Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
Ecotoxicol Environ Saf ; 277: 116394, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663197

RESUMO

Mono-2-ethylhexyl phthalic acid (MEHP) is the most toxic metabolite of the plasticizer di-2-ethylhexyl phthalic acid (DEHP), and studies have shown that MEHP causes serious reproductive effects. However, its exact mechanisms of action remain elusive. In this study, we aimed to investigate the reproductive effects of MEHP and preliminarily explore its underlying molecular mechanisms. We found that TM3 cells gradually secreted less testosterone and intracellular free cholesterol with increasing MEHP exposure. MEHP exposure inhibited lipophagy and the Sirt1/Foxo1/Rab7 signaling pathway in TM3 cells, causing aberrant accumulation of intracellular lipid droplets. Addition of the Sirt1 agonist SRT1720 and Rab7 agonist ML-098 alleviated the inhibition of lipophagy and increased free cholesterol and testosterone contents in TM3 cells. SRT1720 alleviated the inhibitory effect of MEHP on the Sirt1/Foxo1/Rab7 signaling pathway, whereas ML-098 only alleviated the inhibition of Rab7 protein expression by MEHP and had no effect on Sirt1 and Foxo1 protein expression. This suggests that MEHP inhibits lipophagy in TM3 cells by suppressing the Sirt1/Foxo1/Rab7 signaling pathway, ultimately leading to a further decrease in cellular testosterone secretion. This study improves our current understanding of the toxicity and molecular mechanisms of action of MEHP and provides new insights into the reproductive effects of phthalic acid esters.


Assuntos
Dietilexilftalato , Transdução de Sinais , Sirtuína 1 , Testosterona , proteínas de unión al GTP Rab7 , Sirtuína 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Camundongos , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Linhagem Celular , Proteínas rab de Ligação ao GTP/metabolismo , Proteína Forkhead Box O1/metabolismo , Plastificantes/toxicidade , Colesterol
2.
Ecotoxicol Environ Saf ; 277: 116391, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678792

RESUMO

Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750 mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750 mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.


Assuntos
Dietilexilftalato , Regulação para Baixo , Epigênese Genética , Células Intersticiais do Testículo , Metiltransferases , Efeitos Tardios da Exposição Pré-Natal , Testosterona , Animais , Feminino , Masculino , Gravidez , Ratos , Adenosina/análogos & derivados , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Dietilexilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Metiltransferases/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos Sprague-Dawley , Testosterona/sangue
3.
Sci Total Environ ; 926: 171819, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508268

RESUMO

BACKGROUND: Phthalates are ubiquitous environmental endocrine disruptors. As the predominant phthalate, di-2-ethylhexyl phthalate (DEHP) has been considered possibly carcinogenic to humans but large-scale longitudinal evidence is needed to further clarify its carcinogenicity. OBJECTIVES: To examine the association between DEHP exposure and incidence of breast malignant neoplasm, carcinoma in situ and benign neoplasm. METHODS: A total of 273,295 women from UK Biobank cohort were followed up for a median of 13.5 years. Disease information was collected from National Health Service Cancer Registry and National Death Index. Baseline and yearly-average level of DEHP exposure were estimated for each individual by linking chemical monitoring record of European Environment Agency with home address of the participants by Kriging interpolation model. Cox proportional hazard model was employed to estimate the association between DEHP exposure and breast neoplasms. RESULTS: The median (IQR) of baseline and yearly-average DEHP concentration were 8000.25 (interquartile range: 6657.85-11,948.83) and 8000.25 (interquartile range: 1819.93-11,359.55) µg/L. The highest quartile of baseline DEHP was associated with 1.11 fold risk of carcinoma in situ (95 % CI, 1.00, 1.23, p < 0.001) and 1.27 fold risk of benign neoplasm (95 % CI, 1.05, 1.54, p < 0.001). As for yearly-average exposure, each quartile of DEHP was positively associated with higher risk of malignant neoplasm (HR, 1.05; 95 % CI, 1.03, 1.07, p < 0.001), carcinoma in situ (HR, 1.08; 95 % CI, 1.04, 1.11, p < 0.001) and benign neoplasm (HR, 1.13; 95 % CI, 1.07, 1.20, p < 0.001). Stratification analysis showed no significant modification effects on the DEHP-neoplasm relationship by menopausal status or ethnicity but a suggestive higher risk in younger women and those who underwent oral contraceptive pill therapy. In sensitivity analysis, the associations remained when excluding the cases diagnosed within 2 years post baseline. CONCLUSIONS: Real-world level of DEHP exposure was associated with higher risk of breast neoplasms. Because of the health risks associated with DEHP, its release to the environment should be managed.


Assuntos
Neoplasias da Mama , Carcinoma in Situ , Dietilexilftalato , Ácidos Ftálicos , Humanos , Feminino , Dietilexilftalato/toxicidade , Dietilexilftalato/análise , Estudos de Coortes , Medicina Estatal , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/epidemiologia , Exposição Ambiental/análise
4.
Ecotoxicol Environ Saf ; 273: 116161, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430581

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a worldwide common plasticizer. Nevertheless, DEHP is easily leached out to the environment due to the lack of covalent bonds with plastic. High dose of DEHP exposure is often observed in hemodialysis patients because of the continual usage of plastic medical devices. Although the liver is the major organ that catabolizes DEHP, the impact of long-term DEHP exposure on the sensitivity of liver cancer to chemotherapy remains unclear. In this study, we established long-term DEHP-exposed hepatocellular carcinoma (HCC) cells and two NOD/SCID mice models to investigate the effects and the underlying mechanisms of long-term DEHP exposure on chemosensitivity of HCC. The results showed long-term DEHP exposure potentially increased epithelial-mesenchymal transition (EMT) in HCC cells. Next generation sequencing showed that long-term DEHP exposure increased cell adhesion/migratory related genes expression and blunted sorafenib treatment induced genes alterations. Long-term exposure to DEHP reduced the sensitivity of HCC cells to sorafenib-induced anti-migratory effect by enhancing the EMT transcription factors (slug, twist, and ZEB1) and mesenchymal protein (vimentin) expression. In NOD/SCID mice model, we showed that long-term DEHP-exposed HCC cells exhibited higher growth rate. Regarding the anti-HCC effects of sorafenib, subcutaneous HuH7 tumor grew slowly in sorafenib-treated mice. Nonetheless, the anti-tumor growth effect of sorafenib was not observed in long-term DEHP-exposed mice. Higher mesenchymal markers and proliferating cell nuclear antigen (PCNA) expression were found in sorafenib-treated long-term DEHP-exposed mice. In conclusion, long-term DEHP exposure promoted migratory activity in HCC cells and decreased sorafenib sensitivity in tumor-bearing mice.


Assuntos
Carcinoma Hepatocelular , Dietilexilftalato , Neoplasias Hepáticas , Ácidos Ftálicos , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Dietilexilftalato/toxicidade , Camundongos SCID , Camundongos Endogâmicos NOD , Resultado do Tratamento
5.
Environ Toxicol Pharmacol ; 107: 104391, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367918

RESUMO

Several endocrine disrupting compounds released from plastics, including polyfluoroalkyl substances, bisphenols, flame retardants, phthalates and others, are of great concern to human health due to their high toxicity. This review discusses the effects of di-(2-ethylhexyl) phthalate (DEHP), the most common member of the phthalate family, on female reproduction. In vitro and in vivo studies link DEHP exposure to impaired hypothalamic-pituitary-ovarian s (HPO) axis function, alteration of steroid-hormone levels and dysregulation of their receptors, and changes in uterine morphophysiology. In addition, high urinary DEPH levels have been associated with several reproductive disorders in women, including endometriosis, fibromyoma, fetal growth restriction and pregnancy loss. These data suggest that DEHP may be involved in the pathophysiology of various female reproductive diseases. Therefore, exposure to these compounds should be considered a concern in clinician surveillance practices for women at reproductive age and should be regulated to protect their health and that of their progeny.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Ácidos Ftálicos , Gravidez , Feminino , Humanos , Dietilexilftalato/toxicidade , Saúde Reprodutiva , Reprodução , Ácidos Ftálicos/toxicidade , Disruptores Endócrinos/toxicidade
6.
BMC Public Health ; 24(1): 430, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341560

RESUMO

Cancer is a major socioeconomic burden that seriously affects the life and spirit of patients. However, little is known about the role of environmental toxicant exposure in diseases, especially ubiquitous di-(2-ethylhexyl) phthalate (DEHP) which is one of the most widely used plasticizers. Hence, the objective of this study was to assess the potential association between cancer and DEHP. The data were collected using the 2011-2018 National Health and Nutrition Examination Survey (NHANES) data (n = 6147), and multiple logistic regression was conducted to evaluate the association. The concentrations of DEHP were calculated by each metabolite and split into quartiles for analysis. After adjusting for confounding factors, DEHP was significantly associated with an increased risk of cancer prevalence, and the metabolites of DEHP showed similar results (OR > 1.0, p < 0.05). Simultaneously, the association remained when the analyses were stratified by age and sex, and the risk of cancer appeared to be higher in male patients. In addition, further analysis suggested that DEHP exposure obviously increased the risk of female reproductive system cancer, male reproductive system cancer, and other cancers (OR > 1.0, p < 0.05) but not skin and soft tissue cancer. DEHP exposure is associated with the risk of cancer, especially female reproductive system cancer, male reproductive system cancer and other cancers.


Assuntos
Dietilexilftalato , Neoplasias , Ácidos Ftálicos , Humanos , Masculino , Feminino , Dietilexilftalato/toxicidade , Dietilexilftalato/análise , Inquéritos Nutricionais , Ácidos Ftálicos/toxicidade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia
7.
J Hazard Mater ; 466: 133537, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244450

RESUMO

Environmental estrogen exposure has increased dramatically over the past 50 years. In particular, prenatal exposure to estrogen causes many congenital diseases, among which reproductive system development disorders are extremely serious. In this study, the molecular mechanism of hypospadias and the therapeutic effect of genistein (GEN) were investigated through in vivo models prepared by Di-(2-ethylhexyl) phthalate (DEHP) exposure between 12 and 19 days of gestation. With increased DEHP concentrations, the incidence of hypospadias increased gradually. DEHP inhibited the key enzymes involved in steroid synthesis, resulting in decreasing testosterone synthesis. At the same time, DEHP increased reactive oxygen species (ROS) and produced inflammatory factors via NADPH oxidase-1 (NOX1) and NADPH oxidase-4 (NOX4) pathways. It also inhibited Steroid 5 α Reductase 2 (Srd5α2) and decreased dihydrotestosterone (DHT) synthesis. Additionally, DEHP inhibited the androgen receptor (AR), resulting in reduced DHT binding to the AR that ultimately retarded the development of the external reproductive system. GEN, a phytoestrogen, competes with DEHP for binding to estrogen receptor ß (ERß). This competition, along with GEN's antiestrogen and antioxidant properties, could potentially reverse impairments. The findings of this study provide valuable insights into the role of phytoestrogens in alleviating environmental estrogen-induced congenital diseases.


Assuntos
Dietilexilftalato , Hipospadia , Ácidos Ftálicos , Gravidez , Masculino , Humanos , Feminino , Ratos , Animais , Genisteína/farmacologia , Antioxidantes/farmacologia , Androgênios , Dietilexilftalato/toxicidade , Hipospadia/induzido quimicamente , Hipospadia/prevenção & controle , Estrogênios , NADPH Oxidases
8.
Ecotoxicol Environ Saf ; 270: 115882, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171099

RESUMO

As an extensively employed plasticizer in industrial applications, di-2-ethylhexyl phthalate (DEHP) can induce apoptosis of mouse Leydig cells, yet the precise mechanism remains elusive. In the current study, we identified that DEHP could specially induced apoptosis in the Leydig cells of the testis tissue, accompanied with the upregulation of apoptosis-related protein in the TGF-ß signaling pathway (ARTS) in the cells. Overexpression of ARTS significantly induced apoptosis of TM3 cells, while knockdown of ARTS inhibited apoptosis. Furthermore, DEHP-induced apoptosis of TM3 cells could be alleviated by knockdown of ARTS, which indicated that ARTS was involved in DEHP-induced apoptosis of mouse Leydig cells. Bioinformation assay predicts that there are four potential p53-responsive elements (p53-REs) located at - 6060, - 5726, - 5631 and - 5554 before the transcription start site of ARTS gene, implying that gene transcription of ARTS could be regulated by p53. Interestingly, DEHP was shown to specifically upregulate the expression of p53 in the Leydig cells of the testis tissue and TM3 cells. Consistently, p53 was proved to bind to the RE4 site of the ARTS gene promoter and transcriptionally activated the promoter-driven expression of the luciferase reporter gene. Overexpression of p53 could induce apoptosis of TM3 cells; while knockdown of p53 could not only rescue DEHP-induced apoptosis of the cells, but also inhibit DEHP-caused upregulation of ARTS. Meanwhile, we showed that oxidative stress could induce apoptosis of TM3 cells, accompanied with the increased protein levels of p53 and ARTS; while inhibition of oxidative stress dramatically alleviated DEHP-induced apoptosis and the up-regulation of p53 and ARTS. Taken together, these results indicated that DEHP-induced oxidative stress activates the p53-ARTS cascade to promote apoptosis of mouse Leydig cells.


Assuntos
Dietilexilftalato , Células Intersticiais do Testículo , Ácidos Ftálicos , Camundongos , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Testículo/metabolismo
9.
Ecotoxicol Environ Saf ; 272: 116006, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295739

RESUMO

Due to microplastics (MPs) being widely distributed in soil, the use of advanced oxidation to remediate organic-contaminated soils may accelerate the aging of MPs in soil and impact the release of di-(2-ethylhexyl) phthalate (DEHP), a potential carcinogen used as a plasticizer in plastics, from MPs. In this study, persulfate oxidation (PO) and temperature treatment (TT) were used to treat biodegradable and petroleum-based MPs, including polylactic acid (PLA), polyvinyl chloride (PVC), and polystyrene (PS). The methods used for evaluating the characteristics changes of MP were X-ray diffraction (XRD) analysis and water contact angle measurement. The effects of aging on DEHP release from MPs were investigated via soil incubation. The results showed PO and TT led to increased surface roughness, oxygen-containing functional group content, and hydrophilicity of the MPs with prolonged aging, consequently accelerating the release of DEHP from the MPs. Interestingly, PLA aged faster than PVC and PS under similar conditions. After 30 days of PO treatment, DEHP release from PLA into the soil increased 0.789-fold, exceeding the increase from PVC (0.454-fold) and PS (0.287-fold). This suggests that aged PLA poses a higher ecological risk than aged PVC or PS. Furthermore, PO treatment resulted in the oxidation and degradation of DEHP on the MP surface. After 30 days of PO treatment, the DEHP content in PLA, PVC, and PS decreased by 19.1%, 25.8%, and 23.5%, respectively. Specifying the types of MPs studied and the environmental conditions would provide a more precise context for the results. These findings provide novel insights into the fate of biodegradable and petroleum-based MPs and the potential ecotoxicity arising from advanced oxidation remediation in contaminated soils.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Plásticos , Microplásticos , Dietilexilftalato/toxicidade , Solo , Poliésteres , Poliestirenos
10.
Sci Total Environ ; 914: 169918, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190899

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plastic additive with persistent characteristics in the environment. This study was designed to investigate the detrimental effects of chronic DEHP exposure at environmental-relevant doses on bone metabolism and the underlying mechanisms. It was found that exposure to 25 µg/kg bw and 50 µg/kg bw DEHP for 29 weeks led to a reduction of whole-body bone mineral density (BMD), femur microstructure damage, decreased femur new bone formation, and increased femur bone marrow adipogenesis in C57BL/6 female mice, which was not observed in mice exposed to 5000 µg/kg bw DEHP. Further in vitro study showed that DEHP treatment robustly promoted adipogenic differentiation and suppressed osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs). Mechanistically, DEHP exposure resulted in elevated expressions of DYRK1B, CDK5, PPARγ, and p-PPARγSer273 in both bone tissue and BMSCs. Interestingly, co-IP analysis showed potential interactions among DYRK1B, PPARγ, and CDK5. Lastly, antagonists of DYRK1B and CDK5 effectively alleviated the BMSCs differentiation disturbance induced by DEHP. These results suggest that DEHP may disturb the BMSCs differentiation by upregulating the PPARγ signaling which may be associated with the activation of DYRK1B and CDK5.


Assuntos
Dietilexilftalato , Células-Tronco Mesenquimais , Osteoporose , Ácidos Ftálicos , Feminino , Camundongos , Animais , Dietilexilftalato/toxicidade , PPAR gama/metabolismo , Osteogênese , Camundongos Endogâmicos C57BL , Osteoporose/induzido quimicamente , Células-Tronco Mesenquimais/metabolismo
11.
Environ Pollut ; 341: 122948, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977363

RESUMO

Phthalic acid esters (PAEs) are environmental endocrine disruptors thought to interfere with glucose metabolism in humans. Most of the related research has focused on population epidemiological studies, with the underlying mechanisms remaining unresolved. Using an in vivo animal model, we examined the effects of oral administration of two commonly used PAEs [di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP)] on glucose homeostasis and insulin secretion. DEHP (750 mg/kg, 1/40 LD50), DBP (500 mg/kg, 1/40 LD50), and DEHP (750 mg/kg) + DBP (500 mg/kg) exert an influence on glucose metabolism and elicit a reduction in insulin sensitivity in rats. Furthermore, these substances induce detrimental effects on the structure and functionality of pancreatic ß-cells. DEHP and/or DBP triggered an increase in plasma malondialdehyde (MDA) and reduction in superoxide dismutase (SOD) activity; a reduction in the phosphorylation of phosphatidyl inositol 3 kinase (PI3K) and phospho-protein kinase B (p-Akt473) proteins; an increase in the relative expression of Bax, Caspase-8, cleaved-Caspase-9, and cleaved-Caspase-3; and a reduction in the relative expression of Bcl-2-related Bax in pancreatic tissue and of gastrocnemius glucose transporter 4 (GLUT4) in the gastrocnemius muscle. Based on these findings, these PAEs can disrupt glucose metabolism, possibly via oxidative damage of the PI3K/Akt/GLUT4 pathway; this damage induces pancreatic ß-cell apoptosis, affects pancreatic ß-cell function, and affects glucose metabolism and insulin resistance in rats. To the best of our knowledge, this study was the first to show that the combined effect of the two PAEs affects glucose metabolism and insulin resistance in rats that is significantly higher than the effects of each PAE. Thus, safety standards and studies do not consider this effect as a significant oversight when blending PAEs. We assert that this must be addressed and corrected for establishing more impactful and safer standards.


Assuntos
Dietilexilftalato , Resistência à Insulina , Ácidos Ftálicos , Humanos , Ratos , Animais , Dibutilftalato , Dietilexilftalato/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ácidos Ftálicos/toxicidade , Estresse Oxidativo , Glucose/metabolismo , Ésteres
12.
Ecotoxicol Environ Saf ; 269: 115798, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086261

RESUMO

Di(2-ethylhexy) phthalate (DEHP) is a widely used plasticizer that is ubiquitously found in the environment. Using a mouse model, we investigated the impact of early life DEHP exposure ranging from the prenatal to peripubertal developmental period of the female reproductive system. Pregnant female mice were allocated to three groups as follows: control, 100 mg/kg/day, and 500 mg/kg/day DEHP treatment. DEHP exposure was introduced through feeding during pregnancy (3 weeks) and lactation (3 weeks). After weaning, the offspring were also exposed to DEHP through feeding for another 2 weeks. Observations were conducted on female offspring at 10 and 24 weeks. The number of live offspring per dam was significantly lower in the high-DEHP-exposed group (500 mg/kg/day) compared to the control group (7.67 ± 1.24 vs. 14.17 ± 0.31; p < 0.05) despite no difference in pregnancy rates across the groups. Low-DEHP exposure (100 mg/kg/day) resulted to a decreased body weight (36.07 ± 3.78 vs. 50.11 ± 2.11 g; p < 0.05) and decreased left uterine length (10.60 ± 1.34 vs. 14.77 ± 0.82 mm; p < 0.05) in 24-week- old female mice. As early as 10 weeks, endometrial atrophy and fibrosis were observed, and endometrial cystic hyperplasia was noted in female mice at 24 weeks. Our study is the first to demonstrate that female mice exposed to DEHP in the early life developed endometrial fibrosis in the female offspring. Further studies on the consequences of these observations in fecundity and other reproductive functions are warranted.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Dietilexilftalato/toxicidade , Fibrose
13.
Life Sci ; 336: 122346, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072188

RESUMO

AIMS: In daily life, it is common for humans to be exposed to multiple phthalate esters (PAEs). However, there is limited research on the mechanisms and intervention of combined PAEs toxicity. This study aims to explore the cytotoxicity of combined PAEs and evaluate the potential of Lycium barbarum polysaccharides (LBP) in mitigating the aforementioned toxicity. MAIN METHODS: LBP (62.5, 125 and 250 µg/mL) were applied to intervene HepG2 cells treated with DEHP and DBP mixtures (50, 100, 200, 400 and 800 µg/mL). Western Blot and different kits were mainly performed in our study. KEY FINDINGS: DEHP and DBP mixtures suppressed the expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and activated MAPK pathway by increasing ROS. Combined DEHP and DBP exposure reduced ATP content and inhibited the mitochondrial biogenesis pathway in HepG2 cells through oxidative stress, which in turn caused cytotoxicity. LBP reduced oxidative stress and cell death induced by mixed plasticizers, upregulated Nrf2 levels and mitochondrial biogenesis pathway levels and inhibited MAPK pathway activation. Notably, after treating HepG2 cells with Nrf2-specific inhibitor (ML385, 0.5 µM), we found that the activation of Nrf2 played a crucial role on LBP intervention of DEHP and DBP induced HepG2 cytotoxicity. SIGNIFICANCE: This study not only enhances our understanding of the toxicological effects caused by combined PAEs exposure, but also has significant implications in devising strategies to mitigate the toxicological consequences of combined exposure to exogenous chemicals through the investigation of the role of LBP.


Assuntos
Dietilexilftalato , Lycium , Humanos , Plastificantes/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Dietilexilftalato/toxicidade , Células Hep G2 , Estresse Oxidativo , Polissacarídeos/farmacologia
14.
Chemosphere ; 349: 140908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072204

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a commonly used phthalate ester compound, while lead is a persistent and bioaccumulative heavy metal. Both can be exposed to the body through a variety of ways, which may have an impact on the blood system. In this study, we examined the impact of co-exposure to DEHP (0, 10, 100 mg/kg) and Pb (0, 5, 50 mg/kg) on the blood system of male SD rats. The study revealed that continuous exposure to DEHP and Pb for 20 days resulted in a decrease in leukocytes and lymphocytes, while an increase in neutrophils and monocytes. Co-exposure led to a significant decrease in the spleen coefficients. Furthermore, the combined exposure could increase the ratio of bone marrow cells in G1 phase, and decrease the ratio of cells in S phase and G2 phase. Cytokine testing showed that combined exposure affects the secretion of hematopoietic factors and may cause bone marrow cell apoptosis. Single or combined exposure to DEHP and Pb can cause oxidative stress in serum and bone marrow. Overall, these results indicate that the co-exposure of DEHP and Pb adversely affected the blood system of rats, mainly due to the induction of oxidative stress and ultimately affects the secretion of cytokines. The combined effect of the two substances is primarily antagonistic. These results have important implications for the risk assessment of combined pollution and provide valuable theoretical guidance.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Ratos , Animais , Masculino , Dietilexilftalato/toxicidade , Ratos Sprague-Dawley , Chumbo/toxicidade
15.
Environ Toxicol ; 39(2): 952-964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975621

RESUMO

Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is one of the most common plasticizers and is widely used in various plastic products. DEHP induces apoptosis and oxidative stress and has been shown to have androgenic toxicity. However, the methods to combat DEHP-induced testicular damage and the mechanisms involved remain to be elucidated. In the present study, we used melatonin, which has strong antioxidant properties, to intervene in prepubertal mice and mouse Leydig cells (TM3) treated with DEHP or its metabolite mono(2-ethylhexyl) phthalate (MEHP). The results showed that melatonin protected against DEHP-induced testicular damage in prepubertal mice, mainly by protecting against DEHP-induced structural destruction of the germinal tubules and by attenuating the DEHP-induced decrease in testicular organ coefficients and testosterone levels. Transcriptomic analysis found that melatonin may attenuate DEHP-induced oxidative stress and apoptosis in prepubertal testes. In vitro studies further revealed that MEHP induces oxidative stress injury and increases apoptosis in TM3 cells, while melatonin reversed this damage. In vitro studies also found that MEHP exposure inhibited the expression levels of molecules related to the PI3K/AKT signaling pathway, and melatonin reversed this change. In conclusion, these findings suggest that melatonin protects against DEHP-induced prepubertal testicular injury via the PI3K/AKT signaling pathway, and provide a theoretical basis and experimental rationale for combating male reproductive dysfunction.


Assuntos
Dietilexilftalato , Melatonina , Masculino , Camundongos , Animais , Testículo , Melatonina/farmacologia , Dietilexilftalato/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo , Apoptose
16.
Am J Nephrol ; 55(1): 86-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37734331

RESUMO

INTRODUCTION: Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS: C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS: GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION: GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.


Assuntos
Dietilexilftalato , MicroRNAs , Ácidos Ftálicos , Animais , Camundongos , Masculino , Dietilexilftalato/toxicidade , Óleo de Milho/farmacologia , Camundongos Endogâmicos C57BL , Antioxidantes , Rim , MicroRNAs/genética , MicroRNAs/farmacologia , RNA Mensageiro , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Guanosina Trifosfato/farmacologia
17.
Ecotoxicol Environ Saf ; 269: 115727, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042133

RESUMO

BACKGROUND: This study aimed to assess the exposure level and risk of Di-2-ethylhexyl Phthalate (DEHP) among adults in Jilin Province, China, clarify the impact of DEHP on human thyroid function, and to explore the role of estrogen receptors (ERs)-Notch signaling pathway in the effect of DEHP metabolites on thyroid hormones based on population data and in vitro experiments. METHODS: 312 adults participated in this study. Urinary DEHP metabolites were determined by high performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS). Two pharmacokinetic models were used to evaluate the estimated daily intake (EDI) and hazard quotient (HQ) of the adults. Multiple linear regression and mediating effect models were used to evaluate the target associations. In cell experiments, thyroid follicular epithelial (Nthy-ori3-1) cells were exposed to mono (2-ethylhexyl) phthalate (MEHP) for testing. The inhibitions of ERα and Notch pathway were conducted by siRNA and Notch pathway inhibitor DAPT. RESULTS: The detection rate of five DEHP metabolites was 97.1∼100.0%. The HQ value of 0.3% of adults was higher than 1. The levels of urinary DEHP metabolites were significantly correlated with thyrotropin (TSH), thyrotropin-releasing hormone (TRH), total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3) and free thyroxine (FT4) and gene (estrogen receptor α (ERα), Notch1, Dll4) levels. The ERα-Notch pathway played a mediating role in the association between DEHP metabolite levels and FT4. The cell results showed, the levels of FT3 and FT4 in cell supernatant decreased after MEHP exposure, and the downward trend was reversed after ERα and notch pathways were inhibited, notch pathway genes also decreased after ERα inhibition. CONCLUSION: Adults in the Jilin Province of China were widely exposed to DEHP. ERs-Notch pathway played an important role in the effect of DEHP metabolites on thyroid hormones.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Adulto , Humanos , Glândula Tireoide/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Tiroxina , Receptor alfa de Estrogênio , Receptores de Estrogênio , Tri-Iodotironina , Espectrometria de Massas em Tandem , Ácidos Ftálicos/urina , Hormônios Tireóideos
18.
Int Immunopharmacol ; 126: 111293, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056199

RESUMO

Psoriasis is a devastating autoimmune illness resulting from excessive keratinocyte growth and leukocyte infiltration into the dermis/epidermis. In the pathogenesis of psoriasis, different immune cells such as myeloid cells and CD4 + T cells play a key role. Th17/Th1 immune responses and oxidant-antioxidant responses are critical in regulation of psoriatic inflammation. Di-2-ethylhexyl phthalate (DEHP) is one of the well-known plasticizers and has widespread use worldwide. DEHP exposure through ingestion may produce harmful effects on the skin through systemic inflammation and oxidative stress, which may modify psoriatic inflammation. However, the effect of oral DEHP exposure on inflammatory cytokines and Nrf2/iNOS signaling in myeloid cells and CD4 + T cells in the context of psoriatic inflammation has not been investigated earlier. Therefore, this study explored the effect of DEHP on systemic inflammation in myeloid cells (IL-6, IL-17A, IL-23), Th17 (p-STAT3, IL-17A, IL-23R, TNF-α), Th1 (IFN-γ), Treg (Foxp3, IL-10), and Nrf2/iNOS signaling in imiquimod (IMQ)-induced mouse model of psoriasis-like inflammation. Our study showed increased Th17 signaling in imiquimod model which was further aggravated by DEHP exposure. Further, Nrf2 and iNOS signaling were also elevated in IMQ model where DEHP exposure further increased iNOS expression but did not modify the Nrf2 expression. Most importantly, IL-17A levels were also elevated in myeloid cells along with IL-6 which were further elevated by DEHP exposure. Overall, this study shows that IL-17A signaling is upregulated, whereas there is deficiency of Nrf2/HO-1 signaling by DEHP exposure in mice with psoriasiform inflammation. These observations suggest that DEHP aggravates IL-17A-mediated signaling both in CD4 + T cells as well as myeloid cells which is linked to exacerbation of IMQ-induced psoriatic inflammation in mice. Strategies that counteract the effect of DEHP exposure in the context of psoriatic inflammation through downregulation of IL-17A may be fruitful.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Psoríase , Animais , Camundongos , Imiquimode/farmacologia , Interleucina-17/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-6/metabolismo , Poluentes Ambientais/efeitos adversos , Dietilexilftalato/toxicidade , Pele/patologia , Inflamação/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças
19.
Toxicol In Vitro ; 95: 105742, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016509

RESUMO

Phthalates are commonly used as plasticizers. Numerous studies have focused on endocrine, reproductive, and developmental toxicity of phthalates exposure to male organisms. In recent years, some studies looking into the aging effects of phthalates exposure in D. melanogaster showed discrepant results. In this study, we compared the different concentrations of Di(2-ethylhexyl) phthalate (DEHP) and di-isononyl phthalate (DINP) for acute and chronic treatment for different gender D. melanogaster and explored the potential mechanism of DEHP and DINP exposure. The results showed that acute exposure to DEHP or DINP at a high dose significantly decreased the lifespan of female and male D. melanogaster under HFD stress. Chronic exposure significantly decreased the lifespan of flies in all exposure groups except for the low-dose DINP exposure female group. Among them, in the normal feeding group, we found that female flies seemed to be more resistant to DEHP or DINP exposure. Meanwhile, the locomotion ability and fertility of flies exhibited a dose-dependent decline. Furthermore, phthalates did not significantly reduce the lifespan or health status of akt and foxo mutant flies in the mutant fly assays, and real-time quantitative-PCR (q-PCR) data revealed akt and foxo significant change with 10 µM DEHP or DINP treatment. This suggests that akt and foxo played a role in the process by which DEHP and DINP caused age-related declines in D. melanogaster.


Assuntos
Dietilexilftalato , Proteínas de Drosophila , Ácidos Ftálicos , Animais , Masculino , Feminino , Dietilexilftalato/toxicidade , Drosophila melanogaster , Proteínas Proto-Oncogênicas c-akt/genética , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Envelhecimento , Proteínas de Drosophila/genética , Fatores de Transcrição Forkhead/genética
20.
Biol Reprod ; 110(3): 632-641, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38134965

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a pervasive environmental toxicant used in the manufacturing of numerous consumer products, medical supplies, and building materials. DEHP is metabolized to mono(2-ethylhexyl) phthalate (MEHP). MEHP is an endocrine disruptor that adversely affects folliculogenesis and steroidogenesis in the ovary, but its mechanism of action is not fully understood. Thus, we tested the hypothesis that the aryl hydrocarbon receptor (AHR) plays a functional role in MEHP-mediated disruption of folliculogenesis and steroidogenesis. CD-1 mouse antral follicles were isolated and cultured with MEHP (0-400 µM) in the presence or absence of the AHR antagonist CH223191 (1 µM). MEHP treatment reduced follicle growth over a 96-h period, and this effect was partially rescued by co-culture with CH223191. MEHP exposure alone increased expression of known AHR targets, cytochrome P450 (CYP) enzymes Cyp1a1 and Cyp1b1, and this induction was blocked by CH223191. MEHP reduced media concentrations of estrone and estradiol compared to control. This effect was mitigated by co-culture with CH223191. Moreover, MEHP reduced the expression of the estrogen-sensitive genes progesterone receptor (Pgr) and luteinizing hormone/choriogonadotropin receptor (Lhcgr) and co-treatment with CH223191 blocked this effect. Collectively, these data indicate that MEHP activates the AHR to impair follicle growth and reduce estrogen production and signaling in ovarian antral follicles.


Assuntos
Compostos Azo , Dietilexilftalato , Dietilexilftalato/análogos & derivados , Ácidos Ftálicos , Pirazóis , Camundongos , Animais , Feminino , Dietilexilftalato/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Estrogênios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA