbilical vein, the human aorta, and the human microvasculature. GLS1 inhibition arrested ECs in the G0/G1 phase of the cell cycle and this was associated with a significant decline in cyclin A expression. Restoration of cyclin A expression via adenoviral-mediated gene transfer improved the proliferative, but not the migratory, response of GLS1-inhibited ECs. Glutamine deprivation or GLS1 inhibition also stimulated the production of reactive oxygen species and this was associated with a marked decline in heme oxygenase-1 (HO-1) expression. GLS1 inhibition also sensitized ECs to the cytotoxic effect of hydrogen peroxide and this was prevented by the overexpression of HO-1. In conclusion, the metabolism of glutamine by GLS1 promotes human EC proliferation, migration, and survival irrespective of the vascular source. While cyclin A contributes to the proliferative action of GLS1, HO-1 mediates its pro-survival effect. These results identify GLS1 as a promising therapeutic target in treating diseases associated with aberrant EC proliferation, migration, and viability.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutaminase/metabolismo , Glutamina/farmacologia , Aorta/citologia , Benzenoacetamidas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ciclina A/genética , Ciclina A/metabolismo , Diazo-Oxo-Norleucina/farmacologia , Células Endoteliais/efeitos dos fármacos , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Interferência de RNA , Tiadiazóis/farmacologia , Veias/citologia
20.
Elife ; 72018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29911570

RESUMO

Energy metabolism is essential for T cell function. However, how persistent antigenic stimulation affects T cell metabolism is unknown. Here, we report that long-term in vivo antigenic exposure induced a specific deficit in numerous metabolic enzymes. Accordingly, T cells exhibited low basal glycolytic flux and limited respiratory capacity. Strikingly, blockade of inhibitory receptor PD-1 stimulated the production of IFNγ in chronic T cells, but failed to shift their metabolism towards aerobic glycolysis, as observed in effector T cells. Instead, chronic T cells appeared to rely on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to produce ATP for IFNγ synthesis. Check-point blockade, however, increased mitochondrial production of superoxide and reduced viability and effector function. Thus, in the absence of a glycolytic switch, PD-1-mediated inhibition appears essential for limiting oxidative metabolism linked to effector function in chronic T cells, thereby promoting survival and functional fitness.


Assuntos
Antígeno B7-H1/genética , Linhagem da Célula/imunologia , Interferon gama/genética , Receptor de Morte Celular Programada 1/genética , Linfócitos T/imunologia , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Animais , Anticorpos Monoclonais/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Antígeno B7-H1/imunologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Diazo-Oxo-Norleucina/farmacologia , Compostos de Epóxi/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise/efeitos dos fármacos , Interferon gama/antagonistas & inibidores , Interferon gama/imunologia , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Oligomicinas/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/transplante , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA