Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.420
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(19): 11124-11139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698543

RESUMO

Terpenes and pentene dimers are less studied volatile organic compounds (VOCs) but are associated with specific features of extra virgin olive oils (EVOOs). This study aimed to analyze mono- and sesquiterpenes and pentene dimers of Italian monovarietal EVOOs over 3 years (14 cultivars, 225 samples). A head space-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method recently validated was used for terpene and pentene dimer quantitation. The quantitative data collected were used for both the characterization and clustering of the cultivars. Sesquiterpenes were the molecules that most characterized the different cultivars, ranging from 3.908 to 38.215 mg/kg; different groups of cultivars were characterized by different groups of sesquiterpenes. Pentene dimers (1.336 and 3.860 mg/kg) and monoterpenes (0.430 and 1.794 mg/kg) showed much lower contents and variability among cultivars. The application of Kruskal-Wallis test-PCA-LDA-HCA to the experimental data allowed defining 4 clusters of cultivars and building a predictive model to classify the samples (94.3% correct classification). The model was further tested on 33 EVOOs, correctly classifying 91% of them.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Olea , Azeite de Oliva , Controle de Qualidade , Microextração em Fase Sólida , Terpenos , Compostos Orgânicos Voláteis , Microextração em Fase Sólida/métodos , Azeite de Oliva/química , Itália , Terpenos/química , Terpenos/análise , Olea/química , Compostos Orgânicos Voláteis/química , Quimiometria/métodos , Dimerização
2.
J Hematol Oncol ; 17(1): 20, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650005

RESUMO

BACKGROUND: EGFR and/or HER2 expression in pancreatic cancers is correlated with poor prognoses. We generated homodimeric (EGFRxEGFR or HER2xHER2) and heterodimeric (EGFRxHER2) T cell-engaging bispecific antibodies (T-BsAbs) to direct polyclonal T cells to these antigens on pancreatic tumors. METHODS: EGFR and HER2 T-BsAbs were constructed using the 2 + 2 IgG-[L]-scFv T-BsAbs format bearing two anti-CD3 scFvs attached to the light chains of an IgG to engage T cells while retaining bivalent binding to tumor antigens with both Fab arms. A Fab arm exchange strategy was used to generate EGFRxHER2 heterodimeric T-BsAb carrying one Fab specific for EGFR and one for HER2. EGFR and HER2 T-BsAbs were also heterodimerized with a CD33 control T-BsAb to generate 'tumor-monovalent' EGFRxCD33 and HER2xCD33 T-BsAbs. T-BsAb avidity for tumor cells was studied by flow cytometry, cytotoxicity by T-cell mediated 51Chromium release, and in vivo efficacy against cell line-derived xenografts (CDX) or patient-derived xenografts (PDX). Tumor infiltration by T cells transduced with luciferase reporter was quantified by bioluminescence. RESULTS: The EGFRxEGFR, HER2xHER2, and EGFRxHER2 T-BsAbs demonstrated high avidity and T cell-mediated cytotoxicity against human pancreatic ductal adenocarcinoma (PDAC) cell lines in vitro with EC50s in the picomolar range (0.17pM to 18pM). They were highly efficient in driving human polyclonal T cells into subcutaneous PDAC xenografts and mediated potent T cell-mediated anti-tumor effects. Both EGFRxCD33 and HER2xCD33 tumor-monovalent T-BsAbs displayed substantially reduced avidity by SPR when compared to homodimeric EGFRxEGFR or HER2xHER2 T-BsAbs (∼150-fold and ∼6000-fold respectively), tumor binding by FACS (8.0-fold and 63.6-fold), and T-cell mediated cytotoxicity (7.7-fold and 47.2-fold), while showing no efficacy against CDX or PDX. However, if either EGFR or HER2 was removed from SW1990 by CRISPR-mediated knockout, the in vivo efficacy of heterodimeric EGFRxHER2 T-BsAb was lost. CONCLUSION: EGFR and HER2 were useful targets for driving T cell infiltration and tumor ablation. Two arm Fab binding to either one or both targets was critical for robust anti-tumor effect in vivo. By engaging both targets, EGFRxHER2 heterodimeric T-BsAb exhibited potent anti-tumor effects if CDX or PDX were EGFR+HER2+ double-positive with the potential to spare single-positive normal tissue.


Assuntos
Anticorpos Biespecíficos , Carcinoma Ductal Pancreático , Receptores ErbB , Neoplasias Pancreáticas , Receptor ErbB-2 , Linfócitos T , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Humanos , Animais , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Linfócitos T/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Camundongos , Receptores ErbB/imunologia , Receptor ErbB-2/imunologia , Linhagem Celular Tumoral , Dimerização , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos SCID
3.
Phytochemistry ; 222: 114100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636688

RESUMO

Artemyriantholides A-K (1-11) as well as 14 known compounds (12-25) were isolated from Artemisia myriantha var. pleiocephala (Asteraceae). The structures and absolute configuration of compounds 2 and 8-9 were confirmed by the single crystal X-ray diffraction analyses, and the others were elucidated by MS, NMR spectral data and electronic circular dichroism calculations. All compounds were chemically characterized as guaiane-type sesquiterpenoid dimers (GSDs). Compound 1 was the first example of the GSD fused via C-3/C-11' and C-5/C-13' linkages, and compounds 2 and 5 were rare GSDs containing chlorine atoms. Eleven compounds showed obvious inhibitory activity in HepG2, Huh7 and SK-Hep-1 cell lines by antihepatoma assay to provide the IC50 values ranging from 7.9 to 67.1 µM. Importantly, compounds 5 and 8 exhibited the best inhibitory activity with IC50 values of 14.2 and 18.8 (HepG2), 9.0 and 11.5 (Huh7), and 8.8 and 11.3 µM (SK-Hep-1), respectively. The target of compound 5 was predicted to be MAP2K2 by a computational prediction model. The interaction between compound 5 and MAP2K2 was conducted to give docking score of -9.0 kcal/mol by molecular docking and provide KD value of 43.7 µM by Surface Plasmon Resonance assay.


Assuntos
Artemisia , Artemisia/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos de Guaiano/isolamento & purificação , Animais , Dimerização , Simulação de Acoplamento Molecular , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral
4.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611876

RESUMO

Although the long-term survival rate for leukemia has made significant progress over the years with the development of chemotherapeutics, patients still suffer from relapse, leading to an unsatisfactory outcome. To discover the new effective anti-leukemia compounds, we synthesized a series of dianilinopyrimidines and evaluated the anti-leukemia activities of those compounds by using leukemia cell lines (HEL, Jurkat, and K562). The results showed that the dianilinopyrimidine analog H-120 predominantly displayed the highest cytotoxic potential in HEL cells. It remarkably induced apoptosis of HEL cells by activating the apoptosis-related proteins (cleaved caspase-3, cleaved caspase-9 and cleaved poly ADP-ribose polymerase (PARP)), increasing apoptosis protein Bad expression, and decreasing the expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL). Furthermore, it induced cell cycle arrest in G2/M; concomitantly, we observed the activation of p53 and a reduction in phosphorylated cell division cycle 25C (p-CDC25C) / Cyclin B1 levels in treated cells. Additionally, the mechanism study revealed that H-120 decreased these phosphorylated signal transducers and activators of transcription 3, rat sarcoma, phosphorylated cellular RAF proto-oncogene serine / threonine kinase, phosphorylated mitogen-activated protein kinase kinase, phosphorylated extracellular signal-regulated kinase, and cellular myelocytomatosis oncogene (p-STAT3, Ras, p-C-Raf, p-MEK, p-MRK, and c-Myc) protein levels in HEL cells. Using the cytoplasmic and nuclear proteins isolation assay, we found for the first time that H-120 can inhibit the activation of STAT3 and c-Myc and block STAT3 phosphorylation and dimerization. Moreover, H-120 treatment effectively inhibited the disease progression of erythroleukemia mice by promoting erythroid differentiation into the maturation of erythrocytes and activating the immune cells. Significantly, H-120 also improved liver function in erythroleukemia mice. Therefore, H-120 may be a potential chemotherapeutic drug for leukemia patients.


Assuntos
Leucemia Eritroblástica Aguda , Leucemia , Humanos , Animais , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosforilação , Dimerização , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3
5.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612840

RESUMO

The monoamine transporters, including the serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET), are the therapeutic targets for the treatment of many neuropsychiatric disorders. Despite significant progress in characterizing the structures and transport mechanisms of these transporters, the regulation of their transport functions through dimerization or oligomerization remains to be understood. In the present study, we identified a conserved intramolecular ion-pair at the third extracellular loop (EL3) connecting TM5 and TM6 that plays a critical but divergent role in the modulation of dimerization and transport functions among the monoamine transporters. The disruption of the ion-pair interactions by mutations induced a significant spontaneous cross-linking of a cysteine mutant of SERT and an increase in cell surface expression but with an impaired specific transport activity. On the other hand, similar mutations of the corresponding ion-pair residues in both DAT and NET resulted in an opposite effect on their oxidation-induced dimerization, cell surface expression, and transport function. Reversible biotinylation experiments indicated that the ion-pair mutations slowed down the internalization of SERT but stimulated the internalization of DAT. In addition, cysteine accessibility measurements for monitoring SERT conformational changes indicated that substitution of the ion-pair residues resulted in profound effects on the rate constants for cysteine modification in both the extracellular and cytoplasmatic substrate permeation pathways. Furthermore, molecular dynamics simulations showed that the ion-pair mutations increased the interfacial interactions in a SERT dimer but decreased it in a DAT dimer. Taken together, we propose that the transport function is modulated by the equilibrium between monomers and dimers on the cell surface, which is regulated by a potential compensatory mechanism but with different molecular solutions among the monoamine transporters. The present study provided new insights into the structural elements regulating the transport function of the monoamine transporters through their dimerization.


Assuntos
Cisteína , Proteínas da Membrana Plasmática de Transporte de Serotonina , Dimerização , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Biotinilação , Membrana Celular , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Polímeros
6.
Nature ; 628(8006): 110-116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570715

RESUMO

The emergence of biopolymer building blocks is a crucial step during the origins of life1-6. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties7,8, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks9,10 that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine11,12, in which the selective purification of trimetaphosphate (TMP)13,14 increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.


Assuntos
Biopolímeros , Evolução Química , Temperatura Alta , Origem da Vida , Biopolímeros/química , Dimerização , Glicina/química , Concentração de Íons de Hidrogênio , Nucleotídeos/química , Polifosfatos/química , Solventes/química
7.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673860

RESUMO

Directed structural modifications of natural products offer excellent opportunities to develop selectively acting drug candidates. Natural product hybrids represent a particular compound group. The components of hybrids constructed from different molecular entities may result in synergic action with diminished side effects. Steroidal homo- or heterodimers deserve special attention owing to their potentially high anticancer effect. Inspired by our recently described antiproliferative core-modified estrone derivatives, here, we combined them into heterodimers via Cu(I)-catalyzed azide-alkyne cycloaddition reactions. The two trans-16-azido-3-(O-benzyl)-17-hydroxy-13α-estrone derivatives were reacted with 3-O-propargyl-D-secoestrone alcohol or oxime. The antiproliferative activities of the four newly synthesized dimers were evaluated against a panel of human adherent gynecological cancer cell lines (cervical: Hela, SiHa, C33A; breast: MCF-7, T47D, MDA-MB-231, MDA-MB-361; ovarian: A2780). One heterodimer (12) exerted substantial antiproliferative activity against all investigated cell lines in the submicromolar or low micromolar range. A pronounced proapoptotic effect was observed by fluorescent double staining and flow cytometry on three cervical cell lines. Additionally, cell cycle blockade in the G2/M phase was detected, which might be a consequence of the effect of the dimer on tubulin polymerization. Computational calculations on the taxoid binding site of tubulin revealed potential binding of both steroidal building blocks, mainly with hydrophobic interactions and water bridges.


Assuntos
Antineoplásicos , Proliferação de Células , Estrona , Humanos , Estrona/farmacologia , Estrona/análogos & derivados , Estrona/química , Estrona/síntese química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Dimerização , Simulação de Acoplamento Molecular , Feminino , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Células MCF-7
8.
Chem Commun (Camb) ; 60(37): 4910-4913, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38623638

RESUMO

Several natural cytotoxic C2-symmetric bis-lactones, such as swinholide A and rhizopodin, sequester actin dimer from the actin network and potently inhibit actin dynamics. To develop new protein-protein interaction (PPI) modulators, we synthesized structurally simplified actin-binding side-chain dimers of antitumor macrolide aplyronine A. By fixing the two side-chains closer than those of rhizopodin, the C4 linker analog depolymerized filamentous actin more potently than natural aplyronines. Cross-link experiments revealed that actin dimer was formed by treatment with the C4 linker analog. Molecular dynamics simulations showed that this analog significantly changed the interaction and spatial arrangement of the two actins compared to those in rhizopodin to provide a highly distorted and twisted orientation in the complex. Our study may promote the development of PPI-based anticancer and other drug leads related to cytoskeletal dynamics.


Assuntos
Actinas , Macrolídeos , Simulação de Dinâmica Molecular , Macrolídeos/química , Macrolídeos/farmacologia , Macrolídeos/síntese química , Actinas/metabolismo , Actinas/química , Multimerização Proteica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Dimerização , Humanos
9.
Eur J Pharm Sci ; 197: 106768, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643940

RESUMO

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais , Ovário , Feminino , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Fertilidade/efeitos dos fármacos , Receptores de Neuropeptídeos/metabolismo , Humanos , Regulação Alostérica/efeitos dos fármacos , Receptores de Grelina/metabolismo , Cricetinae , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Dimerização
10.
Sci Rep ; 14(1): 7204, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532028

RESUMO

Myxoid glioneuronal tumors (MGNT) are low-grade glioneuronal neoplasms composed of oligodendrocyte-like cells in a mucin-rich stroma. These tumors feature a unique dinucleotide change at codon 385 in the platelet-derived growth factor receptor α (encoded by the PDGFRA gene), resulting in the substitution of lysine 385 into leucine or isoleucine. The functional consequences of these mutations remain largely unexplored. Here, we demonstrated their oncogenic potential in fibroblast and Ba/F3 transformation assays. We showed that the K385I and K385L mutants activate STAT and AKT signaling in the absence of ligand. Co-immunoprecipitations and BRET experiments suggested that the mutations stabilized the active dimeric conformation of the receptor, pointing to a new mechanism of oncogenic PDGF receptor activation. Furthermore, we evaluated the sensitivity of these mutants to three FDA-approved tyrosine kinase inhibitors: imatinib, dasatinib, and avapritinib, which effectively suppressed the constitutive activity of the mutant receptors. Finally, K385 substitution into another hydrophobic amino acid also activated the receptor. Interestingly, K385M was reported in a few cases of brain tumors but not in MGNT. Our results provide valuable insights into the molecular mechanism underlying the activation of PDGFRα by the K385I/L mutations, highlighting their potential as actionable targets in the treatment of myxoid glioneuronal tumors.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Dimerização , Mesilato de Imatinib , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Mutação
11.
Int J Biol Macromol ; 265(Pt 1): 130921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492688

RESUMO

The design of small molecule inhibitors that target the programmed death ligand-1 (PD-L1) is a forefront issue in immune checkpoint blocking therapy. Small-molecule inhibitors have been shown to exert therapeutic effects by inducing dimerization of the PD-L1 protein, however, the specific mechanisms underlying this dimerization process remain largely unexplored. Furthermore, there is a notable lack of comparative studies examining the binding modes of structurally diverse inhibitors. In view of the research gaps, this work employed molecular dynamics simulations to meticulously examine the interactions between two distinct types of inhibitors and PD-L1 in both monomeric and dimeric forms, and predicted the dimerization mechanism. The results revealed that inhibitors initially bind to a PD-L1 monomer, subsequently attracting another monomer to form a dimer. Notably, symmetric inhibitors observed superior binding efficiency compared to other inhibitors. Key residues, including Ile54, Tyr56, Met115 and Tyr123 played a leading role in binding. Structurally, symmetric inhibitors were capable of thoroughly engaging the binding pocket, promoting a more symmetrical formation of PD-L1 dimers. Furthermore, symmetric inhibitors formed more extensive hydrophobic interactions with protein residues. The insights garnered from this research are expected to significantly contribute to the rational design and optimization of small molecule inhibitors targeting PD-L1.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Dimerização , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Bibliotecas de Moléculas Pequenas/química , Simulação de Dinâmica Molecular
12.
Biomed Pharmacother ; 174: 116482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520866

RESUMO

Chemoimmunotherapy has emerged as a promising strategy for improving the efficacy of cancer treatment. Herein, we present PD-1 receptor-presenting membrane-coated paclitaxel dimers nanoparticles (PD-1@PTX2 NPs) for enhanced treatment efficacy. PD-1 cell membrane-cloaked PTX dimer exhibited effective cellular uptake and increased cytotoxicity against cancer cells. PD-1@PTX2 NPs could selectively bind with PD-L1 ligands expressed on breast cancer cells. Our nanoparticles exhibit a remarkable tumor growth inhibition rate of 71.3% in mice bearing 4T1 xenografts and significantly prolong survival in mouse models of breast cancer. Additionally, our nanoparticles promoted a significant 3.2-fold increase in CD8+ T cell infiltration and 73.7% regulatory T cell (Treg) depletion within tumors, boosting a robust antitumor immune response. These findings underscore the potential of utilizing immune checkpoint receptor-presented PTX nanoparticles to enhance the efficacy of chemoimmunotherapy, providing an alternative approach for improving cancer treatment.


Assuntos
Imunoterapia , Camundongos Endogâmicos BALB C , Nanopartículas , Paclitaxel , Receptor de Morte Celular Programada 1 , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Animais , Nanopartículas/química , Receptor de Morte Celular Programada 1/metabolismo , Feminino , Humanos , Imunoterapia/métodos , Camundongos , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Dimerização , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Antígeno B7-H1/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(12): e2310866121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483996

RESUMO

Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed on activated T cells and an emerging immunotherapy target. Domain 1 (D1) of LAG-3, which has been purported to directly interact with major histocompatibility complex class II (MHCII) and fibrinogen-like protein 1 (FGL1), has been the major focus for the development of therapeutic antibodies that inhibit LAG-3 receptor-ligand interactions and restore T cell function. Here, we present a high-resolution structure of glycosylated mouse LAG-3 ectodomain, identifying that cis-homodimerization, mediated through a network of hydrophobic residues within domain 2 (D2), is critically required for LAG-3 function. Additionally, we found a previously unidentified key protein-glycan interaction in the dimer interface that affects the spatial orientation of the neighboring D1 domain. Mutation of LAG-3 D2 residues reduced dimer formation, dramatically abolished LAG-3 binding to both MHCII and FGL1 ligands, and consequentially inhibited the role of LAG-3 in suppressing T cell responses. Intriguingly, we showed that antibodies directed against D1, D2, and D3 domains are all capable of blocking LAG-3 dimer formation and MHCII and FGL-1 ligand binding, suggesting a potential allosteric model of LAG-3 function tightly regulated by dimerization. Furthermore, our work reveals unique epitopes, in addition to D1, that can be targeted for immunotherapy of cancer and other human diseases.


Assuntos
Antígenos de Histocompatibilidade Classe II , Linfócitos T , Animais , Humanos , Camundongos , Dimerização , Fibrinogênio/metabolismo , Ligantes , Mutação
14.
Cell Death Dis ; 15(3): 186, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438374

RESUMO

Recently, crystallographic studies have demonstrated that BMS-202, a small-molecule compound characterized by a methoxy-1-pyridine chemical structure, exhibits a high affinity to PD-L1 dimerization. However, its roles and mechanisms in glioblastoma (GBM) remain unclear. The objective of this study is to investigate the antitumor activity of BMS-202 and its underlying mechanisms in GBM using multi-omics and bioinformatics techniques, along with a majority of in vitro and in vivo experiments, including CCK-8 assays, flow cytometry, co-immunoprecipitation, siRNA transfection, PCR, western blotting, cell migration/invasion assays and xenografts therapeutic assays. Our findings indicate that BMS-202 apparently inhibits the proliferation of GBM cells both in vitro and in vivo. Besides, it functionally blocks cell migration and invasion in vitro. Mechanistically, it reduces the expression of PD-L1 on the surface of GBM cells and interrupts the PD-L1-AKT-BCAT1 axis independent of mTOR signaling. Taken together, we conclude that BMS-202 is a promising therapeutic candidate for patients with GBM by remodeling their cell metabolism regimen, thus leading to better survival.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Dimerização , Western Blotting , Transaminases
15.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473778

RESUMO

Transient homo-dimerization of the RAS GTPase at the plasma membrane has been shown to promote the mitogen-activated protein kinase (MAPK) signaling pathway essential for cell proliferation and oncogenesis. To date, numerous crystallographic studies have focused on the well-defined GTPase domains of RAS isoforms, which lack the disordered C-terminal membrane anchor, thus providing limited structural insight into membrane-bound RAS molecules. Recently, lipid-bilayer nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses have revealed several distinct structures of the membrane-anchored homodimers of KRAS, an isoform that is most frequently mutated in human cancers. The KRAS dimerization interface is highly plastic and altered by biologically relevant conditions, including oncogenic mutations, the nucleotide states of the protein, and the lipid composition. Notably, PRE-derived structures of KRAS homodimers on the membrane substantially differ in terms of the relative orientation of the protomers at an "α-α" dimer interface comprising two α4-α5 regions. This interface plasticity along with the altered orientations of KRAS on the membrane impact the accessibility of KRAS to downstream effectors and regulatory proteins. Further, nanodisc platforms used to drive KRAS dimerization can be used to screen potential anticancer drugs that target membrane-bound RAS dimers and probe their structural mechanism of action.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Dimerização , Transdução de Sinais/genética , Bicamadas Lipídicas , Isoformas de Proteínas/metabolismo , Proteínas ras/metabolismo , Proteínas de Membrana/metabolismo
16.
Angew Chem Int Ed Engl ; 63(13): e202316942, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305637

RESUMO

Self-assemblies (i.e., nanoclusters) of the RAS GTPase on the membrane act as scaffolds that activate downstream RAF kinases and drive MAPK signaling for cell proliferation and tumorigenesis. However, the mechanistic details of nanoclustering remain largely unknown. Here, size-tunable nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses revealed the structural basis of the cooperative assembly processes of fully processed KRAS, mutated in a quarter of human cancers. The cooperativity is modulated by the mutation and nucleotide states of KRAS and the lipid composition of the membrane. Notably, the oncogenic mutants assemble in nonsequential pathways with two mutually cooperative 'α/α' and 'α/ß' interfaces, while α/α dimerization of wild-type KRAS promotes the secondary α/ß interaction sequentially. Mutation-based interface engineering was used to selectively trap the oligomeric intermediates of KRAS and probe their favorable interface interactions. Transiently exposed interfaces were available for the assembly. Real-time NMR demonstrated that higher-order oligomers retain higher numbers of active GTP-bound protomers in KRAS GTPase cycling. These data provide a deeper understanding of the nanocluster-enhanced signaling in response to the environment. Furthermore, our methodology is applicable to assemblies of many other membrane GTPases and lipid nanoparticle-based formulations of stable protein oligomers with enhanced cooperativity.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/química , Quinases raf/metabolismo , Dimerização
17.
Physiol Plant ; 176(1): e14155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342490

RESUMO

Leucine-rich repeat receptor kinases (LRR-RKs) play a pivotal role in diverse aspects of growth, development, and immunity in plants by sensing extracellular signals. Typically, LRR-RKs are activated through the ligand-induced interaction with a SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) coreceptor, triggering downstream signaling. ROOT MERISTEM GROWTH FACTOR1 (RGF1) INSENSITIVEs (RGIs) LRR-RLK receptors promote primary root meristem activity while inhibiting lateral root (LR) development in response to RGF peptide. In this study, we employed rapamycin-induced dimerization (RiD) and BAK1-INTERACTING RECEPTOR-LIKE KINASE3 (BIR3) chimera approaches to explore the gain-of-function of RGI1, RGI4, and RGI5. Rapamycin induced the association of cytosolic kinase domains (CKDs) of RGI1 and the BAK1 coreceptor, activating both mitogen-activated protein kinase 3 (MPK3) and MPK6. Rapamycin significantly inhibited LR formation in RiD-RGI1/RGI4/RGI5-BAK1 plants. Using transgenic Arabidopsis expressing RGI1CKD fused to the BIR3-LRR chimera under estradiol control, we observed a substantial reduction in LR density upon ß-estradiol treatment. Additionally, we identified a decrease in root gravitropism in BIR3 chimera plants. In contrast, RiD-RGI/BAK1 plants did not exhibit defects in root gravitropism, implying the importance of combinatorial interactions between RGIs and SERK coreceptors in the inhibition of root gravitropism. Constitutive activation of RGIs with BAK1 in RiD-RGI/BAK1 plants by rapamycin treatment resulted in the inhibition of primary root growth, resembling the inhibitory effects observed with high concentrations of phytohormones on primary root elongation. Our findings highlight that the interactions between CKDs of RGIs and BAK1, constitutively induced by rapamycin or BIR3 chimera, efficiently control LR development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas de Arabidopsis/metabolismo , Dimerização , Plantas/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia
18.
Mol Plant ; 17(3): 478-495, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38327051

RESUMO

ATP-binding cassette (ABC) transporters are integral membrane proteins that have evolved diverse functions fulfilled via the transport of various substrates. In Arabidopsis, the G subfamily of ABC proteins is particularly abundant and participates in multiple signaling pathways during plant development and stress responses. In this study, we revealed that two Arabidopsis ABCG transporters, ABCG16 and ABCG25, engage in ABA-mediated stress responses and early plant growth through endomembrane-specific dimerization-coupled transport of ABA and ABA-glucosyl ester (ABA-GE), respectively. We first revealed that ABCG16 contributes to osmotic stress tolerance via ABA signaling. More specifically, ABCG16 induces cellular ABA efflux in both yeast and plant cells. Using FRET analysis, we showed that ABCG16 forms obligatory homodimers for ABA export activity and that the plasma membrane-resident ABCG16 homodimers specifically respond to ABA, undergoing notable conformational changes. Furthermore, we demonstrated that ABCG16 heterodimerizes with ABCG25 at the endoplasmic reticulum (ER) membrane and facilitates the ER entry of ABA-GE in both Arabidopsis and tobacco cells. The specific responsiveness of the ABCG16-ABCG25 heterodimer to ABA-GE and the superior growth of their double mutant support an inhibitory role of these two ABCGs in early seedling establishment via regulation of ABA-GE translocation across the ER membrane. Our endomembrane-specific analysis of the FRET signals derived from the homo- or heterodimerized ABCG complexes allowed us to link endomembrane-biased dimerization to the translocation of distinct substrates by ABCG transporters, providing a prototypic framework for understanding the omnipotence of ABCG transporters in plant development and stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Dimerização , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Desenvolvimento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(10): e2316675121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422021

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates electrolyte and fluid balance in epithelial tissues. While activation of CFTR is vital to treating cystic fibrosis, selective inhibition of CFTR is a potential therapeutic strategy for secretory diarrhea and autosomal dominant polycystic kidney disease. Although several CFTR inhibitors have been developed by high-throughput screening, their modes of action remain elusive. In this study, we determined the structure of CFTR in complex with the inhibitor CFTRinh-172 to an overall resolution of 2.7 Å by cryogenic electron microscopy. We observe that CFTRinh-172 binds inside the pore near transmembrane helix 8, a critical structural element that links adenosine triphosphate hydrolysis with channel gating. Binding of CFTRinh-172 stabilizes a conformation in which the chloride selectivity filter is collapsed, and the pore is blocked from the extracellular side of the membrane. Single-molecule fluorescence resonance energy transfer experiments indicate that CFTRinh-172 inhibits channel gating without compromising nucleotide-binding domain dimerization. Together, these data reconcile previous biophysical observations and provide a molecular basis for the activity of this widely used CFTR inhibitor.


Assuntos
Trifosfato de Adenosina , Regulador de Condutância Transmembrana em Fibrose Cística , Tiazolidinas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Dimerização , Benzoatos
20.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 496-506, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38369836

RESUMO

The conventional peptide substrates of SARS-CoV-2 main protease (Mpro) are frequently associated with high cost, unstable kinetics, and multistep synthesis. Hence, there is an urgent need to design affordable and stable Mpro substrates for pharmacological research. Herein, we designed a functional Mpro substrate based on a dimerization-dependent red fluorescent protein (ddRFP) for the evaluation of Mpro inhibitors in vitro. The codon-optimized DNA fragment encoding RFP-A1 domain, a polypeptide linker containing Mpro cleavage sequence (AVLQS), and the RFP-B1 domain was subcloned into the pET-28a vector. After transformation into Escherichia coli Rosetta(DE3) cells, the kanamycin resistant transformants were selected. Using a low temperature induction strategy, most of the target proteins (ddRFP-M) presented in the supernatant fractions were collected and purified by a HisTrapTM chelating column. Subsequently, the inhibition of Mpro by ensitrelvir and baicalein was assessed using ddRFP-M assay, and the biochemical properties of ddRFP-M substrate were analyzed. Our results showed that the fluorogenic substrate ddRFP-M was successfully prepared from E. coli cells, and this biosensor exhibited the expected specificity, sensitivity, and reliability. In conclusion, the production of the fluorogenic substrate ddRFP-M provides an expedient avenue for the assessment of Mpro inhibitors in vitro.


Assuntos
Técnicas Biossensoriais , COVID-19 , Proteases 3C de Coronavírus , Humanos , Dimerização , Proteína Vermelha Fluorescente , SARS-CoV-2/genética , Escherichia coli/genética , Corantes Fluorescentes , Reprodutibilidade dos Testes , Peptídeos , Inibidores de Proteases , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA