Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Int. j. morphol ; 41(2): 518-521, abr. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1440302

RESUMO

SUMMARY: S100 proteins belong group of calcium-binding proteins and are present in physiological intracellular and extracellular regulatory activities, such as cell differentiation, and act in inflammatory and neoplastic pathological processes. Recently, its expressions in the nervous system have been extensively studied, seeking to elucidate its action at the level of the thalamus: A structure of the central nervous system that is part of important circuits, such as somatosensory, behavioral, memory and cognitive, as well as being responsible for the transmission and regulation of information to the cerebral cortex. This article is an integrative review of scientific literature, which analyzed 12 studies present in Pubmed. The analysis showed that the relationship of S100 proteins and the thalamus has been described in neoplastic processes, mental disorders, hypoxia, trauma, stress, infection, Parkinson's disease and epilepsy. In summary, it is possible to conclude that this protein family is relevant as a marker in processes of thalamic injury, requiring further studies to better understand its clinical, preclinical meanings and its prognostic value.


Las proteínas S100 pertenecen al grupo de proteínas fijadoras de calcio y están presentes en actividades reguladoras fisiológicas intracelulares y extracelulares, como la diferenciación celular, y actúan en procesos patológicos inflamatorios y neoplásicos. Recientemente, sus expresiones en el sistema nervioso han sido ampliamente estudiadas, buscando dilucidar su acción a nivel del tálamo: una estructura del sistema nervioso central que forma parte de importantes circuitos, como el somatosensorial, conductual, de memoria y cognitivo, así como además de ser responsable de la transmisión y regulación de la información a la corteza cerebral. Este artículo es una revisión integradora de la literatura científica, que analizó 12 estudios presentes en Pubmed. El análisis mostró que la relación de las proteínas S100 y el tálamo ha sido descrita en procesos neoplásicos, trastornos mentales, hipoxia, trauma, estrés, infección, enfermedad de Parkinson y epilepsia. En resumen, es posible concluir que esta familia de proteínas es relevante como marcador en procesos de lesión talámica, requiriendo más estudios para comprender mejor su significado clínico, preclínico y su valor pronóstico.


Assuntos
Humanos , Tálamo/metabolismo , Proteínas S100/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Biomarcadores , Diencéfalo/metabolismo
2.
J Comp Neurol ; 530(10): 1569-1587, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35015905

RESUMO

We studied the expression of neurogranin in the brain and some sensory organs (barbel taste buds, olfactory organs, and retina) of adult zebrafish. Database analysis shows zebrafish has two paralog neurogranin genes (nrgna and nrgnb) that translate into three peptides with a conserved IQ domain, as in mammals. Western blots of zebrafish brain extracts using an anti-neurogranin antiserum revealed three separate bands, confirming the presence of three neurogranin peptides. Immunohistochemistry shows neurogranin-like expression in the brain and sensory organs (taste buds, neuromasts and olfactory epithelium), not being able to discern its three different peptides. In the retina, the most conspicuous positive cells were bipolar neurons. In the brain, immunopositive neurons were observed in all major regions (pallium, subpallium, preoptic area, hypothalamus, diencephalon, mesencephalon and rhombencephalon, including the cerebellum), a more extended distribution than in mammals. Interestingly, dendrites, cell bodies and axon terminals of some neurons were immunopositive, thus zebrafish neurogranins may play presynaptic and postsynaptic roles. Most positive neurons were found in primary sensory centers (viscerosensory column and medial octavolateral nucleus) and integrative centers (pallium, subpallium, optic tectum and cerebellum), which have complex synaptic circuitry. However, we also observed expression in areas not related to sensory or integrative functions, such as in cerebrospinal fluid-contacting cells associated with the hypothalamic recesses, which exhibited high neurogranin-like immunoreactivity. Together, these results reveal important differences with the patterns reported in mammals, suggesting divergent evolution from the common ancestor.


Assuntos
Neurogranina , Peixe-Zebra , Animais , Encéfalo/metabolismo , Diencéfalo/metabolismo , Mamíferos , Neurogranina/análise , Neurogranina/metabolismo , Rombencéfalo/química , Peixe-Zebra/metabolismo
3.
J Clin Endocrinol Metab ; 104(12): 5737-5750, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504653

RESUMO

CONTEXT: Congenital hypopituitarism (CH) is rarely observed in combination with severe joint contractures (arthrogryposis). Schaaf-Yang syndrome (SHFYNG) phenotypically overlaps with Prader-Willi syndrome, with patients also manifesting arthrogryposis. L1 syndrome, a group of X-linked disorders that include hydrocephalus and lower limb spasticity, also rarely presents with arthrogryposis. OBJECTIVE: We investigated the molecular basis underlying the combination of CH and arthrogryposis in five patients. PATIENTS: The heterozygous p.Q666fs*47 mutation in the maternally imprinted MAGEL2 gene, previously described in multiple patients with SHFYNG, was identified in patients 1 to 4, all of whom manifested growth hormone deficiency and variable SHFYNG features, including dysmorphism, developmental delay, sleep apnea, and visual problems. Nonidentical twins (patients 2 and 3) had diabetes insipidus and macrocephaly, and patient 4 presented with ACTH insufficiency. The hemizygous L1CAM variant p.G452R, previously implicated in patients with L1 syndrome, was identified in patient 5, who presented with antenatal hydrocephalus. RESULTS: Human embryonic expression analysis revealed MAGEL2 transcripts in the developing hypothalamus and ventral diencephalon at Carnegie stages (CSs) 19, 20, and 23 and in the Rathke pouch at CS20 and CS23. L1CAM was expressed in the developing hypothalamus, ventral diencephalon, and hindbrain (CS19, CS20, CS23), but not in the Rathke pouch. CONCLUSION: We report MAGEL2 and L1CAM mutations in four pedigrees with variable CH and arthrogryposis. Patients presenting early in life with this combined phenotype should be examined for features of SHFYNG and/or L1 syndrome. This study highlights the association of hypothalamo-pituitary disease with MAGEL2 and L1CAM mutations.


Assuntos
Artrogripose/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hipopituitarismo/congênito , Molécula L1 de Adesão de Célula Nervosa/genética , Proteínas/genética , Criança , Pré-Escolar , Diencéfalo/metabolismo , Feminino , Humanos , Hipotálamo/metabolismo , Lactente , Recém-Nascido , Masculino , Mutação , Linhagem , Fenótipo , Sequenciamento do Exoma
4.
Mol Brain ; 11(1): 5, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29394901

RESUMO

The epithalamus, which is dorsal to the thalamus, consists of the habenula, pineal gland and third ventricle choroid plexus and plays important roles in the stress response and sleep-wake cycle in vertebrates. During development, the epithalamus arises from the most dorsal part of prosomere 2. However, the mechanism underlying epithalamic development remains largely unknown. Foxg1 is critical for the development of the telencephalon, but its role in diencephalic development has been under-investigated. Patients suffering from FOXG1-related disorders exhibit severe anxiety, sleep disturbance and choroid plexus cysts, indicating that Foxg1 likely plays a role in epithalamic development. In this study, we identified the specific expression of Foxg1 in the developing epithalamus. Using a "self-deletion" approach, we found that the habenula significantly expanded and included an increased number of habenular subtype neurons. The innervations, particularly the habenular commissure, were severely impaired. Meanwhile, the Foxg1 mutants exhibited a reduced pineal gland and more branched choroid plexus. After ablation of Foxg1 no obvious changes in Shh and Fgf signalling were observed, suggesting that Foxg1 regulates the development of the epithalamus without the involvement of Shh and Fgfs. Our findings provide new insights into the regulation of the development of the epithalamus.


Assuntos
Epitálamo/crescimento & desenvolvimento , Epitálamo/metabolismo , Fatores de Transcrição Forkhead/deficiência , Deleção de Genes , Proteínas do Tecido Nervoso/deficiência , Animais , Contagem de Células , Diencéfalo/metabolismo , Epitálamo/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Habenula/patologia , Proteínas Hedgehog/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Glândula Pineal/patologia , Transdução de Sinais
5.
Development ; 144(13): 2504-2516, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28676569

RESUMO

Visual information is relayed from the eye to the brain via retinal ganglion cell (RGC) axons. Mice lacking NRP1 or NRP1-binding VEGF-A isoforms have defective RGC axon organisation alongside brain vascular defects. It is not known whether axonal defects are caused exclusively by defective VEGF-A signalling in RGCs or are exacerbated by abnormal vascular morphology. Targeted NRP1 ablation in RGCs with a Brn3bCre knock-in allele reduced axonal midline crossing at the optic chiasm and optic tract fasciculation. In contrast, Tie2-Cre-mediated endothelial NRP1 ablation induced axon exclusion zones in the optic tracts without impairing axon crossing. Similar defects were observed in Vegfa120/120 and Vegfa188/188 mice, which have vascular defects as a result of their expression of single VEGF-A isoforms. Ectopic midline vascularisation in endothelial Nrp1 and Vegfa188/188 mutants caused additional axonal exclusion zones within the chiasm. As in vitro and in vivo assays demonstrated that vessels do not repel axons, abnormally large or ectopically positioned vessels are likely to present physical obstacles to axon growth. We conclude that proper axonal wiring during brain development depends on the precise molecular control of neurovascular co-patterning.


Assuntos
Axônios/metabolismo , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Neuropilina-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Padronização Corporal , Diencéfalo/embriologia , Diencéfalo/metabolismo , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Neovascularização Fisiológica , Quiasma Óptico/embriologia , Quiasma Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3B/metabolismo , Vias Visuais/metabolismo
6.
Br Poult Sci ; 58(3): 305-311, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28090781

RESUMO

1. The purpose of the present study was to determine if central interleukin-1ß (IL1ß), interleukin-6 (IL6) and interleukin-8 (IL8) affect feeding behaviour in chicks (Gallus gallus) and examine if central interleukins are related to the lipopolysaccharide (LPS)-induced anorexia. 2. Intra-abdominal (IA) injection of LPS significantly suppressed feeding behaviour and significantly increased mRNA expression of IL1ß and IL8 in the diencephalon when compared to the control group, while IL6 tended to be increased. 3. Intracerebroventricular (ICV) injection of 200 ng IL1ß significantly decreased food intake at 60 min after the injection while IL6 and IL8 had no effect. 4. IA injection of these ILs (200 ng) had no effect on food intake in chicks. 5. ICV injection of 200 ng IL1ß did not affect water intake and plasma corticosterone concentration, suggesting that central IL1ß might not be related to the regulation of drinking behaviour and the hypothalamus-pituitary-adrenal axis. 6. The present study demonstrated that central IL1ß but not IL6 and IL8 might be related to the inhibition of feeding in chicks.


Assuntos
Galinhas/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Expressão Gênica , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Corticosterona/sangue , Diencéfalo/metabolismo , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Especificidade de Órgãos , RNA Mensageiro/metabolismo
7.
Gen Comp Endocrinol ; 246: 226-232, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28027903

RESUMO

The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians.


Assuntos
Anuros/metabolismo , Aromatase/genética , Regulação da Expressão Gênica , Fosfoproteínas/genética , Receptores Androgênicos/genética , Receptores de Estrogênio/genética , Estações do Ano , Animais , Encéfalo/metabolismo , Diencéfalo/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodução , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais , Fator Esteroidogênico 1/genética , Telencéfalo/metabolismo
8.
Physiol Behav ; 164(Pt A): 268-76, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317836

RESUMO

Recently, it was found that the avian central vasotocin receptor (V1aR) is associated with the regulation of food intake. To identify V1aR-containing brain structures regulating food intake, a selective V1aR antagonist SR-49059 that induced food intake was administrated intracerebroventricularly in male chickens followed by detection of brain structures using FOS immunoreactivity. Particularly, the hypothalamic core region of the paraventricular nucleus, lateral hypothalamic area, dorsomedial hypothalamic nucleus, a subnucleus of the central extended amygdalar complex [dorsolateral bed nucleus of the stria terminalis], medial septal nucleus and caudal brainstem [nucleus of the solitary tract] showed significantly increased FOS-ir cells. On the other hand, the supraoptic nucleus of the preoptic area and the nucleus of the hippocampal commissure of the septum showed suppressed FOS immunoreactivity in the V1aR antagonist treatment group. Further investigation revealed that neuronal activity of arginine vasotocin (AVT-ir) magnocellular neurons in the supraoptic nucleus, preoptic periventricular nucleus, paraventricular nucleus and ventral periventricular hypothalamic nucleus and most likely corticotropin releasing hormone (CRH-ir) neurons in the nucleus of the hippocampal commissure were reduced following the antagonist treatment. Dual immunofluorescence labeling results showed that perikarya of AVT-ir magnocellular neurons in the preoptic area and hypothalamus were colabeled with V1aR. Within the nucleus of the hippocampal commissure, CRH-ir neurons were shown in close contact with V1aR-ir glial cells. Results of the present study suggest that the V1aR plays a role in the regulation of food intake by modulating neurons that synthesize and release anorectic neuropeptides in the avian brain.


Assuntos
Regulação do Apetite/fisiologia , Proteínas Aviárias/metabolismo , Diencéfalo/metabolismo , Ingestão de Alimentos/fisiologia , Receptores de Vasopressinas/metabolismo , Septo do Cérebro/metabolismo , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Regulação do Apetite/efeitos dos fármacos , Comportamento Apetitivo/efeitos dos fármacos , Comportamento Apetitivo/fisiologia , Proteínas Aviárias/antagonistas & inibidores , Fármacos do Sistema Nervoso Central/administração & dosagem , Galinhas , Diencéfalo/citologia , Diencéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Indóis/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeo Y/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirrolidinas/farmacologia , Distribuição Aleatória , Septo do Cérebro/citologia , Septo do Cérebro/efeitos dos fármacos
9.
Mol Cell Endocrinol ; 420: 75-84, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26586207

RESUMO

In the frog Pelophylax esculentus, the endocannabinoid anandamide (AEA) modulates Gonadotropin Releasing Hormone (GnRH) system in vitro and down-regulates steroidogenic enzymes in vivo. Thus, male frogs were injected with AEA ± SR141716A, a cannabinoid receptor 1 (CB1) antagonist, to evaluate possible effects on GnRH and Kiss1/Gpr54 systems, gonadotropin receptors and steroid levels. In frog diencephalons, AEA negatively affected both GnRH and Kiss1/Gpr54 systems. In testis, AEA induced the expression of gonadotropin receptors, cb1, gnrh2 and gnrhr3 meanwhile reducing gnrhr2 mRNA and Kiss1/Gpr54 proteins. Furthermore, aromatase (Cyp19) expression increased in parallel to testosterone decrease and estradiol increase. In vitro treatment of testis with AEA revealed direct effects on Cyp19 and induced the expression of the AEA-degrading enzyme Faah. Lastly, AEA effects on Faah were counteracted by the antiestrogen ICI182780, indicating estradiol mediated effect. In conclusion, for the first time we show in a vertebrate that AEA regulates testicular activity through kisspeptin system.


Assuntos
Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Kisspeptinas/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Rana esculenta/metabolismo , Testículo/metabolismo , Amidoidrolases/metabolismo , Animais , Aromatase/metabolismo , Diencéfalo/efeitos dos fármacos , Diencéfalo/metabolismo , Estradiol/metabolismo , Masculino , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores da Gonadotropina/metabolismo , Rimonabanto , Testosterona/metabolismo
10.
Pharmacol Res ; 103: 328-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26657418

RESUMO

Histone deacetylases (HDACs) are key epigenetic enzymes and emerging drug targets in cancer and neurodegeneration. Pan-HDAC inhibitors provided neuroprotection in Parkinson's Disease (PD) models, however, the HDAC isoforms with highest neuroprotective potential remain unknown. Zebrafish larvae (powerful pharmacological testing tools bridging cellular and in vivo studies) have thus far been used in PD modelling with limited phenotypic characterization. Here we characterize the behavioural and metabolic phenotypes of a zebrafish PD model induced with MPP(+), assess the feasibility of targeting zebrafish HDAC1 and HDAC6 isoforms, and test the in vivo effects of their selective inhibitors MS-275 and tubastatin A, respectively. MPP(+) induced a concentration-dependent decrease in metabolic activity and sensorimotor reflexes, and induced locomotor impairments rescuable by the dopaminergic agonist apomorphine. Zebrafish HDAC1 and HDAC6 isoforms show high sequence identity with mammalian homologues at the deacetylase active sites, and pharmacological inhibition increased acetylation of their respective histone and tubulin targets. MS-275 and tubastatin rescued the MPP(+)-induced decrease in diencephalic tyrosine hydroxylase immunofluorescence and in whole-larvae metabolic activity, without modifying mitochondrial complex activity or biogenesis. MS-275 or tubastatin alone modulated spontaneous locomotion. When combined with MPP(+), however, neither MS-275 nor tubastatin rescued locomotor impairments, although tubastatin did ameliorate the head-reflex impairment. This study demonstrates the feasibility of pharmacologically targeting the zebrafish HDAC1 and HDAC6 isoforms, and indicates that their inhibition can rescue cellular metabolism in a PD model. Absence of improvement in locomotion, however, suggests that monotherapy with either HDAC1 or HDAC6 inhibitors is unlikely to provide strong benefits in PD. This study highlights parameters dependent on the integrity of zebrafish neuronal circuits as a valuable complement to cell-based studies. Also, the demonstrated feasibility of pharmacologically targeting HDAC1 and HDAC6 in this organism paves the way for future studies investigating HDAC inhibitors in other diseases modelled in zebrafish.


Assuntos
Benzamidas/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Doença de Parkinson Secundária , Piridinas/farmacologia , Proteínas de Peixe-Zebra/antagonistas & inibidores , 1-Metil-4-fenilpiridínio , Animais , Comportamento Animal/efeitos dos fármacos , Diencéfalo/efeitos dos fármacos , Diencéfalo/metabolismo , Modelos Animais de Doenças , Histona Desacetilase 1/genética , Desacetilase 6 de Histona , Histona Desacetilases/genética , Larva , Locomoção/efeitos dos fármacos , Neurotoxinas , Oxazinas/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/fisiopatologia , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Xantenos/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
11.
J Comp Neurol ; 524(4): 896-913, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26287569

RESUMO

Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways.


Assuntos
Diencéfalo/crescimento & desenvolvimento , Proteínas de Peixes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/citologia , Oryzias/crescimento & desenvolvimento , Telencéfalo/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Movimento Celular/fisiologia , Diencéfalo/citologia , Diencéfalo/metabolismo , Proteínas de Peixes/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional/métodos , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal/métodos , Neurônios/metabolismo , Oryzias/anatomia & histologia , Oryzias/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Telencéfalo/citologia , Telencéfalo/metabolismo
12.
Brain Struct Funct ; 221(7): 3693-708, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26452989

RESUMO

The diencephalon is a complex brain area that derives from the caudal region of the prosencephalon. This structure is divided into four longitudinal neuroepithelial zones: roof, alar, basal and floor plates, which constitute its dorso-ventral (DV) columnar domains. Morphogenetic differences between alar and basal plates in the prosencephalon and mesencephalon contribute to the characteristic expansion of alar plate derivatives in the brain and the formation of the cephalic flexure. Although differential histogenesis among DV regions seems to be relevant in understanding structural and functional complexity of the brain, most of our knowledge about DV regionalization comes from the spinal cord development. Therefore, it seems of interest to study the molecular mechanisms that govern DV patterning in the diencephalon, the brain region where strong differences in size and complexity between alar and basal derivatives are evident in all vertebrates. Different morphogenetic signals, which induce specific progenitors fate to the neighboring epithelium, are involved in the spinal cord DV patterning. To study if Wnt1, one of these signaling molecules, has a role for the establishment of the diencephalic longitudinal domains, we carried out gain- and loss-of-function experiments, using mice and chick embryos. Our results demonstrated functional differences in the molecular mechanisms downstream of Wnt1 function in the diencephalon, in relation to the spinal cord. We further demonstrated that Bmp4 signal induces Wnt1 expression in the diencephalon, unraveling a new molecular regulatory code downstream of primary dorsalizing signals to control ventral regionalization in the diencephalon.


Assuntos
Padronização Corporal , Diencéfalo/embriologia , Diencéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Via de Sinalização Wnt , Proteína Wnt1/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Galinhas , Glicosiltransferases/metabolismo , Proteínas Hedgehog , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteína Wnt1/genética , Proteína Gli3 com Dedos de Zinco
13.
Genesis ; 53(6): 356-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25950659

RESUMO

The mammalian diencephalon is the caudal derivative of the embryonic forebrain. Early events in diencephalic regionalization include its subdivision along the dorsoventral and anteroposterior axes. The prosomeric model by Puelles and Rubenstein (1993) suggests that the alar plate of the posterior diencephalon is partitioned into three different prosomeres (designated p1-p3), which develop into the pretectum, thalamus, and prethalamus, respectively. Here, we report the developmental consequences of genetic ablation of cell populations from the diencephalic basal plate. The strategy for conditionally regulated cell ablation is based on the targeted expression of the diphtheria toxin gene (DTA) to the diencephalic basal plate via tamoxifen- induced, Cre-mediated recombination of the ROSA(DTA) allele. We show that activation of DTA leads to specific cell loss in the basal plate of the posterior diencephalon, and disrupted early regionalization of distinct alar territories. In the basal plate-deficient embryos, the p1 alar plate exhibited reduced expression of subtype-specific markers in the pretectum, whereas p2 alar plate failed to further subdivide into two discrete thalamic subpopulations. We also show that these defects lead to abnormal nuclear organization at later developmental stages. Our data have implications for increased understanding of the interactive roles between discrete diencephalic compartments.


Assuntos
Diencéfalo/embriologia , Diencéfalo/metabolismo , Toxina Diftérica/genética , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diencéfalo/anatomia & histologia , Toxina Diftérica/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos Transgênicos , Organogênese/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Tempo
14.
Gen Comp Endocrinol ; 202: 59-68, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24780118

RESUMO

Effects of acute and chronic psychological stress in the brain of domestic avian species have not been extensively studied. Experiments were performed using restraint stress to determine groups of neurons activated in the septum and diencephalon of chickens. Using FOS immunoreactivity six brain structures were shown activated by acute stress including: the lateral hypothalamic area (LHy), ventrolateral thalamic nucleus (VLT), lateral septum (LS), lateral bed nucleus of the stria terminalis (BSTL), nucleus of the hippocampal commissure (NHpC) and the core region of the paraventricular nucleus (PVNc). Additionally, the LHy and PVNc showed increased FOS immunoreactive (-ir) cells in the birds chronically stressed when compared to controls. In contrast, the NHpC showed decreased FOS-ir cells following the 10day chronic stress imposed. Thereafter, restraint stress experiments were performed to identify activated arginine vasotocin (AVT) neurons (parvocellular or magnocellular) using immunocytochemistry. Of the six FOS activated structures, the PVN was known to contain distinct size groups of AVT-ir neurons, parvocellular (small), medium sized and magnocellular (large). Using dual immunostaining (AVT/FOS), AVT-ir parvocellular neurons in the PVNc were found activated in both acute and chronic stress. To determine whether these AVT-ir parvocellular neurons are co-localized with corticotropin releasing hormone (CRH), an attempt was made to visualize CRH-ir neurons using colchicine. Although AVT-ir and CRH-ir parvocellular neurons occur in the PVNc, only a few neurons were shown co-localized with AVT and CRH after acute restraint stress. Results of this study suggest that the NHpC, LS, VLT, BSTL, LHy and AVT-ir parvocellular neurons in the PVNc are associated with psychological stress in birds.


Assuntos
Galinhas/metabolismo , Diencéfalo/metabolismo , Neurônios/metabolismo , Restrição Física , Septo do Cérebro/metabolismo , Estresse Psicológico/metabolismo , Vasotocina/metabolismo , Doença Aguda , Animais , Contagem de Células , Galinhas/sangue , Doença Crônica , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Diencéfalo/patologia , Masculino , Neurônios/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Septo do Cérebro/patologia , Estresse Psicológico/sangue
15.
Endocrinology ; 155(5): 1944-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24605826

RESUMO

Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17ß and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17ß treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.


Assuntos
Envelhecimento , Núcleo Hipotalâmico Dorsomedial/metabolismo , Regulação para Baixo , Hormônios Hipotalâmicos/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas , Animais , Biomarcadores/metabolismo , Extensões da Superfície Celular/metabolismo , Diencéfalo/citologia , Diencéfalo/crescimento & desenvolvimento , Diencéfalo/metabolismo , Núcleo Hipotalâmico Dorsomedial/citologia , Núcleo Hipotalâmico Dorsomedial/crescimento & desenvolvimento , Estradiol/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hormônios Hipotalâmicos/genética , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Neurofibrilas/metabolismo , Neurônios/citologia , Ratos , Ratos Transgênicos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Telencéfalo/citologia , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/metabolismo
16.
Gen Comp Endocrinol ; 195: 9-20, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24505600

RESUMO

The first studies that identified leptin and its receptor (LepR) in mammals were based on mutant animals that displayed dramatic changes in body-weight and regulation of energy homeostasis. Subsequent studies have shown that a deficiency of leptin or LepR in homoeothermic mammals results in hyperphagia, obesity, infertility and a number of other abnormalities. The physiological roles of leptin-mediated signaling in ectothermic teleosts are still being explored. Here, we produced medaka with homozygous LepR gene mutation using the targeting induced local lesions in a genome method. This knockout mutant had a point mutation of cysteine for stop codon at the 357th amino acid just before the leptin-binding domain. The evidence for loss of function of leptin-mediated signaling in the mutant is based on a lack of response to feeding in the expression of key appetite-related neuropeptides in the diencephalon. The mutant lepr−/− medaka expressed constant up-regulated levels of mRNA for the orexigenic neuropeptide Ya and agouti-related protein and a suppressed level of anorexigenic proopiomelanocortin 1 in the diencephalon independent of feeding, which suggests that the mutant did not possess functional LepR. Phenotypes of the LepR-mutant medaka were analyzed in order to understand the effects on food intake, growth, and fat accumulation in the tissues. The food intake of the mutant medaka was higher in post-juveniles and adult stages than that of wild-type (WT) fish. The hyperphagia led to a high growth rate at the post-juvenile stage, but did not to significant alterations in final adult body size. There was no additional deposition of fat in the liver and muscle in the post-juvenile and adult mutants, or in the blood plasma in the adult mutant. However, adult LepR mutants possessed large deposits of visceral fat, unlike in the WT fish, in which there were none. Our analysis confirms that LepR in medaka exert a powerful influence on the control on food intake. Further analyses using the mutant will contribute to a better understanding of the role of leptin in fish. This is the first study to produce fish with leptin receptor deficiency.


Assuntos
Animais Geneticamente Modificados/crescimento & desenvolvimento , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Técnicas de Inativação de Genes , Gordura Intra-Abdominal/efeitos dos fármacos , Neuropeptídeos/farmacologia , Receptores para Leptina/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Apetite/efeitos dos fármacos , Apetite/fisiologia , Diencéfalo/efeitos dos fármacos , Diencéfalo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Hiperfagia/genética , Hiperfagia/patologia , Leptina/metabolismo , Mutação/genética , Obesidade/metabolismo , Oryzias/genética , Oryzias/crescimento & desenvolvimento , Oryzias/metabolismo , Regulação para Cima
17.
J Steroid Biochem Mol Biol ; 141: 37-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24434281

RESUMO

As one of the third generation of aromatase inhibitors, letrozole is a favored drug for the treatment of hormone receptor-positive breast cancer with some adverse effects on the nervous system, but the knowledge is limited and the results are controversial, the mechanism underlying its central action is also unclear. Accumulated evidences have demonstrated that estrogens derived from androgens by aromatase play profound roles in the brain through their receptors, which needs coactivator for the transcription regulation, among which steroid receptor coactivator-1 (SRC-1) has been shown to be multifunctional potentials in the brain, but whether it is regulated by letrozole is currently unknown. In this study, we examined letrozole regulation on SRC-1 expression in adult mice brain using immunohistochemistry. The results showed that letrozole induced dramatic decrease of SRC-1 in the medial septal, hippocampus, medial habenular nucleus, arcuate hypothalamic nucleus and superior colliculus (p<0.01). Significant decrease was detected in the dorsal lateral septal nucleus, bed nucleus of stria terminalis, ventral taenia tecta, dorsomedial and ventromedial hypothalamic nuclei, dorsomedial periaqueductal gray, superior paraolivary nucleus and pontine nucleus (p<0.05). In the hippocampus, levels of estradiol content, androgen receptor, estrogen receptor α and ß also decreased significantly after letrozole injection. The above results demonstrated letrozole downregulation of SRC-1 in specific regions that are primarily related to learning and memory, cognition and mood, neuroendocrine as well as information integration, indicating that SRC-1 may be one important downstream central target of letrozole. Furthermore, these potential central adverse effects of letrozole should be taken into serious considerations.


Assuntos
Inibidores da Aromatase/farmacologia , Regulação para Baixo/efeitos dos fármacos , Hipocampo/metabolismo , Nitrilas/farmacologia , Coativador 1 de Receptor Nuclear/metabolismo , Triazóis/farmacologia , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Diencéfalo/efeitos dos fármacos , Diencéfalo/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Hipocampo/efeitos dos fármacos , Letrozol , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/metabolismo , Coativador 1 de Receptor Nuclear/genética , Especificidade de Órgãos , Receptores Androgênicos/metabolismo , Telencéfalo/efeitos dos fármacos , Telencéfalo/metabolismo
18.
Gen Comp Endocrinol ; 199: 86-93, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24472706

RESUMO

In sheep as in rat, it has been highly suggested that neuronal histamine (HA) participates to the estradiol (E2)-induced GnRH and LH surges, through H1 receptor. With the aim of determining if E2 could act directly on HA neurons, we examined here whether HA neurons express estrogen receptor alpha (ERα) in the ewe diencephalon during the breeding season. We first produced a specific polyclonal antibody directed against recombinant ovine histidine decarboxylase (oHDC), the HA synthesizing enzyme. Using both this anti-oHDC antibody and an anti-ERα monoclonal antibody in double label immunohistochemistry, we showed that HA neurons do not express ERα in diencephalon of ewes with different hormonal status. This result diverges from those obtained in rat, in which around three quarters of HA neurons express ERα in their nucleus. This discrepancy between these two mammal species may reflect difference in their neuronal network.


Assuntos
Cruzamento , Diencéfalo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Histamina/metabolismo , Neurônios/metabolismo , Estações do Ano , Ovinos/metabolismo , Animais , Anticorpos/metabolismo , Especificidade de Anticorpos/imunologia , Diencéfalo/citologia , Diencéfalo/efeitos dos fármacos , Diencéfalo/enzimologia , Eletroforese em Gel de Poliacrilamida , Estradiol/farmacologia , Feminino , Histidina Descarboxilase/imunologia , Imuno-Histoquímica , Masculino , Neurônios/efeitos dos fármacos , Ratos , Proteínas Recombinantes/isolamento & purificação
19.
Artigo em Inglês | MEDLINE | ID: mdl-24389089

RESUMO

High ambient temperatures (HT) reduce food intake and body weight in young chickens, and HT can cause increased expression of hypothalamic neuropeptides. The mechanisms by which HT act, and the effects of HT on cellular homeostasis in the brain, are however not well understood. In the current study lipid peroxidation and amino acid metabolism were measured in the brains of 14 d old chicks exposed to HT (35 °C for 24- or 48-h) or to control thermoneutral temperature (CT; 30 °C). Malondialdehyde (MDA) was measured in the brain to determine the degree of oxidative damage. HT increased body temperature and reduced food intake and body weight gain. HT also increased diencephalic oxidative damage after 48 h, and altered some free amino acid concentrations in the diencephalon. Diencephalic MDA concentrations were increased by HT and time, with the effect of HT more prominent with increasing time. HT altered cystathionine, serine, tyrosine and isoleucine concentrations. Cystathionine was lower in HT birds compared with CT birds at 24h, whilst serine, tyrosine and isoleucine were higher at 48 h in HT birds. An increase in oxidative damage and alterations in amino acid concentrations in the diencephalon may contribute to the physiological, behavioral and thermoregulatory responses of heat-exposed chicks.


Assuntos
Aminoácidos/sangue , Galinhas/metabolismo , Diencéfalo/metabolismo , Adaptação Fisiológica , Animais , Temperatura Corporal , Peso Corporal , Ingestão de Alimentos , Resposta ao Choque Térmico , Temperatura Alta , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo
20.
Neuroscience ; 260: 106-19, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24361177

RESUMO

Brain injury due to neonatal hypoxia-ischemia (HI) is more homogenously severe in male than in female mice. Because, necrostatin-1 (nec-1) prevents injury progression only in male mice, we hypothesized that changes in brain-derived neurotrophic factor (BDNF) signaling after HI and nec-1 are also sex-specific providing differential conditions to promote recovery of those more severely injured. The increased aromatization of testosterone in male mice during early development and the link between 17-ß-estradiol (E2) levels and BDNF transcription substantiate this hypothesis. Hence, we aimed to investigate if sexual differences in BDNF signaling existed in forebrain and diencephalon after HI and HI/nec-1 and their correlation with estrogen receptors (ER). C57B6 mice (p7) received nec-1 (0.1µl [8µM]) or vehicle (veh) intracerebroventricularly after HI. At 24h after HI, BDNF levels increased in both sexes in forebrain without evidence of tropomyosin-receptor-kinase B (TrkB) activation. At 96h after HI, BDNF levels in forebrain decreased below those seen in control mice of both sexes. Additionally, only in female mice, truncated TrkB (Tc.TrkB) and p75 neurotrophic receptor (p75ntr) levels increased in forebrain and diencephalon. In both, forebrain and diencephalon, nec-1 treatment increased BDNF levels and TrkB activation in male mice while, nec-1 prevented Tc.TrkB and p75ntr increases in female mice. While E2 levels were unchanged by HI or HI/nec-1 in either sex or treatment, ERα:ERß ratios were increased in diencephalon of nec-1-treated male mice and directly correlated with BDNF levels. Neonatal HI produces sex-specific signaling changes in the BDNF system, that are differentially modulated by nec-1. The regional differences in BDNF levels may be a consequence of injury severity after HI, but sexual differences in response to nec-1 after HI may represent a differential thalamo-cortical preservation or alternatively off-target regional effect of nec-1. The biological significance of ERα predominance and its correlation with BDNF levels is still unclear.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diencéfalo/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Imidazóis/uso terapêutico , Indóis/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Prosencéfalo/metabolismo , Animais , Animais Recém-Nascidos , Diencéfalo/efeitos dos fármacos , Estradiol/análise , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Prosencéfalo/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA