Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Sci Rep ; 13(1): 21079, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030663

RESUMO

Normal-to-cancer (NTC) transition is known to be closely associated to cell´s biomechanical properties which are dependent on the dynamics of the intracellular medium. This study probes different human cancer cells (breast, prostate and lung), concomitantly to their healthy counterparts, aiming at characterising the dynamical profile of water in distinct cellular locations, for each type of cell, and how it changes between normal and cancer states. An increased plasticity of the cytomatrix is observed upon normal-to-malignant transformation, the lung carcinoma cells displaying the highest flexibility followed by prostate and breast cancers. Also, lung cells show a distinct behaviour relative to breast and prostate, with a higher influence from hydration water motions and localised fast rotations upon NTC transformation. Quasielastic neutron scattering techniques allowed to accurately distinguish the different dynamical processes taking place within these highly heterogeneous cellular systems. The results thus obtained suggest that intracellular water dynamics may be regarded as a specific reporter of the cellular conditions-either healthy or malignant.


Assuntos
Neoplasias , Água , Humanos , Difração de Nêutrons , Nêutrons
2.
Protein Sci ; 32(10): e4765, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37624071

RESUMO

In structural biology, peptide bonds, fundamental linkages between hundreds of amino acids, of which a protein molecule is composed, have been commonly treated as a plane structure just as Linus Pauling et al. proposed. In this paper, a site-specific peptide bond relaxation mechanism by deuterons whose localization has been suggested by neutron crystallography is proposed. Such deuteron was observed as an arm of neutron scattering length density protruding from the carbonyl oxygen atoms in the main chain in the omit map drawn by neutron crystallography of human lysozyme. Our comprehensive study using x-ray and neutron diffraction and 15 N chemical shifts of individual amide nitrogen atoms within the same peptide bond strongly suggests the relaxation of the electronic resonance structure because of site-specific modulation by protons/deuterons localized on the electron orbital of the carbonyl oxygen. All experimental data used in this examination were obtained at room temperature, which is preferable for enzymatic activity. Such a close interaction between the electron resonance structure of a peptide bond and the exchangeable protons/deuterons well agreed with that observed in an intermediate state in an amide hydrolytic reaction simulated by the ab-initio calculation including water molecules.


Assuntos
Difração de Nêutrons , Prótons , Humanos , Cristalografia , Deutério , Cristalografia por Raios X , Nêutrons , Peptídeos , Ligação de Hidrogênio
3.
Phys Chem Chem Phys ; 24(25): 15406-15415, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704895

RESUMO

Normal-to-malignant transformation is a poorly understood process associated with cellular biomechanical properties. These are strongly dependent on the dynamical behaviour of water, known to play a fundamental role in normal cellular activity and in the maintenance of the three-dimensional architecture of the tissue and the functional state of biopolymers. In this study, quasi-elastic neutron scattering was used to probe the dynamical behaviour of water in human cancer specimens and their respective surrounding normal tissue from breast and tongue, as an innovative approach for identifying particular features of malignancy. This methodology has been successfully used by the authors in human cells and was the first study of human tissues by neutron scattering techniques. A larger flexibility was observed for breast versus tongue tissues. Additionally, different dynamics were found for malignant and non-malignant specimens, depending on the tissue: higher plasticity for breast invasive cancer versus the normal, and an opposite effect for tongue. The data were interpreted in the light of two different water populations within the samples: one displaying bulk-like dynamics (extracellular and intracellular/cytoplasmic) and another with constrained flexibility (extracellular/interstitial and intracellular/hydration layers).


Assuntos
Neoplasias , Água , Humanos , Difração de Nêutrons/métodos , Nêutrons
4.
Commun Biol ; 4(1): 507, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907308

RESUMO

B-cell lymphoma 2 (Bcl-2) proteins are the main regulators of mitochondrial apoptosis. Anti-apoptotic Bcl-2 proteins possess a hydrophobic tail-anchor enabling them to translocate to their target membrane and to shift into an active conformation where they inhibit pro-apoptotic Bcl-2 proteins to ensure cell survival. To address the unknown molecular basis of their cell-protecting functionality, we used intact human Bcl-2 protein natively residing at the mitochondrial outer membrane and applied neutron reflectometry and NMR spectroscopy. Here we show that the active full-length protein is entirely buried into its target membrane except for the regulatory flexible loop domain (FLD), which stretches into the aqueous exterior. The membrane location of Bcl-2 and its conformational state seems to be important for its cell-protecting activity, often infamously upregulated in cancers. Most likely, this situation enables the Bcl-2 protein to sequester pro-apoptotic Bcl-2 proteins at the membrane level while sensing cytosolic regulative signals via its FLD region.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Difração de Nêutrons/métodos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Humanos , Conformação Proteica
5.
Commun Biol ; 4(1): 243, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623120

RESUMO

Molecular dynamics (MD) simulation is widely used to complement ensemble-averaged experiments of intrinsically disordered proteins (IDPs). However, MD often suffers from limitations of inaccuracy. Here, we show that enhancing the sampling using Hamiltonian replica-exchange MD (HREMD) led to unbiased and accurate ensembles, reproducing small-angle scattering and NMR chemical shift experiments, for three IDPs of varying sequence properties using two recently optimized force fields, indicating the general applicability of HREMD for IDPs. We further demonstrate that, unlike HREMD, standard MD can reproduce experimental NMR chemical shifts, but not small-angle scattering data, suggesting chemical shifts are insufficient for testing the validity of IDP ensembles. Surprisingly, we reveal that despite differences in their sequence, the inter-chain statistics of all three IDPs are similar for short contour lengths (< 10 residues). The results suggest that the major hurdle of generating an accurate unbiased ensemble for IDPs has now been largely overcome.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Histatinas/química , Histatinas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Luz , Difração de Nêutrons , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteína Proto-Oncogênica c-fli-1/química , Proteína Proto-Oncogênica c-fli-1/metabolismo , Reprodutibilidade dos Testes , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade
6.
Biochim Biophys Acta Biomembr ; 1863(9): 183587, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639106

RESUMO

In Gram-negative bacteria, the ß-barrel assembly machinery (BAM) complex catalyses the assembly of ß-barrel proteins into the outer membrane, and is composed of five subunits: BamA, BamB, BamC, BamD and BamE. Once assembled, - ß-barrel proteins can be involved in various functions including uptake of nutrients, export of toxins and mediating host-pathogen interactions, but the precise mechanism by which these ubiquitous and often essential ß-barrel proteins are assembled is yet to be established. In order to determine the relative positions of BAM subunits in the membrane environment we reconstituted each subunit into a biomimetic membrane, characterizing their interaction and structural changes by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and neutron reflectometry. Our results suggested that the binding of BamE, or a BamDE dimer, to BamA induced conformational changes in the polypeptide transported-associated (POTRA) domains of BamA, but that BamB or BamD alone did not promote any such changes. As monitored by neutron reflectometry, addition of an unfolded substrate protein extended the length of POTRA domains further away from the membrane interface as part of the mechanism whereby the substrate protein was folded into the membrane.


Assuntos
Lipoproteínas/química , Fosfatidilcolinas/química , Difração de Nêutrons , Técnicas de Microbalança de Cristal de Quartzo
7.
Macromol Biosci ; 21(2): e2000356, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33393176

RESUMO

One can take advantage of the influence of a polymer conjugated with a protein to control the thermal stability and the deployment of the protein. Here, the structural properties are reported of the protein-polymer conjugate myoglobin (Mb)-poly(ethyl ethylene phosphate) (PEEP) in the native and unfolded conformations, in order to understand the respective roles of the protein and of the polymer size in the stability of the conjugate. The effect is also investigated of the grafting density of the linear biodegradable polyphosphoesters covalently attached to the protein. It is observed that, while the conjugation process at room temperature does not modify the secondary and tertiary structure of the Mb, the unfolding process, as a function of temperature, depends on the grafting density. Small angle neutron scattering reveals that, at room temperature, conjugation does not alter the size of the native protein and that the thickness of the polymer shell around the protein increases as a function of grafting density and of polymer molecular weight. The denatured form of all conjugates is described by an unfolded chain and a correlation length due to the presence of local stiffness.


Assuntos
Mioglobina/química , Difração de Nêutrons , Polímeros/química , Espalhamento a Baixo Ângulo , Animais , Cavalos , Conformação Proteica , Desnaturação Proteica , Temperatura de Transição
8.
Acta Crystallogr D Struct Biol ; 76(Pt 11): 1050-1056, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135676

RESUMO

Transthyretin (TTR) is one of more than 30 amyloidogenic proteins, and the amyloid fibrils found in patients afflicted with ATTR amyloidosis are composed of this protein. Wild-type TTR amyloids accumulate in the heart in senile systemic amyloidosis (SSA). ATTR amyloidosis occurs at a much younger age than SSA, and the affected individuals carry a TTR mutant. The naturally occurring amyloidogenic Y116S TTR variant forms more amyloid fibrils than wild-type TTR. Thus, the Y116S mutation reduces the stability of the TTR structure. A neutron diffraction experiment on Y116S TTR was performed to elucidate the mechanism of the changes in structural stability between Y116S variant and wild-type TTR through structural comparison. Large crystals of the Y116S variant were grown under optimal crystallization conditions, and a single 2.4 mm3 crystal was ultimately obtained. This crystal was subjected to time-of-flight (TOF) neutron diffraction using the IBARAKI biological crystal diffractometer (iBIX) at the Japan Proton Accelerator Research Complex, Tokai, Japan (J-PARC). A full data set for neutron structure analysis was obtained in 14 days at an operational accelerator power of 500 kW. A new integration method was developed and showed improved data statistics; the new method was applied to the reduction of the TOF diffraction data from the Y116S variant. Data reduction was completed and the integrated intensities of the Bragg reflections were obtained at 1.9 Šresolution for structure refinement. Moreover, X-ray diffraction data at 1.4 Šresolution were obtained for joint neutron-X-ray refinement.


Assuntos
Modelos Moleculares , Difração de Nêutrons/métodos , Pré-Albumina , Análise de Dados , Humanos , Mutação , Pré-Albumina/química , Pré-Albumina/genética
9.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 10): 483-487, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33006576

RESUMO

The replication of SARS-CoV-2 produces two large polyproteins, pp1a and pp1ab, that are inactive until cleavage by the viral chymotrypsin-like cysteine protease enzyme (3CL Mpro) into a series of smaller functional proteins. At the heart of 3CL Mpro is an unusual catalytic dyad formed by the side chains of His41 and Cys145 and a coordinated water molecule. The catalytic mechanism by which the enzyme operates is still unknown, as crucial information on the protonation states within the active site is unclear. To experimentally determine the protonation states of the catalytic site and of the other residues in the substrate-binding cavity, and to visualize the hydrogen-bonding networks throughout the enzyme, room-temperature neutron and X-ray data were collected from a large H/D-exchanged crystal of ligand-free (apo) 3CL Mpro.


Assuntos
Betacoronavirus/enzimologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Pneumonia Viral/virologia , Proteínas não Estruturais Virais/química , Betacoronavirus/química , Betacoronavirus/genética , COVID-19 , Domínio Catalítico , Proteases 3C de Coronavírus , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Humanos , Modelos Moleculares , Difração de Nêutrons , Pandemias , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , SARS-CoV-2 , Temperatura , Proteínas não Estruturais Virais/genética
10.
ChemistryOpen ; 9(10): 978-982, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33024651

RESUMO

Combined neutron and X-ray powder diffraction techniques highlighted the sorption capacity of the acidic L zeolite towards the L-lysine amino acid. The role of zeolite channels in the stabilization of the lysine absorbed and the effect of water on protein structure are elucidated at atomistic level. The stabilization of the L α-helical conformation is related to strong H-bonds between the tail aminogroups of lysine molecules and the Brønsted acid site as well as to complex intermolecular H-bond system between water molecules, zeolite and amino acid. This finding is relevant in the catalytic synthesis of polypeptide, as well as in industrial biotechnology by qualitatively predicting binding behaviour.


Assuntos
Lisina/química , Difração de Nêutrons , Síncrotrons , Difração de Raios X , Zeolitas/química , Adsorção , Ligação de Hidrogênio , Estabilidade Proteica
11.
Sci Rep ; 10(1): 12869, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733083

RESUMO

Two analytical methods based on the neutrons high penetrability, i.e. neutron diffraction (ND) and neutron computed tomography (NCT) were used to investigate the structure of the aragonitic skeleton of an exemplar/sample of Dipastraea pallida (Dana 1846), a modern hermatypic coral. ND was used to reconstruct the orientation distribution function (ODF) of the crystalline fibrils which compose the coral skeleton. Accordingly, 684 ND spectra were analyzed using the Rietveld method. The result confirmed the aragonite as the sole mineral component of coral skeleton, allowing to recalculate the ODF of aragonite fibrils and to represent it by means of (100), (010) and (001) crystallographic planes pole figures (PF). Experimental PF showed a remarkable similarity with PF recalculated by considering that all aragonite fibrils are oriented either along the growth axis of polyp cups or perpendicular to this direction. This result confirmed the previous observations based on optical microscopy, proving at the same time the availability of ND for such types of investigations. In turn, NCT evidenced the individual polyp cups, their interlocked 3D rigid porous structure as well as a periodic variation of density which could be attributed to a seasonal influence of the marine environment. Different from the classical X-ray computed tomography, the NCT, in view of neutron high cross-section for hydrogen, demonstrated the presence of a small amount of organic matter, otherwise transparent for X- and gamma rays.


Assuntos
Antozoários/metabolismo , Antozoários/fisiologia , Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Difração de Nêutrons/métodos , Nêutrons , Esqueleto/diagnóstico por imagem , Esqueleto/metabolismo , Tomografia Computadorizada por Raios X/métodos , Animais , Cristalografia
12.
Mater Sci Eng C Mater Biol Appl ; 109: 110559, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228907

RESUMO

This study investigates stabilization of graphene oxide (GO) nanosheets in polyethylene oxide-polypropylene oxide (PEO-PPO) block copolymers (P103, P123 and F127). Changes in micellization of copolymers upon GO addition were monitored using dynamic light (DLS) and small angle neutron scattering (SANS). Structural developments at sheet surface were studied with two possibilities; (i) adsorption of PPO block over hydrophobic basal plane allowing the engagement of hydrophilic PEO with aqueous bulk, and (ii) adsorption of micelles mediated via carboxylated groups. Insignificant changes in micellar parameters for P123 and P127 were indicative of their inferior interaction with GO. On the other hand, P103 micelles exhibited high affinity for sheets, noticeable as emergence of mass fractals and more than two-fold enhancement in micelle number density. The latter allowed coverage of entire surface with P103 micelles. Existence of mass fractals was verified by extracting the form and structure factors from the fitted SANS data. Spectroscopic and thermogravimetric analyses illustrated non-covalent adsorption of copolymer aggregates. It was interesting to note that the dispersion remained stable against protein and electrolyte addition. A comprehensive understanding on colloidal stability can be valuable for drug delivery applications of GO sheets.


Assuntos
Grafite/química , Nanoestruturas/química , Difração de Nêutrons , Espalhamento a Baixo Ângulo
13.
Molecules ; 25(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936161

RESUMO

The mode of action of Pt- and Pd-based anticancer agents (cisplatin and Pd2Spm) was studied by characterising their impact on DNA. Changes in conformation and mobility at the molecular level in hydrated DNA were analysed by quasi-elastic and inelastic neutron scattering techniques (QENS and INS), coupled to Fourier transform infrared (FTIR) and microRaman spectroscopies. Although INS, FTIR and Raman revealed drug-triggered changes in the phosphate groups and the double helix base pairing, QENS allowed access to the nanosecond motions of the biomolecule's backbone and confined hydration water within the minor groove. Distinct effects were observed for cisplatin and Pd2Spm, the former having a predominant effect on DNA´s spine of hydration, whereas the latter had a higher influence on the backbone dynamics. This is an innovative way of tackling a drug´s mode of action, mediated by the hydration waters within its pharmacological target (DNA).


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/química , Cisplatino/farmacologia , DNA/química , DNA/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Metais/química , Metais/farmacologia , Difração de Nêutrons , Nêutrons , Conformação de Ácido Nucleico/efeitos dos fármacos , Paládio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Espermina/química , Água/química
14.
Biochim Biophys Acta Gen Subj ; 1864(3): 129475, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734456

RESUMO

Experiments to characterize intracellular molecular dynamics in vivo are discussed following a description of the incoherent neutron scattering method. Work reviewed includes water diffusion in bacteria, archaea, red blood cells, brain cells and cancer cells, and the role of proteome molecular dynamics in adaptation to physiological temperature and pressure, and in response to low salt stress in an extremophile. A brief discussion of the potential links between neutron scattering results and MD simulations on in-cell dynamics concludes the review.


Assuntos
Simulação de Dinâmica Molecular/tendências , Difração de Nêutrons/métodos , Difusão , Difração de Nêutrons/tendências , Nêutrons , Proteoma , Temperatura , Água
15.
Langmuir ; 36(2): 637-649, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31846580

RESUMO

Establishing how water, or the absence of water, affects the structure, dynamics, and function of proteins in contact with inorganic surfaces is critical to developing successful protein immobilization strategies. In the present article, the quantity of water hydrating a monolayer of helical peptides covalently attached to self-assembled monolayers (SAMs) of alkyl thiols on Au was measured using neutron reflectometry (NR). The peptide sequence was composed of repeating LLKK units in which the leucines were aligned to face the SAM. When immersed in water, NR measured 2.7 ± 0.9 water molecules per thiol in the SAM layer and between 75 ± 13 and 111 ± 13 waters around each peptide. The quantity of water in the SAM was nearly twice that measured prior to peptide functionalization, suggesting that the peptide disrupted the structure of the SAM. To identify the location of water molecules around the peptide, we compared our NR data to previously published molecular dynamics simulations of the same peptide on a hydrophobic SAM in water, revealing that 49 ± 5 of 95 ± 8 total nearby water molecules were directly hydrogen-bound to the peptide. Finally, we show that immersing the peptide in water compressed its structure into the SAM surface. Together, these results demonstrate that there is sufficient water to fully hydrate a surface-bound peptide even at hydrophobic interfaces. Given the critical role that water plays in biomolecular structure and function, these results are expected to be informative for a broad array of applications involving proteins at the bio/abio interface.


Assuntos
Peptídeos/análise , Simulação de Dinâmica Molecular , Difração de Nêutrons , Propriedades de Superfície , Água/química
16.
J Mol Biol ; 432(9): 2985-2997, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31877324

RESUMO

Src family kinases (SFKs) are a group of nonreceptor tyrosine kinases that are characterized by their involvement in critical signal transduction pathways. SFKs are often found attached to membranes, but little is known about the conformation of the protein in this environment. Here, solution nuclear magnetic resonance (NMR), neutron reflectometry (NR), and molecular dynamics (MD) simulations were employed to study the membrane interactions of the intrinsically disordered SH4 and Unique domains of the Src family kinase Hck. Through development of a procedure to combine the information from the different techniques, we were able produce a first-of-its-kind atomically detailed structural ensemble of a membrane-bound intrinsically disordered protein. Evaluation of the model demonstrated its consistency with previous work and provided insight into how SFK Unique domains act to differentiate the family members from one another. Fortuitously, the position of the ensemble on the membrane allowed the model to be combined with configurations of the multidomain Hck kinase previously determined from small-angle solution X-ray scattering to produce full-length models of membrane-anchored Hck. The resulting models allowed us to estimate that the kinase active site is positioned about 65 ± 35 Å away from the membrane surface, offering the first estimations of the length scale associated with the concept of SFK subcellular localization.


Assuntos
Membrana Celular/metabolismo , Proteínas Proto-Oncogênicas c-hck/química , Proteínas Proto-Oncogênicas c-hck/metabolismo , Sítios de Ligação , Domínio Catalítico , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Difração de Nêutrons , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo
17.
J Microsc ; 277(3): 170-178, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31535375

RESUMO

The interactions between plant roots and soil are an area of active research, particularly in terms of water and nutrient uptake. Because noninvasive, in vivo studies are required, tomographic imaging appears an obvious method to use, but no one imaging modality is well suited to capture the complete system. X-ray imaging gives clear insight to soil structure and composition; however, water is comparatively transparent to X-rays and biological matter also displays poor contrast with respect to the pores between soil particles. Neutron imaging presents a complementary view where water and biological matter are better distinguished but the soil minerals are not imaged as clearly as they would be with X-rays. This work aims to develop robust methods for complementary X-ray/neutron tomographic imaging of plant root samples which should lead to new insight into water and nutrient transport in soil. The key challenges of this project are to develop experiments that will meet the requirements of both imaging modalities as well as the biological requirements of the plant samples and to develop ways to register a pair of reconstructed volume images of a sample that will typically have been produced with entirely separate facilities. The use of cadmium fiducial markers for registration has been investigated. Simulations were conducted to investigate the expected registration accuracy as the quantity and distribution of the markers varied. The findings of these simulations were then tested experimentally as plant samples were grown and imaged using neutrons with the IMAT instrument at ISIS Neutron and Muon Source at the STFC Rutherford Appleton Laboratory in Harwell, and with X-rays at µ-VIS X-ray Imaging Centre at the University of Southampton. LAY DESCRIPTION: The interactions between plant roots and soil are an area of active research, particularly in terms of water and nutrient uptake. The samples used in this research are typically imaged so that they can be studied without digging up the roots and destroying the sample in the process. X-ray and neutron imaging techniques have both been used as each can show different materials within the sample. Because neither can show all the components of the system by itself, this work explores methods for combining scans of the same sample to give a more complete image of the system. In particular this work focusses on the use of fiducial markers as a strategy for preparing the samples in such a way that the resulting images can be aligned. The effectiveness of this method was tested in simulation and then in practice. The samples used within this work were imaged using neutrons on the IMAT instrument at ISIS Neutron and Muon Source at the STFC Rutherford Appleton Laboratory in Harwell, and with X-rays at µ-VIS X-ray Imaging Centre at the University of Southampton.


Assuntos
Cádmio/química , Marcadores Fiduciais , Imageamento Tridimensional/métodos , Difração de Nêutrons/métodos , Raízes de Plantas/fisiologia , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Raízes de Plantas/química , Solo/química , Água/química
18.
J Phys Chem Lett ; 10(23): 7505-7509, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31743029

RESUMO

Characterization of the dynamics of disordered polypeptide chains is required to elucidate the behavior of intrinsically disordered proteins and proteins under non-native states related to the folding process. Here we develop a method using quasielastic neutron scattering, combined with small-angle X-ray scattering and dynamic light scattering, to evaluate segmental motions of proteins as well as diffusion of the entire molecules and local side-chain motions. We apply this method to RNase A under the unfolded and molten-globule (MG) states. The diffusion coefficients arising from the segmental motions are evaluated and found to be different between the unfolded and MG states. The values obtained here are consistent with those obtained using the fluorescence-based techniques. These results demonstrate not only feasibility of this method but also usefulness to characterize the behavior of proteins under various disordered states.


Assuntos
Ribonuclease Pancreático/química , Espalhamento a Baixo Ângulo , Difusão , Difusão Dinâmica da Luz , Transferência de Energia , Espectroscopia de Ressonância Magnética , Difração de Nêutrons , Desdobramento de Proteína , Ribonuclease Pancreático/metabolismo
19.
Int J Pharm ; 571: 118752, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31606529

RESUMO

Surfactant-like peptides are a class of amphiphilic macromolecules, which are able to self-assemble in water forming different supramolecular structures. Among them, octapeptides composed of six hydrophobic and two hydrophilic residues have attracted interest since they have a length similar to those of natural phospholipids. Supramolecular structures of different amphiphilic octapeptides have been widely reported, but no study has been performed aimed at investigating the effect of PEGylation on their self-assembling behaviour. The aim of the present work was to synthesize and characterise the self-assembling behaviour of PEGylated alanine- or valine based amphiphilic octapeptides (mPEG1.9kDa-DDAAAAAA and mPEG1.9kDa-DDVVVVVV) in comparison to the non-PEGylated ones (DDAAAAAA and DDVVVVVV). The self-aggregation process in ultrapure water was investigated by fluorescence spectroscopy, small angle neutron scattering (SANS), dynamic light scattering (DLS), while the secondary structure was assessed by circular dichroism. PEGylation markedly affects the self-assembling behaviour of these amphiphilic octapeptides in terms of both critical aggregation concentration (CAC) and shape of the formed supramolecular aggregates. Indeed, PEGylation increases CAC and prevents the self-aggregation into fibrillary supramolecular aggregates (as observed for non-PEGylated peptides), by promoting the formation of micelle-like structures (as demonstrated for valine-based octapeptide). On the other side, the secondary structure of peptides seems not to be affected by PEGylation. Overall, these results suggest that self-assembling behaviour of amphiphilic octapeptides can be modified by PEGylation, with a great potential impact for the future applications of these nanomaterials.


Assuntos
Portadores de Fármacos/química , Nanoestruturas/química , Peptídeos/química , Polietilenoglicóis/química , Tensoativos/química , Química Farmacêutica , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Luz , Micelas , Difração de Nêutrons/métodos , Polimerização , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência
20.
Langmuir ; 35(36): 11735-11744, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31408345

RESUMO

Despite the prevalence of lipid transbilayer asymmetry in natural plasma membranes, most biomimetic model membranes studied are symmetric. Recent advances have helped to overcome the difficulties in preparing asymmetric liposomes in vitro, allowing for the examination of a larger set of relevant biophysical questions. Here, we investigate the stability of asymmetric bilayers by measuring lipid flip-flop with time-resolved small-angle neutron scattering (SANS). Asymmetric large unilamellar vesicles with inner bilayer leaflets containing predominantly 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and outer leaflets composed mainly of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) displayed slow spontaneous flip-flop at 37 ◦C (half-time, t1/2 = 140 h). However, inclusion of peptides, namely, gramicidin, alamethicin, melittin, or pHLIP (i.e., pH-low insertion peptide), accelerated lipid flip-flop. For three of these peptides (i.e., pHLIP, alamethicin, and melittin), each of which was added externally to preformed asymmetric vesicles, we observed a completely scrambled bilayer in less than 2 h. Gramicidin, on the other hand, was preincorporated during the formation of the asymmetric liposomes and showed a time resolvable 8-fold increase in the rate of lipid asymmetry loss. These results point to a membrane surface-related (e.g., adsorption/insertion) event as the primary driver of lipid scrambling in the asymmetric model membranes of this study. We discuss the implications of membrane peptide binding, conformation, and insertion on lipid asymmetry.


Assuntos
Lipídeos/química , Lipossomos/química , Peptídeos/química , Difração de Nêutrons , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA