Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Sci Total Environ ; 933: 173041, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723972

RESUMO

Although many organochlorine pesticides (OCPs) have been banned or restricted because of their persistence and linkage to neurodegenerative diseases, there is evidence of continued human exposure. In contrast, registered herbicides are reported to have a moderate to low level of toxicity; however, there is little information regarding their toxicity to humans or their combined effects with OCPs. This study aimed to characterize the mechanism of toxicity of banned OCP insecticides (aldrin, dieldrin, heptachlor, and lindane) and registered herbicides (trifluralin, triallate, and clopyralid) detected at a legacy contaminated pesticide manufacturing and packing site using SH-SY5Y cells. Cell viability, LDH release, production of reactive oxygen species (ROS), and caspase 3/7 activity were evaluated following 24 h of exposure to the biocides. In addition, RNASeq was conducted at sublethal concentrations to investigate potential mechanisms involved in cellular toxicity. Our findings suggested that aldrin and heptachlor were the most toxic, while dieldrin, lindane, trifluralin, and triallate exhibited moderate toxicity, and clopyralid was not toxic to SH-SY5Y cells. While aldrin and heptachlor induced their toxicity through damage to the cell membrane, the toxicity of dieldrin was partially attributed to necrosis and apoptosis. Moreover, toxic effects of lindane, trifluralin, and triallate, at least partially, were associated with ROS generation. Gene expression profiles suggested that decreased cell viability induced by most of the tested biocides was related to inhibited cell proliferation. The dysregulation of genes encoding for proteins with anti-apoptotic properties also supported the absence of caspase activation. Identified enriched terms showed that OCP toxicity in SH-SY5Y cells was mediated through pathways associated with the pathogenesis of neurodegenerative diseases. In conclusion, this study provides a basis for elucidating the molecular mechanisms of pesticide-induced neurotoxicity. Moreover, it introduced SH-SY5Y cells as a relevant in vitro model for investigating the neurotoxicity of pesticides in humans.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Espécies Reativas de Oxigênio , Humanos , Doenças Neurodegenerativas/induzido quimicamente , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Praguicidas/toxicidade , Dieldrin/toxicidade , Inseticidas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Hidrocarbonetos Clorados/toxicidade , Apoptose/efeitos dos fármacos , Herbicidas/toxicidade , Aldrina/toxicidade , Hexaclorocicloexano/toxicidade
2.
Neurotoxicology ; 88: 216-223, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864106

RESUMO

BACKGROUND: There is evidence that environmental factors contribute to the onset and progression of Parkinson's disease (PD). Pesticides are a class of environmental toxins that are linked to increased risk of developing PD. However, few studies have investigated the association between specific pesticides and PD, especially in China, which was one of the first countries to adopt the use of pesticides. METHODS: In this study, serum levels of 19 pesticides were measured in 90 patients with PD and 90 healthy spouse controls. We also analyzed the interaction between specific pesticides and PD. In addition, the association between pesticides and clinical features of PD was also investigated. Finally, we investigated the underlying mechanism of the association between pesticides and PD. RESULTS: Serum levels of organochlorine pesticides, which included α-hexachlorocyclohexane (HCH), ß-HCH, γ-HCH, δ-HCH, propanil, heptachlor, dieldrin, hexachlorobenzene, p,p'-dichlorodiphenyltrichloroethane and o,p'-dichloro-diphenyl-trichloroethane were higher in PD patients than controls. Moreover, α-HCH and propanil levels were associated with PD. Serum levels of dieldrin were associated with Hamilton Depression Scale and Montreal Cognitive Assessment scores in PD patients. In SH-SY5Y cells, α-HCH and propanil increased level of reactive oxygen species and decreased mitochondrial membrane potential. Furthermore, propanil, but not α-HCH, induced the aggregation of α-synuclein. CONCLUSIONS: This study revealed that elevated serum levels of α-HCH and propanil were associated with PD. Serum levels of dieldrin were associated with depression and cognitive function in PD patients. Moreover, propanil, but not α-HCH, induced the aggregation of α-synuclein. Further research is needed to fully elucidate the effects of pesticides on PD.


Assuntos
Hidrocarbonetos Clorados/sangue , Doença de Parkinson/sangue , Praguicidas/sangue , Idoso , Western Blotting , Estudos de Casos e Controles , Linhagem Celular Tumoral , Cognição/efeitos dos fármacos , Transtornos Cognitivos/sangue , Transtornos Cognitivos/induzido quimicamente , Depressão/sangue , Depressão/induzido quimicamente , Dieldrin/sangue , Dieldrin/toxicidade , Feminino , Hexaclorocicloexano/sangue , Hexaclorocicloexano/toxicidade , Humanos , Hidrocarbonetos Clorados/toxicidade , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Doença de Parkinson/etiologia , Praguicidas/toxicidade , Propanil/sangue , Propanil/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco
3.
Reprod Toxicol ; 106: 103-108, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688840

RESUMO

Organochlorine pesticides are highly persistent environmental pollutants, generally shown to act through estrogen receptor alpha and alter estrogen biosynthesis. However, the molecular mechanism of regulation of estrogen biosynthesis by these pesticides is not clear. Estrogen is main female fertility hormone regulated by rate-limiting enzyme aromatase. It is encoded by the CYP19A1 gene, which is expressed using specific promoters. In the present study, the attempt has been made to elucidate the effect of dieldrin on the promoter-specific CYP19A1 gene expression and estrogen hormone production in buffalo granulosa cells. The buffalo granulosa cells were cultured and treated with dieldrin in a dose (100,150 and 200 ng/mL) and time (6, 12, and 24 h) dependent manner, followed by analysis of CYP19A1, promoter-specific CYP19A1 transcript expression, and estrogen production. Results showed that dieldrin significantly increased the expression of the CYP19A1 gene after 6 and 12 h while its expression was decreased after 24 h. To understand the upregulation of CYP19A1 gene, promoters' specific CYP19A1 transcript analysis was done. The finding showed that dieldrin significantly increased the proximal promoter specific CYP19A1 transcript while there was no effect on distal promoter specific CYP19A1 transcripts. This specific-promoter activity was quantified by chromatin immunoprecipitation assay (ChIP). Results confirmed the involvement of the proximal promoter in the overexpression of CYP19A1 gene. Furthermore, a significant increase in estradiol-17ß level was also observed. Overall, the present study demonstrated the stimulatory effect of dieldrin on the CYP19A1 gene and will help to understand the toxicological role of dieldrin on the reproductive system.


Assuntos
Família 19 do Citocromo P450/genética , Dieldrin/toxicidade , Estrogênios/metabolismo , Células da Granulosa/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Animais , Búfalos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Imunoprecipitação da Cromatina , Feminino , Células da Granulosa/metabolismo , Reação em Cadeia da Polimerase , Progesterona/análise , Regulação para Cima
4.
Pol J Vet Sci ; 24(1): 5-12, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33847092

RESUMO

Dieldrin and DDE are environmental metabolites of the organochlorine pesticides aldrin and DDT, respectively. During pregnancy, these chemicals can quickly infiltrate through the placental barrier, accumulate in amniotic fluid and fetus, and act as endocrine disruptors (EDs). The aim of this study was to investigate the effect of DDE and dieldrin and their parental substances at concentrations of 1 and 10 ng/ml on secretion of PGE2 and PGF2α from bovine endometrial explants (120-150 and 151-180 days of pregnancy) after 24 hr of incubation with EDs. The mRNA expression of COX2, PGES and PGFS and the concentrations of PGE2 and PGF2α were measured. EDs did not affect (p>0.05) COX2 gene expression, but DDT and DDE decreased (p⟨0.05) PGES expression and PGE2 secretion in the explants from 120-150 days of pregnancy. Depending on the dose, DDT and DDE increased (p⟨0.05) PGFS expression and PGF2α secretion from the explants from 120-150 days and decreased PGF2α secretion (p⟨0.05) from the explants from 151-180 days of pregnancy. Aldrin and dieldrin decreased (p⟨0.05) PGFS expression and PGF2α secretion from all explants. In summary, EDs disrupt the secretion of PGE2 and PGF2α by influencing the gene expression of PGES and PGFS.


Assuntos
Bovinos/fisiologia , Dinoprosta/metabolismo , Dinoprostona/metabolismo , Endométrio/efeitos dos fármacos , Inseticidas/farmacologia , Aldrina/farmacologia , Aldrina/toxicidade , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , DDT/farmacologia , DDT/toxicidade , Diclorodifenil Dicloroetileno/farmacologia , Diclorodifenil Dicloroetileno/toxicidade , Dieldrin/farmacologia , Dieldrin/toxicidade , Dinoprosta/genética , Dinoprostona/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inseticidas/metabolismo , Inseticidas/toxicidade , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Técnicas de Cultura de Tecidos/veterinária
5.
Environ Sci Pollut Res Int ; 28(27): 36523-36534, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33694119

RESUMO

The toxicity of copper, cadmium, and dieldrin in adult Gammarus locusta (a marine amphipod) is currently unclear. Thus, G. locusta from the North Lake of Tunis were subjected to acute toxicity tests to assess LC50s at 48-96 h and to biomarker response tests through the assessment of catalase and acetylcholinesterase activities and malondialdehyde levels. The present study demonstrated the abilities of a chlorinated hydrocarbon pesticide (dieldrin) induce to oxidative stress and neurotoxicity. The comparison of metal toxicity showed that G. locusta was more sensitive to cadmium than copper. The three stressors caused significant inductions of all three biomarkers in a concentration-dependent manner. Catalase induction was dependent on exposure duration for all pollutants, while only copper led to increased malondialdehyde with longer exposure times. Catalase induction and malondialdehyde increase appeared to be sex dependent for all three pollutants. The neurotoxic effects of the pollutants were concentration dependent according to inhibition of acetylcholinesterase activity. In conclusion, catalase, malondialdehyde, and acetylcholinesterase are efficient biomarkers of copper, cadmium, and dieldrin in G. locusta.


Assuntos
Anfípodes , Inseticidas , Poluentes Químicos da Água , Animais , Biomarcadores , Cádmio/toxicidade , Cobre/toxicidade , Dieldrin/toxicidade , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Environ Pollut ; 268(Pt B): 115715, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069042

RESUMO

Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]-cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.


Assuntos
Microbiota , Selênio , Animais , Dieldrin/toxicidade , Trato Gastrointestinal , Heme , Masculino , RNA Ribossômico 16S , Peixe-Zebra
7.
Arch Toxicol ; 94(8): 2873-2884, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32435917

RESUMO

Dieldrin has been shown to induce liver tumors selectively in mice. Although the exact mechanism is not fully understood, previous studies from our laboratory and others have shown that dieldrin induced liver tumors in mice through a non-genotoxic mechanism acting on tumor promotion stage. Two studies were performed to examine the role of nuclear receptor activation as a possible mode of action (MOA) for dieldrin-induced mouse liver tumors. In the initial study, male C57BL/6 mice (6- to 8-week old) were treated with dieldrin in diet (10 ppm) for 7, 14, and 28 days. Phenobarbital (PB), beta-naphthoflavone (BNF) and Di (2-ethylhexyl) phthalate (DEHP) were included as positive controls in this study for evaluating the involvement of CAR (constitutive androstane receptor), AhR (aryl hydrocarbon receptor) or PPARα (peroxisome proliferator activated receptor alpha) in the MOA of dieldrin hepatocarcinogenesis. A significant increase in hepatocyte DNA synthesis (BrdU incorporation) was seen in treated mice compared with the untreated controls. Analysis of the expression of the nuclear receptor responsive genes revealed that dieldrin induced a significant increase in the expression of genes specific to CAR activation (Cyp2b10, up to 400- to 2700-fold) and PXR activation (Cyp3a11, up to 5- to 11-fold) over untreated controls. The AhR target genes Cyp1a1 and Cyp1a2 were also slightly induced (2.0- to 3.7-fold and 1.7- to 2.8-fold, respectively). PPARα activation was not seen in the liver following dieldrin treatment. In addition, consistent with previous studies in our lab, treatment with dieldrin produced significant elevation in the hepatic oxidative stress. In a subsequent study using CAR, PXR, and CAR/PXR knockout mice, we confirmed that the dieldrin-induced liver effects in mouse were only mediated by the activation of CAR receptor. Based on these findings, we propose that dieldrin induced liver tumors in mice through a nuclear receptor CAR-mediated mode of action. The previously observed oxidative stress/damage may be an associated or modifying factor in the process of dieldrin-induced liver tumor formation subsequent to the CAR activation.


Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Dieldrin/toxicidade , Inseticidas/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Hidrocarboneto de Aril Hidroxilases/biossíntese , Hidrocarboneto de Aril Hidroxilases/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Receptor Constitutivo de Androstano , Família 2 do Citocromo P450/biossíntese , Família 2 do Citocromo P450/genética , Replicação do DNA/efeitos dos fármacos , Indução Enzimática , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Esteroide Hidroxilases/biossíntese , Esteroide Hidroxilases/genética
8.
J Proteomics ; 202: 103362, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31022476

RESUMO

The organochlorine dieldrin (DLD) bioaccumulates in lipid-rich tissues and is associated with immunosuppression, altered metabolism, and cancer. The objective of this study was to determine the effect of DLD on the hepatic proteome in zebrafish following dietary treatment as the liver is central to metabolism. Females were fed a control dose or one of three doses of DLD-contaminated food pellets over 21 days. Both label-free and iTRAQ proteomics were conducted as two complementary methods to expand coverage of the proteome. Label-free proteomics quantified 1563 proteins: 6 proteins showed a linear dose-response with DLD. iTRAQ quantified >3500 proteins; 5 proteins were decreased and 34 proteins were increased in abundance within the liver with all three doses. Overall, DLD reduced the abundance of proteins associated with glucose and cholesterol metabolism, lipid oxidation, liver function, and immune-related processes. Few proteins were identified by both methods as being altered (~1%), suggesting that each method detected different subsets of proteins. Protein responses in the liver were largely dependent on dose, however proteins related to liver and organ function, centrosome separation, glucose/energy metabolism, and immune-related pathways were confirmed by each independent technique and were suppressed with DLD exposure. This study identifies proteomic responses that are associated with organochlorine-induced hepatotoxicity. BIOLOGICAL SIGNIFICANCE: Environmental contaminants cause hepatotoxicity because the liver is the major organ for detoxification. The legacy pesticide dieldrin significantly bioaccumulates in tissues, and can affect molecular processes that can lead to liver pathology. LC MS/MS proteomics identified protein networks related to tumors, energy homeostasis, and chromosomal separation as those affected by dietary exposure to dieldrin. We applied two orthogonal mass spectrometry-based methods to more completely survey the liver proteome, strengthening data interpretation. These data improve understanding as to the effects of organochlorine pesticide toxicity in the liver and the study identifies proteome networks that can contribute to adverse outcome pathways for pesticide exposure.


Assuntos
Dieldrin/toxicidade , Fígado/metabolismo , Praguicidas/toxicidade , Proteômica , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Exposição Dietética
9.
Environ Mol Mutagen ; 59(7): 613-624, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29968392

RESUMO

One level at which persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons PAHs) can exert damage is by causing DNA strand-breaks or nucleotide base modifications, which, if unrepaired, can lead to embryonic mutations, abnormal development and cancer. In marine ecosystems, genotoxicity is expected to be particularly strong in long-lived apex predators due to pollutant bioaccumulation. We conducted 32 P-postlabeling analyses optimized for the detection and quantification of aromatic/hydrophobic DNA adducts in the livers of 40 sexually-mature North Atlantic harbour porpoises (Phocoena phocoena) stranded along the English and Welsh coastlines. We examined hepatic tissue to search for inflammatory and preneoplastic lesions and examine their association with adduct levels. Adducts were found in all porpoises (mean: 17.56 ± 11.95 per 108 nucleotides), and were higher than levels reported for marine vertebrates from polluted sites. The pollutants causing the induced DNA adducts could not be further characterized. Hepatic DNA damage did not correlate with levels of blubber POP concentrations (including total polychlorinated biphenyl [PCBs], dichlorodiphenyltrichloroethane [DDT] and dieldrin); PAH concentrations were not available for the present study. However, DNA damage predicted occurrence of inflammatory and preneoplastic lesions. Further, our data showed a reduction in hepatic DNA adduct levels with age in the 40 animals examined while POP concentrations, particularly PCBs, increased with age. Using a different dataset of 145 mature male harbour porpoises confirmed that higher contaminant levels (total PCBs, DDT and dieldrin) are found in older animals. The reduction in hepatic DNA adduct levels in older animals was in accordance with other studies which show that suppression of hepatic CYP1A enzyme activity at high PCB concentrations might impact on CYP1A-mediated DNA adduct formation of PAHs which are ubiquitous environmental pollutants and readily metabolized by CYP1A to species binding to DNA. In summary, our study shows that pollutant-induced DNA damage is prevalent in harbour porpoises from UK waters and may lead to detectable sub-lethal hepatic damage. Environ. Mol. Mutagen. 59:613-624, 2018. © 2018 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mutagênicos/toxicidade , Phocoena/genética , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Carcinógenos Ambientais/toxicidade , DDT/toxicidade , Dieldrin/toxicidade , Inglaterra , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Feminino , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , País de Gales
10.
Toxicol Appl Pharmacol ; 285(1): 23-31, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25771128

RESUMO

Aldrin and dieldrin are chloroorganic insecticides which are recognised as endocrine disruptors. The aim of the study was to investigate their effect on the secretory functions of the uterus and ovary and on myometrial contractions. Myometrial strips and uterine and ovarian cells from nonpregnant cows were incubated with the xenobiotics (0.1, 1 or 10 ng/ml) for 24 or 72 h. Next, their effect on viability of myometrial, endometrial, granulosa and luteal cells, myometrial strip contractions, the synthesis and secretion of prostaglandins (PGs: PGF2α and PGE2) from uterine cells, the secretion of oestradiol (E2), testosterone (T) and oxytocin (OT) from granulosa cells and the secretion of progesterone (P4) and OT from luteal cells were determined. Neither of the xenobiotics (10 ng/ml) affected (P>0.05) the viability of the ovarian and uterine cells, while both (0.1-10 ng/ml) decreased (P<0.05) the basal and OT-stimulated myometrial contractions. In spite of these effects, neither of the insecticides affected (P>0.05) the synthesis and the secretion of PGs from the myometrial cells. Although they also did not impair the secretion of the PGs from the endometrial cells, they abolished (P<0.05) the stimulatory effect of OT (P<0.05) on the secretion of the PGs and stimulated (P<0.05) the secretion of OT from the granulosa and luteal cells. Moreover, aldrin and dieldrin stimulated secretion of E2 and T from the granulosa cells, while only dieldrin increased (P<0.05) the secretion of P4 from luteal cells. The data show that aldrin and dieldrin stimulated the secretory function of the cultured granulosa and luteal cells and inhibited the myometrial contractions of cows in vitro, which may affect on natural parturition.


Assuntos
Aldrina/toxicidade , Dieldrin/toxicidade , Disruptores Endócrinos/toxicidade , Inseticidas/toxicidade , Ovário/efeitos dos fármacos , Contração Uterina/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Dinoprosta/metabolismo , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Estradiol/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Células Lúteas/efeitos dos fármacos , Células Lúteas/metabolismo , Ovário/metabolismo , Ocitocina/metabolismo , Progesterona/metabolismo , Testosterona/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos , Útero/metabolismo
11.
Rev. biol. trop ; 63(1): 83-96, Jan.-Mar. 2015. tab
Artigo em Inglês | LILACS | ID: lil-753778

RESUMO

The toxicity induced by insecticides in aquatic organisms is of utmost relevance because it may give a clue about the degree of health or damage of the involved ecosystem. In the present report, we determined the effect of dieldrin (DD) and chlorpyrifos (CP) on the freshwater crayfish, Cambarellus montezumae. The organisms (4-6cm in diameter) were collected in the Ignacio Ramírez Reservoir, situated at 50km Northeast of Mexico City, in the Rio Lerma Basin. Initially, we determined the LC50 value with the Probit method, then the DNA damage with single cell gel electrophoresis (comet assay applied at 24, 48, and 72h of exposure) to the brain and hepatopancreas of animals exposed (in reconstituted water) to 0.05 and 0.5µg/L of each insecticide. In the hepatopancreas of the same organisms, we determined the lipid peroxidation by applying the TBARS test. DNA damage and lipid peroxidation were also evaluated with the same methods to organisms exposed in water from the reservoir. In regard to the LC50 at 72h of exposure, we found a value of 5.1µg/L and a value of 5.62µg/L for DD and CP, respectively. The comet assay applied at different exposure times showed significant DNA damage to both organs, with respect to the control level. In the case of DD, statistical significance was observed for the two doses in the whole evaluated schedule. CP was genotoxic in the brain with the high dose at 72h, and in the hepatopancreas with the two tested doses at all evaluated exposure times. Also, a significant lipid peroxidation increase was detected with the two doses of insecticides. In the study with water from the reservoir, a more pronounced DNA damage was detected. Our results showed strong DNA damage induced by both insecticides in the crayfish, as well as a correlation with the lipid peroxidation effect, suggesting that oxidative stress is involved in the genotoxic alteration. Our results also showed the usefulness of the studied organism as well as the applied tests for the evaluation of toxicological effects, and suggested the pertinence of applying the comet assay to other freshwater organisms to evaluate the bioaccumulation of insecticides. Rev. Biol. Trop. 63 (1): 83-96. Epub 2015 March 01.


La toxicidad inducida por insecticidas en organismos acuáticos es de gran relevancia porque puede orientar sobre el grado de salud o daño del ecosistema involucrado. En el presente estudio determinamos el efecto del dieldrín (DD) y del clorpirifós (CP) en el acocil de agua dulce Cambarellus montezumae. Los organismos (4-6cm de diámetro) se recolectaron en la Represa Ignacio Ramírez, situada a 50km al Noreste de la Ciudad de México, en la cuenca del Río Lerma. Inicialmente determinamos la LC50 con el método de Probit y después el daño al ADN mediante la electroforesis unicelular en gel (ensayo cometa, aplicado a las 24, 48 y 72 h de exposición) en el cerebro y el hepatopáncreas de animales expuestos (en agua reconstituida) a 0.05 y 0.5µg/L de cada insecticida. En el hepatopáncreas de los mismos organismos determinamos la peroxidación lipídica aplicando la prueba de TBARS. El daño al ADN y la peroxidación lipídica también se evaluaron con los mismos métodos en organismos expuestos a los insecticidas en agua de la represa. En relación a la LC50, a las 72h de exposición encontramos un valor de 5.1µg/L y un valor de 5.62µg/L para DD y CP, respectivamente. El ensayo cometa aplicado a diferentes tiempos de exposición mostró un significativo daño al ADN en ambos órganos con respecto al valor del testigo. En el caso del DD se observó significancia estadística para las dos dosis en todo el horario evaluado. CP fue genotóxico en el cerebro con la dosis más alta a las 72 h y en hepatopáncreas con las dos dosis, en todos los tiempos de exposición evaluados. También se detectó un significativo aumento de la peroxidación lipídica con las dos dosis de los insecticidas. En el estudio con el agua de la represa se detectó un daño más pronunciado en el ADN. Nuestros resultados mostraron un fuerte daño al ADN en Cambarellus montezumae por ambos insecticidas, así como una correlación con el efecto de la peroxidación lipídica, lo que sugiere que el estrés oxidativo está involucrado en la alteración genotóxica. Nuestros resultados también mostraron la utilidad del organismo estudiado y de las pruebas aplicadas para evaluar efectos tóxicos, y sugieren la pertinencia de aplicar el ensayo cometa en otros organismos de agua dulce para evaluar la bioacumulación de insecticidas.


Assuntos
Animais , Astacoidea/efeitos dos fármacos , Clorpirifos/toxicidade , Dieldrin/toxicidade , Inseticidas/toxicidade , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Água Doce , Peroxidação de Lipídeos/efeitos dos fármacos , México
12.
Neurotoxicology ; 45: 31-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224521

RESUMO

The intracellular calcium concentration ([Ca(2+)]i) is an important readout for in vitro neurotoxicity since calcium is critically involved in many essential neurobiological processes, including neurotransmission, neurodegeneration and neurodevelopment. [Ca(2+)]i is often measured with considerable throughput at the level of cell populations with plate reader-based assays or with lower throughput at the level of individual cells with fluorescence microscopy. However, these methodologies yield different quantitative and qualitative results. In recent years, we demonstrated that the resolution and sensitivity of fluorescence microscopy is superior compared to plate reader-based assays. However, it is currently unclear if the use of plate reader-based assays results in more 'false negatives' or 'false positives' in neurotoxicity screening studies. In the present study, we therefore compared a plate reader-based assay with fluorescence microscopy using a small test set of environmental pollutants consisting of dieldrin, lindane, polychlorinated biphenyl 53 (PCB53) and tetrabromobisphenol-A (TBBPA). Using single-cell fluorescence microscopy, we demonstrate that all test chemicals reduce the depolarization-evoked increase in [Ca(2+)]i, whereas lindane, PCB53 and TBBPA also increase basal [Ca(2+)]i, though via different mechanisms. Importantly, none of these effects were confirmed with the plate reader-based assay. We therefore conclude that standard plate reader-based methods are not sufficiently sensitive and reliable to measure the highly dynamic and transient changes in [Ca(2+)]i that occur during chemical exposure.


Assuntos
Cálcio/análise , Poluentes Ambientais/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Microscopia de Fluorescência/métodos , Neurotoxinas/análise , Animais , Cálcio/metabolismo , Dieldrin/toxicidade , Hexaclorocicloexano/toxicidade , Cinética , Células PC12 , Bifenil Polibromatos/toxicidade , Bifenilos Policlorados/toxicidade , Ratos , Reprodutibilidade dos Testes
13.
Environ Res ; 131: 188-214, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24727642

RESUMO

Although dieldrin׳s use in the U.S. was partially banned in the 1970s and its use was completely eliminated in 1987, dieldrin continues to be a common contaminant at hazardous waste sites. The USEPA׳s current cancer potency estimate for dieldrin was derived in 1987 and is based on the production of mouse liver tumors. Because of its environmental persistence and its relatively high USEPA cancer potency estimate, dieldrin functions as a cleanup "driver" in many hazardous site remediations. Since 1987, new risk assessment perspectives and new data on dieldrin׳s carcinogenic potential have arisen. This review presents a reassessment of dielrin׳s human cancer potential in light of these new data and new perspectives. Based on this reassessment, dieldrin may be carcinogenic through multiple modes of action. These modes of action may operate within the same tissue, or may be specific to individual tissues. Of the several possible carcinogenic modes of action for dieldrin, one or more may be more relevant to human cancer risk than others, but the relative importance of each is unknown. In addition, neither the details of the possible modes of action, nor the shape of the tumor dose-response curves associated with each are sufficiently well known to permit quantitative cancer dose-response modeling. Thus, the mouse liver tumor data used by the USEPA in its 1987 assessment remain the only quantitative data available for cancer dose-response modeling.


Assuntos
Neoplasias da Mama/etiologia , Carcinógenos Ambientais/toxicidade , Dieldrin/toxicidade , Substâncias Perigosas/toxicidade , Neoplasias Hepáticas Experimentais/etiologia , Animais , Neoplasias da Mama/epidemiologia , Testes de Carcinogenicidade , Carcinógenos Ambientais/química , Dieldrin/química , Feminino , Substâncias Perigosas/química , Humanos
14.
J Biochem Mol Toxicol ; 28(5): 224-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24615737

RESUMO

The legacy organochlorine insecticide, dieldrin, is still found in soil and accumulation in individuals is possible. Paraoxonase 1 hydrolyzes the oxon metabolites of organophosphorus insecticides, as well as other substrates. Putative binding sites for pregnane X receptor (PXR) exist in the paraoxonase promoter, and studies have indicated that dieldrin can activate PXR-regulated gene expression. We examined rat paraoxonase promoter activity in the presence of dieldrin alone or combined with nuclear receptors (NRs). In vitro dieldrin concentrations from 10 to 100 µM significantly increased (p < 0.05) promoter activity in the presence of Pxr or Rxrα alone and when Pxr plus Rxrα were on the same vector, indicating that dieldrin can increase paraoxonase promoter activity in the presence of NRs. To our knowledge, this is the first report of dieldrin increasing paraoxonase promoter activity. Since many organochlorine insecticides are in the same chemical class as dieldrin, these results could be typical of other bioaccumulative persistent pollutants.


Assuntos
Dieldrin/toxicidade , Expressão Gênica/efeitos dos fármacos , Regiões Promotoras Genéticas , Receptores de Esteroides/metabolismo , Poluentes do Solo/toxicidade , Animais , Arildialquilfosfatase/química , Arildialquilfosfatase/genética , Sítios de Ligação , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Dieldrin/química , Medições Luminescentes , Receptores Nucleares Órfãos/química , Receptores Nucleares Órfãos/metabolismo , Plasmídeos , Receptor de Pregnano X , Ratos , Receptores de Esteroides/química , Poluentes do Solo/química , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Transfecção
15.
Toxicol Lett ; 230(2): 85-103, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24503016

RESUMO

The etiology of most neurodegenerative disorders is multifactorial and consists of an interaction between environmental factors and genetic predisposition. The role of pesticide exposure in neurodegenerative disease has long been suspected, but the specific causative agents and the mechanisms underlying are not fully understood. For the main neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis there are evidences linking their etiology with long-term/low-dose exposure to pesticides such as paraquat, maneb, dieldrin, pyrethroids and organophosphates. Most of these pesticides share common features, namely the ability to induce oxidative stress, mitochondrial dysfunction, α-synuclein fibrillization and neuronal cell loss. This review aims to clarify the role of pesticides as environmental risk factors in genesis of idiopathic PD and other neurological syndromes. For this purpose, the most relevant epidemiological and experimental data is highlighted in order to discuss the molecular mechanisms involved in neurodegeneration.


Assuntos
Doenças Neurodegenerativas/induzido quimicamente , Doença de Parkinson Secundária/induzido quimicamente , Praguicidas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Dieldrin/toxicidade , Exposição Ambiental , Humanos , Maneb/toxicidade , Organofosfatos/toxicidade , Estresse Oxidativo , Paraquat/toxicidade , Inibidores de Proteassoma/toxicidade , Piretrinas/toxicidade
16.
Neurotoxicology ; 34: 105-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23041725

RESUMO

Organochlorine pesticides (OCPs) such as dieldrin are a persistent class of aquatic pollutants that cause adverse neurological and reproductive effects in vertebrates. In this study, female and male largemouth bass (Micropterus salmoides) (LMB) were exposed to 3mg dieldrin/kg feed in a 2 month feeding exposure (August-October) to (1) determine if the hypothalamic transcript responses to dieldrin were conserved between the sexes; (2) characterize cell signaling cascades underlying dieldrin neurotoxicity; and (3) determine whether or not co-feeding with 17ß-estradiol (E(2)), a hormone with neuroprotective roles, mitigates responses in males to dieldrin. Despite also being a weak estrogen, dieldrin treatments did not elicit changes in reproductive endpoints (e.g. gonadosomatic index, vitellogenin, or plasma E(2)). Sub-network (SNEA) and gene set enrichment analysis (GSEA) revealed that neuro-hormone networks, neurotransmitter and nuclear receptor signaling, and the activin signaling network were altered by dieldrin exposure. Most striking was that the majority of cell pathways identified by the gene set enrichment were significantly increased in females while the majority of cell pathways were significantly decreased in males fed dieldrin. These data suggest that (1) there are sexually dimorphic responses in the teleost hypothalamus; (2) neurotransmitter systems are a target of dieldrin at the transcriptomics level; and (3) males co-fed dieldrin and E(2) had the fewest numbers of genes and cell pathways altered in the hypothalamus, suggesting that E(2) may mitigate the effects of dieldrin in the central nervous system.


Assuntos
Bass/genética , Dieldrin/toxicidade , Proteínas de Peixes/genética , Hipotálamo/efeitos dos fármacos , Praguicidas/toxicidade , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Bass/sangue , Bass/crescimento & desenvolvimento , Análise por Conglomerados , Estradiol/sangue , Estradiol/farmacologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Hipotálamo/metabolismo , Masculino , Fármacos Neuroprotetores/sangue , Fármacos Neuroprotetores/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais , Fatores Sexuais , Vitelogeninas/sangue
17.
J Neurochem ; 122(4): 752-63, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22679891

RESUMO

Factors released from injured dopaminergic (DA) neurons may trigger microglial activation and set in motion a vicious cycle of neuronal injury and inflammation that fuels progressive DA neurodegeneration in Parkinson's disease. In this study, using proteomic and immunoblotting analysis, we detected elevated levels of cystatin C in conditioned media (CM) from 1-methyl-4-phenylpyridinium and dieldrin-injured rat DA neuronal cells. Immunodepletion of cystatin C significantly reduced the ability of DA neuronal CM to induce activation of rat microglial cells as determined by up-regulation of inducible nitric oxide synthase, production of free radicals and release of proinflammatory cytokines as well as activated microglia-mediated DA neurotoxicity. Treatment of the cystatin C-containing CM with enzymes that remove O- and sialic acid-, but not N-linked carbohydrate moieties markedly reduced the ability of the DA neuronal CM to activate microglia. Taken together, these results suggest that DA neuronal cystatin C plays a role in the neuronal injury-induced microglial activation and neurotoxicity. These findings from the rat DA neuron-microglia in vitro model may help guide continued investigation to define the precise role of cystatin C in the complex interplay among neurons and glia in the pathogenesis of Parkinson's disease.


Assuntos
Cistatina C/fisiologia , Neurônios Dopaminérgicos/fisiologia , Ativação de Macrófagos/fisiologia , Microglia/fisiologia , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Corantes , Meios de Cultivo Condicionados , Cistatina C/metabolismo , Citocinas/metabolismo , Dieldrin/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Imunofluorescência , Glicosilação , Inflamação/patologia , Intoxicação por MPTP/patologia , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Mutagênicos/toxicidade , Nitritos/metabolismo , Proteômica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sais de Tetrazólio , Tiazóis
18.
Neurotoxicol Teratol ; 34(4): 395-402, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22546817

RESUMO

Mechanistically unrelated developmental neurotoxicants often produce neural cell loss culminating in similar functional and behavioral outcomes. We compared an organophosphate pesticide (diazinon), an organochlorine pesticide (dieldrin) and a metal (Ni(2+)) for effects on the genes regulating cell cycle and apoptosis in differentiating PC12 cells, an in vitro model of neuronal development. Each agent was introduced at 30µM for 24 or 72h, treatments devoid of cytotoxicity. Using microarrays, we examined the mRNAs encoding nearly 400 genes involved in each of the biological processes. All three agents targeted both the cell cycle and apoptosis pathways, evidenced by significant transcriptional changes in 40-45% of the cell cycle-related genes and 30-40% of the apoptosis-related genes. There was also a high degree of overlap as to which specific genes were affected by the diverse agents, with 80 cell cycle genes and 56 apoptosis genes common to all three. Concordance analysis, which assesses stringent matching of the direction, magnitude and timing of the transcriptional changes, showed highly significant correlations for pairwise comparisons of all the agents, for both cell cycle and apoptosis. Our results show that otherwise disparate developmental neurotoxicants converge on common cellular pathways governing the acquisition and programmed death of neural cells, providing a specific link to cell deficits. Our studies suggest that identifying the initial mechanism of action of a developmental neurotoxicant may be strategically less important than focusing on the pathways that converge on common final outcomes such as cell loss.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diazinon/toxicidade , Dieldrin/toxicidade , Neurônios/efeitos dos fármacos , Níquel/toxicidade , Animais , Apoptose/fisiologia , Ciclo Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Inseticidas/toxicidade , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Células PC12 , Ratos
19.
Environ Sci Technol ; 46(3): 1842-8, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22191981

RESUMO

Current hypotheses link long-term environmental exposure of humans to persistent organochlorine (OC) insecticides lindane (HCH) and dieldrin (HEOD) to the development of neurodegenerative disorders, such as Parkinson's disease. Primary adverse neurological effects of these insecticides are directed at inhibition of GABA(A) and glycine receptors, although GABA-independent effects have also been reported. In this paper we describe the effect of dieldrin and a binary mixture of dieldrin and lindane on a critical parameter of neuronal function and survival, i.e., intracellular calcium homeostasis. The intracellular calcium concentration ([Ca(2+)](i)) has been monitored using real-time single-cell fluorescence microscopy in dopaminergic PC12 cells loaded with the calcium-sensitive dye Fura-2. The results demonstrate that nanomolar concentrations of dieldrin time- and concentration-dependently inhibit depolarization-evoked influx of Ca(2+). Co-exposure of PC12 cells to a mixture of dieldrin and lindane revealed an additive inhibition of the depolarization-evoked increase in [Ca(2+)](i), whereas the lindane-induced increase in basal [Ca(2+)](i) is inhibited by dieldrin. The combined findings indicate that dieldrin and binary mixtures of organochlorines affect [Ca(2+)](i) already at concentrations below commonly accepted effect concentrations and close to human internal dose levels. Consequently, current findings illustrate the need to take mixtures of OC insecticides into account in human risk assessment.


Assuntos
Cálcio/metabolismo , Dieldrin/toxicidade , Hexaclorocicloexano/toxicidade , Homeostase/efeitos dos fármacos , Inseticidas/toxicidade , Análise de Variância , Animais , Sobrevivência Celular/efeitos dos fármacos , Fura-2 , Microscopia de Fluorescência , Células PC12 , Ratos
20.
Neurotoxicology ; 32(4): 383-91, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21402100

RESUMO

Parkinson's disease (PD) is frequently reported to be associated with pesticide exposure but the issue has not yet been solved because the data are inconsistent and the studies suffer from several biases and limitations. The aim of this article is to summarise available biochemical and toxicological data on some pesticides, particularly on paraquat, that might help in the evaluation of epidemiological data. The nigrostriatal system appears to be particularly sensitive to oxidative damage caused by different mechanisms and agents, thus supporting the epidemiological evidence that Parkinson's disease is in fact an environmental disease. In available experimental studies, animals have been treated with a high single or a few doses of pesticide, and have been followed up for a few days or weeks after treatment. Moreover, experimental data indicate additive/synergistic effects of different pesticides that act on different targets within the dopaminergic system. In these conditions and to a different extent, pesticides such as paraquat, maneb and other dithiocarbamates, pyrethroids, rotenone, and dieldrin cause neurotoxic effects that may suggest a possible role in the development of a PD-like syndrome in animals. Although, all the characteristics of PD cannot be reproduced by any single chemical, these data can be of help for understanding the role of pesticide exposure in human PD development. On the other hand farmers are exposed for days or weeks during several years to much lower doses than those used in experimental studies. Therefore, a firm conclusion on the role of pesticide exposure on the increased risk of developing PD cannot be drawn. However, it is suggested that close follow up of survivors of acute poisonings by these pesticides, or identification in epidemiological studies of such subjects or of those reporting episodes of accidentally high exposure will certainly provide information useful for the understanding of the relevance of actual human exposure to these pesticides in the development of PD. Also exposure to multiple pesticides, not necessarily at the same time, should be evaluated in epidemiological studies, as suggested by the additive/synergistic effects observed in experimental studies.


Assuntos
Encéfalo/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Doença de Parkinson/etiologia , Praguicidas/toxicidade , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Dieldrin/toxicidade , Relação Dose-Resposta a Droga , Humanos , Maneb/toxicidade , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Paraquat/toxicidade , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Praguicidas/metabolismo , Piretrinas/toxicidade , Medição de Risco , Fatores de Risco , Rotenona/toxicidade , Fatores de Tempo , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA