RESUMO
Although ethers are common in secondary natural products, they are an underrepresented functional group in primary metabolism. As such, there are comparably few enzymes capable of constructing ether bonds in a general fashion. However, such enzymes are highly sought after for synthetic applications as they typically operate with higher regioselectivity and under milder conditions than traditional organochemical approaches. To expand the repertoire of well characterized ether synthases, we herein report on a promiscuous archaeal prenyltransferase from the scarcely researched family of geranylgeranylglyceryl phosphate synthases (GGGPSs or G3PSs). We show that the ultrastable Archaeoglobus fulgidus G3PS makes various (E)- and (Z)-configured prenyl glycerol ethers from the corresponding pyrophosphates while exerting perfect control over the configuration at the glycerol unit. Based on experimental and computational data, we propose a mechanism for this enzyme which involves an intermediary prenyl carbocation equivalent. As such, this study provides the fundamental understanding and methods to introduce G3PSs into the biocatalytic alkylation toolbox.
Assuntos
Biocatálise , Éteres , Éteres/química , Éteres/metabolismo , Archaeoglobus fulgidus/enzimologia , Lipídeos/química , Lipídeos/biossíntese , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Estrutura MolecularRESUMO
Coumarins are natural products with benzopyran ring as the parent nucleus. Numerous coumarin derivatives exhibit a variety of pharmacological activities, including antibacterial, anti-inflammatory, antitumor, anti-coagulant, anti-osteoporotic, and insecticidal activities. Therefore, they play an important role in both medicine and agriculture. The development and utilization of coumarin derivatives have attracted increasing attention. The advancement of gene sequencing technology and the rapid progress in synthetic bio-logy have led to significant advancement in the biosynthesis of coumarin derivatives, and has received increasing attention from global researchers. This paper presents a comprehensive overview of the key biosynthesis-related enzymes of coumarin derivatives, such as cytochrome P450 enzyme(CYP450), prenyltransferase(PT), UDP-glucosyltransferase(UGT). Additionally, the pharmacological activities of these enzymes, including anti-tumor, anti-inflammatory, antioxidant, and antibacterial activities, are systematically summarized. This review aims to provide a valuable reference for the biosynthesis of coumarin derivatives and further exploration of their medicinal potential.
Assuntos
Cumarínicos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Humanos , Animais , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismoRESUMO
This study highlights the significance of overexpressing 1-deoxy-d-xylulose-5-phosphate synthase (DXS) from the MEP (methylerythritol 4-phosphate) pathway, in addition to short-chain prenyltransferase fusions for the improved production of the diterpene, taxa-4,11-diene, the first committed intermediate in the production of anti-cancer drug paclitaxel. The results showed that the strain which has (i) the taxadiene synthase (txs) gene integrated into the genome, (ii) the MEP pathway genes overexpressed, (iii) the fpps-crtE prenyltransferases fusion protein and (iv) additional expression of 1-deoxy-d-xylulose-5-phosphate synthase (DXS), yielded the highest production of taxa-4,11-diene at 390 mg/L (26 mg/L/OD600). This represents a thirteen-fold increase compared to the highest reported concentration in B. subtilis. The focus on additional overexpression of DXS and utilizing short-chain prenyltransferase fusions underscores their pivotal role in achieving significant titer improvements in terpene biosynthesis.
Assuntos
Dimetilaliltranstransferase , Diterpenos , Diterpenos/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Pentosiltransferases/metabolismo , Pentosiltransferases/genética , Pentosiltransferases/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/biossíntese , Alcenos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , TransferasesRESUMO
Terpenes comprise the largest class of natural products and are used in applications spanning the areas of medicine, cosmetics, fuels, flavorings, and more. Copalyl diphosphate synthase from the Penicillium genus is the first bifunctional terpene synthase identified to have both prenyltransferase and class II cyclase activities within the same polypeptide chain. Prior studies of bifunctional terpene synthases reveal that these systems achieve greater catalytic efficiency by channeling geranylgeranyl diphosphate between the prenyltransferase and cyclase domains. A molecular-level understanding of substrate transit phenomena in these systems is highly desirable, but a long disordered polypeptide segment connecting the prenyltranferase and cyclase domains thwarts the crystallization of full-length enzymes. Accordingly, these systems are excellent candidates for structural analysis using cryo-electron microscopy (cryo-EM). Notably, these systems form hexameric or octameric oligomers, so the quaternary structure of the full-length enzyme may influence substrate transit between catalytic domains. Here, we describe methods for the preparation of bifunctional hexameric copalyl diphosphate synthase from Penicillium fellutanum (PfCPS). We also outline approaches for the preparation of cryo-EM grids, data collection, and data processing to yield two-dimensional and three-dimensional reconstructions.
Assuntos
Alquil e Aril Transferases , Microscopia Crioeletrônica , Penicillium , Penicillium/enzimologia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/isolamento & purificação , Microscopia Crioeletrônica/métodos , Diterpenos/metabolismo , Diterpenos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/isolamento & purificaçãoRESUMO
Prenyltransferases are terpene synthases that combine 5-carbon precursor molecules into linear isoprenoids of varying length that serve as substrates for terpene cyclases, enzymes that catalyze fascinating cyclization reactions to form diverse terpene natural products. Terpenes and their derivatives comprise the largest class of natural products and have myriad functions in nature and diverse commercial uses. An emerging class of bifunctional terpene synthases contains both prenyltransferase and cyclase domains connected by a disordered linker in a single polypeptide chain. Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is one of the most well-characterized members of this subclass and serves as a model system for the exploration of structure-function relationships. PaFS has been structurally characterized using a variety of biophysical techniques. The enzyme oligomerizes to form a stable core of six or eight prenyltransferase domains that produce a 20-carbon linear isoprenoid, geranylgeranyl diphosphate (GGPP), which then transits to the cyclase domains for the generation of fusicoccadiene. Cyclase domains are in dynamic equilibrium between randomly splayed-out and prenyltransferase-associated positions; cluster channeling is implicated for GGPP transit from the prenyltransferase core to the cyclase domains. In this chapter, we outline the methods we are developing to interrogate the nature of cluster channeling in PaFS, including enzyme activity and product analysis assays, approaches for engineering the linker segment connecting the prenyltransferase and cyclase domains, and structural analysis by cryo-EM.
Assuntos
Alquil e Aril Transferases , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Diterpenos/metabolismo , Diterpenos/química , Ensaios Enzimáticos/métodos , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/química , CiclizaçãoRESUMO
Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30â nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.
Assuntos
Prenilação , Ligantes , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/antagonistas & inibidores , Prenilação de ProteínaRESUMO
Isoquinolinequinones represent an important family of natural alkaloids with profound biological activities. Heterologous expression of a rare bifunctional indole prenyltransferase/tryptophan indole-lyase enzyme from Streptomyces mirabilis P8-A2 in S. albidoflavus J1074 led to the activation of a putative isoquinolinequinone biosynthetic gene cluster and production of a novel isoquinolinequinone alkaloid, named maramycin (1). The structure of maramycin was determined by analysis of spectroscopic (1D/2D NMR) and MS spectrometric data. The prevalence of this bifunctional biosynthetic enzyme was explored and found to be a recent evolutionary event with only a few representatives in nature. Maramycin exhibited moderate cytotoxicity against human prostate cancer cell lines, LNCaP and C4-2B. The discovery of maramycin (1) enriched the chemical diversity of natural isoquinolinequinones and also provided new insights into crosstalk between the host biosynthetic genes and the heterologous biosynthetic genes in generating new chemical scaffolds.
Assuntos
Dimetilaliltranstransferase , Isoquinolinas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/enzimologia , Humanos , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Linhagem Celular Tumoral , Isoquinolinas/química , Isoquinolinas/metabolismo , Isoquinolinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Terpenos/metabolismo , Terpenos/química , Família MultigênicaRESUMO
Prenylated proteins are prevalent in eukaryotic biology (â¼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts. These strains were developed in part to explore human prenyltransferase specificity because of findings that yeast FTase has expanded specificity for sequences deviating from the CaaX consensus (i.e. atypical sequence and length). The humanized yeast strains displayed robust prenyltransferase activity against CaaX sequences derived from human and pathogen proteins containing typical and atypical CaaX sequences. The system also recapitulated prenylation of heterologously expressed human proteins (i.e. HRas and DNAJA2). These results reveal that substrate specificity is conserved for yeast and human farnesyltransferases but is less conserved for type I geranylgeranyltransferases. These yeast systems can be easily adapted for investigating the prenylomes of other organisms and are valuable new tools for helping define the human prenylome, which includes physiologically important proteins for which the CaaX modification status is unknown.
Assuntos
Prenilação de Proteína , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Sequência de Aminoácidos , Dimetilaliltranstransferase/metabolismo , Proteínas Virais/metabolismo , Alquil e Aril Transferases/metabolismoRESUMO
CsPT4 is an aromatic prenyltransferase that synthesizes cannabigerolic acid (CBGA), the key intermediate of cannabinoid biosynthesis in Cannabis sativa, from olivetolic acid (OA) and geranyl diphosphate (GPP). CsPT4 has a catalytic potential to produce a variety of CBGA analogs via regioselective C-prenylation of aromatic substrates having resorcylic acid skeletons including bibenzyl 2,4-dihydroxy-6-phenylethylbenzoic acid (DPA). In this study, we further investigated the substrate specificity of CsPT4 using phlorocaprophenone (PCP) and 2',4',6'-trihydroxydihydrochalcone (THDC), the isomers of OA and DPA, respectively, and demonstrated that CsPT4 catalyzed both C-prenylation and O-prenylation reactions on PCP and THDC that share acylphloroglucinol substructures. Interestingly, the kinetic parameters of CsPT4 for these substrates differed depending on whether they underwent C-prenylation or O-prenylation, suggesting that this enzyme utilized different substrate-binding modes suitable for the respective reactions. Aromatic prenyltransferases that catalyze O-prenylation are rare in the plant kingdom, and CsPT4 was notable for altering the reaction specificity between C- and O-prenylations depending on the skeletons of aromatic substrates. We also demonstrated that enzymatically synthesized geranylated acylphloroglucinols had potent antiausterity activity against PANC-1 human pancreatic cancer cells, with 4'-O-geranyl THDC being the most effective. We suggest that CsPT4 is a valuable catalyst to generate biologically active C- and O-prenylated molecules that could be anticancer lead compounds.
Assuntos
Cannabis , Dimetilaliltranstransferase , Humanos , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Prenilação , Catálise , Especificidade por SubstratoRESUMO
Post-translational prenylations, found in eukaryotic primary metabolites and bacterial secondary metabolites, play crucial roles in biomolecular interactions. Employing genome mining methods combined with AlphaFold2-based predictions of protein interactions, PalQ , a prenyltransferase responsible for the tryptophan prenylation of RiPPs produced by Paenibacillus alvei, is identified. PalQ differs from cyanobactin prenyltransferases because of its evolutionary relationship to isoprene synthases, which enables PalQ to transfer extended prenyl chains to the indole C3 position. This prenylation introduces structural diversity to the tryptophan side chain and also leads to conformational dynamics in the peptide backbone, attributed to the cis/trans isomerization that arises from the formation of a pyrrolidine ring. Additionally, PalQ exhibited pronounced positional selectivity for the C-terminal tryptophan. Such enzymatic characteristics offer a toolkit for peptide therapeutic lipidation.
Assuntos
Dimetilaliltranstransferase , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Triptofano/química , Triptofano/genética , Triptofano/metabolismo , Prenilação , Processamento de Proteína Pós-Traducional , Peptídeos/metabolismoRESUMO
Prenyltransferases (PTases) are known to play a role in embryonic development, normal tissue homeostasis and cancer by posttranslationally modifying proteins involved in these processes. They are being discussed as potential drug targets in an increasing number of diseases, ranging from Alzheimer's disease to malaria. Protein prenylation and the development of specific PTase inhibitors (PTIs) have been subject to intense research in recent decades. Recently, the FDA approved lonafarnib, a specific farnesyltransferase inhibitor that acts directly on protein prenylation; and bempedoic acid, an ATP citrate lyase inhibitor that might alter intracellular isoprenoid composition, the relative concentrations of which can exert a decisive influence on protein prenylation. Both drugs represent the first approved agent in their respective substance class. Furthermore, an overwhelming number of processes and proteins that regulate protein prenylation have been identified over the years, many of which have been proposed as molecular targets for pharmacotherapy in their own right. However, certain aspects of protein prenylation, such as the regulation of PTase gene expression or the modulation of PTase activity by phosphorylation, have attracted less attention, despite their reported influence on tumor cell proliferation. Here, we want to summarize the advances regarding our understanding of the regulation of protein prenylation and the potential implications for drug development. Additionally, we want to suggest new lines of investigation that encompass the search for regulatory elements for PTases, especially at the genetic and epigenetic levels.
Assuntos
Dimetilaliltranstransferase , Prenilação de Proteína , Proteínas/metabolismo , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Inibidores Enzimáticos/farmacologia , Terpenos , PrenilaçãoRESUMO
Polyprenylated xanthones are natural products with a multitude of biological and pharmacological activities. However, their biosynthetic pathway is not completely understood. In this study, metabolic profiling revealed the presence of 4-prenylated 1,3,5,6-tetrahydroxyxanthone derivatives in St. John's wort (Hypericum perforatum) root extracts. Transcriptomic data mining led to the detection of 5 variants of xanthone 4-prenyltransferase (HpPT4px) comprising 4 long variants (HpPT4px-v1 to HpPT4px-v4) and 1 short variant (HpPT4px-sh). The full-length sequences of all 5 variants were cloned and heterologously expressed in yeast (Saccharomyces cerevisiae). Microsomes containing HpPT4px-v2, HpPT4px-v4, and HpPT4px-sh catalyzed the addition of a prenyl group at the C-4 position of 1,3,5,6-tetrahydroxyxanthone; 1,3,5-trihydroxyxanthone; and 1,3,7-trihydroxyxanthone, whereas microsomes harboring HpPT4px-v1 and HpPT4px-v3 additionally accepted 1,3,6,7-tetrahydroxyxanthone. HpPT4px-v1 produced in Nicotiana benthamiana displayed the same activity as in yeast, while HpPT4px-sh was inactive. The kinetic parameters of HpPT4px-v1 and HpPT4px-sh chosen as representative variants indicated 1,3,5,6-tetrahydroxyxanthone as the preferred acceptor substrate, rationalizing that HpPT4px catalyzes the first prenylation step in the biosynthesis of polyprenylated xanthones in H. perforatum. Dimethylallyl pyrophosphate was the exclusive prenyl donor. Expression of the HpPT4px transcripts was highest in roots and leaves, raising the question of product translocation. C-terminal yellow fluorescent protein fusion of HpPT4px-v1 localized to the envelope of chloroplasts in N. benthamiana leaves, whereas short, truncated, and masked signal peptides led to the disruption of plastidial localization. These findings pave the way for a better understanding of the prenylation of xanthones in plants and the identification of additional xanthone-specific prenyltransferases.
Assuntos
Dimetilaliltranstransferase , Hypericum , Xantonas , Hypericum/genética , Hypericum/metabolismo , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xantonas/metabolismo , Xantonas/farmacologia , Extratos Vegetais/farmacologiaRESUMO
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Assuntos
Dimetilaliltranstransferase , Triptofano , Triptofano/química , Peptídeos , Peptídeos Cíclicos/química , Butadienos , Hemiterpenos , Dimetilaliltranstransferase/metabolismo , Especificidade por SubstratoRESUMO
Prenylation is a post-translational modification (PTM) widely found in primary and secondary metabolism. This modification can enhance the lipophilicity of molecules, enabling them to interact with lipid membranes more effectively. The prenylation of peptides is often carried out by cyanobactin prenyltransferases (PTases) from cyanobacteria. These enzymes are of interest due to their ability to add prenyl groups to unmodified peptides, thus making them more effective therapeutics through the subsequent acquisition of increased membrane permeability and bioavailability. Herein we review the current knowledge of cyanobactin PTases, focusing on their discovery, biochemistry, and bioengineering, and highlight the potential application of them as peptide alkylation biocatalysts to generate peptide therapeutics.
Assuntos
Dimetilaliltranstransferase , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Peptídeos Cíclicos/química , Peptídeos , BioengenhariaRESUMO
Terpenoids are the largest class of natural products and are derived from C5 isoprene units. Recent discoveries of modification enzymes in native isoprene units before cyclization or transfer reactions have revealed that C5 units with additional carbon atoms are also used to produce terpenoids. These reports indicate that the utilization of these modification enzymes is useful for the enzymatic production of non-natural terpenoids. In this study, we have attempted to produce methylgeranyl polyphenols, which are not observed in nature, by combining a geranyl pyrophosphate C6 methyltransferase, BezA, which was discovered from the benzastatin biosynthetic pathway, and the promiscuous prenyltransferase NphB, which catalyzes prenylation of various flavonoids. We successfully synthesized five methylgeranylated flavonoids from naringenin, apigenin, and genistein. This result demonstrates that BezA is a powerful tool for the synthesis of novel non-natural terpenoids.
Assuntos
Dimetilaliltranstransferase , Dimetilaliltranstransferase/metabolismo , Flavonoides , Metiltransferases , Fosfatos de Poli-Isoprenil , TerpenosRESUMO
Protein prenylation is a post-translational modification controlling the localization, activity, and protein-protein interactions of small GTPases, including the Ras superfamily. This covalent attachment of either a farnesyl (15 carbon) or a geranylgeranyl (20 carbon) isoprenoid group is catalyzed by four prenyltransferases, namely farnesyltransferase (FTase), geranylgeranyltransferase type I (GGTase-I), Rab geranylgeranyltransferase (GGTase-II), and recently discovered geranylgeranyltransferase type III (GGTase-III). Blocking small GTPase activity, namely inhibiting prenyltransferases, has been proposed as a potential disease treatment method. Inhibitors of prenyltransferase have resulted in substantial therapeutic benefits in various diseases, such as cancer, neurological disorders, and viral and parasitic infections. In this review, we overview the structure of FTase, GGTase-I, GGTase-II, and GGTase-III and summarize the current status of research on their inhibitors.
Assuntos
Dimetilaliltranstransferase , Carbono/metabolismo , Dimetilaliltranstransferase/metabolismo , Farnesiltranstransferase , Prenilação de Proteína , TerpenosRESUMO
Biologically active peptides are a major growing class of drugs, but their therapeutic potential is constrained by several limitations including bioavailability and poor pharmacokinetics. The attachment of functional groups like lipids has proven to be a robust and effective strategy for improving their therapeutic potential. Biochemical and bioactivity-guided screening efforts have identified the cyanobactins as a large class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that are modified with lipids. These lipids are attached by the F superfamily of peptide prenyltransferase enzymes that utilize 5-carbon (prenylation) or 10-carbon (geranylation) donors. The chemical structures of various cyanobactins initially showed isoprenoid attachments on Ser, Thr, or Tyr. Biochemical characterization of the F prenyltransferases from the corresponding clusters shows that the different enzymes have different acceptor residue specificities but are otherwise remarkably sequence tolerant. Hence, these enzymes are well suited for biotechnological applications. The crystal structure of the Tyr O-prenyltransferase PagF reveals that the F enzyme shares a domain architecture reminiscent of a canonical ABBA prenyltransferase fold but lacks secondary structural elements necessary to form an enclosed active site. Binding of either cyclic or linear peptides is sufficient to close the active site to allow for productive catalysis, explaining why these enzymes cannot use isolated amino acids as substrates.Almost all characterized isoprenylated cyanobactins are modified with 5-carbon isoprenoids. However, chemical characterization demonstrates that the piricyclamides are modified with a 10-carbon geranyl moiety, and in vitro reconstitution of the corresponding PirF shows that the enzyme is a geranyltransferase. Structural analysis of PirF shows an active site nearly identical with that of the PagF prenyltransferase but with a single amino acid substitution. Of note, mutation at this residue in PagF or PirF can completely switch the isoprenoid donor specificity of these enzymes. Recent efforts have resulted in significant expansion of the F family with enzymes identified that can carry out C-prenylations of Trp, N-prenylations of Trp, and bis-N-prenylations of Arg. Additional genome-guided efforts based on the sequence of F enzymes identify linear cyanobactins that are α-N-prenylated and α-C-methylated by a bifunctional prenyltransferase/methyltransferase fusion and a bis-α-N- and α-C-prenylated linear peptide. The discovery of these different classes of prenyltransferases with diverse acceptor residue specificities expands the biosynthetic toolkit for enzymatic prenylation of peptide substrates.In this Account, we review the current knowledge scope of the F family of peptide prenyltransferases, focusing on the biochemical, structure-function, and chemical characterization studies that have been carried out in our laboratories. These enzymes are easily amenable for diversity-oriented synthetic efforts as they can accommodate substrate peptides of diverse sequences and are thus attractive catalysts for use in synthetic biology approaches to generate high-value peptidic therapeutics.
Assuntos
Dimetilaliltranstransferase , Carbono , Catálise , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Lipídeos , Peptídeos/química , TerpenosRESUMO
Cutaneous melanoma is the deadliest type of skin cancer, although it accounts for a minority of all skin cancers. Oxidative stress is involved in all stages of melanomagenesis and cutaneous melanoma can sustain a much higher load of Reactive Oxygen Species (ROS) than normal tissues. Melanoma cells exploit specific antioxidant machinery to support redox homeostasis. The enzyme UBIA prenyltransferase domain-containing protein 1 (UBIAD1) is responsible for the biosynthesis of non-mitochondrial CoQ10 and plays an important role as antioxidant enzyme. Whether UBIAD1 is involved in melanoma progression has not been addressed, yet. Here, we provide evidence that UBIAD1 expression is associated with poor overall survival (OS) in human melanoma patients. Furthermore, UBIAD1 and CoQ10 levels are upregulated in melanoma cells with respect to melanocytes. We show that UBIAD1 and plasma membrane CoQ10 sustain melanoma cell survival and proliferation by preventing lipid peroxidation and cell death. Additionally, we show that the NAD(P)H Quinone Dehydrogenase 1 (NQO1), responsible for the 2-electron reduction of CoQ10 on plasma membranes, acts downstream of UBIAD1 to support melanoma survival. By showing that the CoQ10-producing enzyme UBIAD1 counteracts oxidative stress and lipid peroxidation events in cutaneous melanoma, this work may open to new therapeutic investigations based on UBIAD1/CoQ10 loss to cure melanoma.
Assuntos
Dimetilaliltranstransferase/metabolismo , Melanoma , Neoplasias Cutâneas , Antioxidantes/metabolismo , Morte Celular , Humanos , Peroxidação de Lipídeos , Melanoma/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/farmacologia , Melanoma Maligno CutâneoRESUMO
Prenylated stilbenoids are good candidates of nutraceuticals presented in food resources. The levels of natural prenylated stilbenoids are usually low. Biotransformation is a promising synthesis strategy to produce novel bioactive compounds. However, information regarding biosynthesis of prenylated stilbenoids is rare. In this work, prenyltransferase and geranyl diphosphate biosynthesispathway were overexpressed in E. coli. Multiple prenyltransferase genes were tested and Ambp1 was found to be effective on resveratrol geranylation. The products were identified by mass spectrometry and nuclear magnetic resonance spectroscopy as 4-C-geranyl resveratrol (1) and 3-O-geranyl resveratrol (2, novel chemical). By optimization of culture conditions, a yield of 36.9% was achieved for the conversion to geranylated resveratrol from resveratrol. These two compounds demonstrated good antioxidant activities with IC50 values of 28.09 µM for 4-C-geranyl resveratrol and 403.88 µM for 3-O-geranyl resveratrol. The results were helpful for developing novel technique to produce prenylated phenolics.
Assuntos
Antioxidantes , Dimetilaliltranstransferase , Dimetilaliltranstransferase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Prenilação , ResveratrolRESUMO
4-Hydroxycoumarin (4HC) has been used as a lead compound for the chemical synthesis of various bioactive substances and drugs. Its prenylated derivatives exhibit potent antibacterial, antitubercular, anticoagulant, and anti-cancer activities. In doing this, E. coli BL21(DE3)pLysS strain was engineered as the in vivo prenylation system to produce the farnesyl derivatives of 4HC by coexpressing the genes encoding Aspergillus terreus aromatic prenyltransferase (AtaPT) and truncated 1-deoxy-D-xylose 5-phosphate synthase of Croton stellatopilosus (CstDXS), where 4HC was the fed precursor. Based on the high-resolution LC-ESI(±)-QTOF-MS/MS with the use of in silico tools (e.g., MetFrag, SIRIUS (version 4.8.2), CSI:FingerID, and CANOPUS), the first major prenylated product (named compound-1) was detected and ultimately elucidated as ferulenol, in which information concerning the correct molecular formula, chemical structure, substructures, and classifications were obtained. The prenylated product (named compound-2) was also detected as the minor product, where this structure proposed to be the isomeric structure of ferulenol formed via the tautomerization. Note that both products were secreted into the culture medium of the recombinant E. coli and could be produced without the external supply of prenyl precursors. The results suggested the potential use of this engineered pathway for synthesizing the farnesylated-4HC derivatives, especially ferulenol.