Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Int Wound J ; 21(10): e70083, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39401979

RESUMO

BACKGROUND: Deep and extensive wounds usually cannot be closed directly by suturing or skin grafting. Flap transplantation is typically used to reconstruct large wounds clinically. The flap survival is based on a stable blood perfusion. It is established that estrogen promotes wound healing and angiogenesis, and regulates the inflammatory response, leading to enhanced flap survival after transplantation. However, estrogen concentrations administered in previous studies were significantly higher than physiological levels, potentially causing systemic side effects. Estrogen-sustained-release silastic capsules can maintain blood serum estrogen closer to physiological levels. This study aimed to investigate whether administering estrogen at a lower concentration, closer to physiological levels, could still enhance flap survival. MATERIALS AND METHODS: This study was performed in a random skin flap model in ovariectomized (OVX) mice. Sustained-release estrogen silastic capsules were implanted into OVX mice to determine the functional role of estrogen in wound healing after flap transplantation. Flap blood perfusion was analysed using a colour laser Doppler scanner. Immunohistochemical staining of CD31, hypoxia-inducible factor 1 alpha (HIF-1α), alpha-smooth muscle actin (α-SMA), cleaved caspase 3 and apoptotic terminal dUTP nick end-labelling stain was used to investigate flap angiogenesis, tissue hypoxia, wound healing and cell death in the flap tissue, respectively. RESULTS: We observed that administering estrogen at a lower concentration enhanced superficial blood perfusion while reducing the flap's ischemic area and tissue necrosis. HIF-1α expression was significantly decreased in the dermis layer but not in the fascia, whereas cleaved caspase 3 levels decreased in the fascia but remained unchanged in the dermis. Additionally, there was no significant difference in CD31and α-SMA expression between the groups. CONCLUSION: In summary, the study showed that an estrogen silastic capsule maintained physiological estrogen levels and improved superficial perfusion, thereby reducing dermal hypoxia, and cell death in a mouse random pattern skin flap model. Although no significant promotion of angiogenesis was observed, the study suggests that appropriate estrogen supplements could enhance flap wound recovery.


Assuntos
Modelos Animais de Doenças , Estrogênios , Retalhos Cirúrgicos , Cicatrização , Animais , Camundongos , Retalhos Cirúrgicos/irrigação sanguínea , Cicatrização/efeitos dos fármacos , Estrogênios/farmacologia , Feminino , Neovascularização Fisiológica/efeitos dos fármacos , Ovariectomia/métodos , Dimetilpolisiloxanos/farmacologia , Cápsulas
2.
Biomater Adv ; 165: 213997, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39167903

RESUMO

Macrophages, highly plastic innate immune cells, critically influence the success of implantable devices by responding to biochemical and physical cues. However, the mechanisms underlying their synergistic regulation of macrophage polarization on implant surfaces remain poorly understood. Therefore, we constructed anti-inflammatory phosphatidylserine (PS) modified polydimethylsiloxane (PDMS) substrates with low, medium, and high modulus (1-100 kPa) to investigate the combined effects and underlying mechanisms of substrate modulus and biochemical signal on macrophage polarization. The introduction of PS on the PDMS surface not only significantly enhanced the polarization of M0 to M2 but also potently suppressed lipopolysaccharide (LPS)-induced M1 activation, with this effect further potentiated by a reduction in substrate modulus. In vivo subcutaneous implantation experiments also corroborated the synergistic effect of PS functionalization and low modulus PDMS in inhibiting M1 activation and promoting M2 polarization. Notably, reduced modulus led to decreased integrin αV/ß3 clustering and cytoskeletal protein aggregation, ultimately diminishing YAP activation and nuclear translocation. Concomitantly, this disruption of the Piezo1-cytoskeletal protein positive feedback loop resulted in reduced p65/IκB phosphorylation and inflammation, while concurrently promoting PPARγ expression. Overall, our findings underscore the pivotal role of substrate modulus in modulating PS-mediated biomaterial-cell interactions, synergistically potentiating PS-induced M2 macrophage polarization, thus paving the way for the design of advanced immunomodulatory biomaterials.


Assuntos
Dimetilpolisiloxanos , Macrófagos , NF-kappa B , PPAR gama , Fosfatidilserinas , Transdução de Sinais , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , PPAR gama/metabolismo , Fosfatidilserinas/metabolismo , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células RAW 264.7 , Ativação de Macrófagos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia
3.
ACS Appl Mater Interfaces ; 16(28): 35912-35924, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976770

RESUMO

The extracellular matrix (ECM) shapes the stem cell fate during differentiation by exerting relevant biophysical cues. However, the mechanism of stem cell fate decisions in response to ECM-backed complex biophysical cues has not been fully understood due to the lack of versatile ECMs. Here, we designed two versatile ECMs using colloidal self-assembly technology to probe the mechanisms of their effects on mechanotransduction and stem cell fate regulation. Binary colloidal crystals (BCC) with a hexagonally close-packed structure, composed of silica (5 µm) and polystyrene (0.4 µm) particles as well as a polydimethylsiloxane-embedded BCC (BCCP), were fabricated. They have defined surface chemistry, roughness, stiffness, ion release, and protein adsorption properties, which can modulate the cell adhesion, proliferation, and differentiation of human adipose-derived stem cells (hASCs). On the BCC, hASCs preferred osteogenesis at an early stage but showed a higher tendency toward adipogenesis at later stages. In contrast, the results of BCCP diverged from those of BCC, suggesting a unique regulation of ECM-dependent mechanotransduction. The BCC-mediated cell adhesion reduced the size of the focal adhesion complex, accompanying an ordered spatial organization and cytoskeletal rearrangement. This morphological restriction led to the modulation of mechanosensitive transcription factors, such as c-FOS, the enrichment of transcripts in specific signaling pathways such as PI3K/AKT, and the activation of the Hippo signaling pathway. Epigenetic analyses showed changes in histone modifications across different substrates, suggesting that chromatin remodeling participated in BCC-mediated mechanotransduction. This study demonstrates that BCCs are versatile artificial ECMs that can regulate human stem cells' fate through unique biological signaling, which is beneficial in biomaterial design and stem cell engineering.


Assuntos
Diferenciação Celular , Coloides , Epigênese Genética , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Coloides/química , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Adesão Celular/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Dióxido de Silício/química , Poliestirenos/química , Proliferação de Células/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
4.
Proc Inst Mech Eng H ; 238(5): 537-549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561625

RESUMO

Constructing surface topography with a certain roughness is a widely used, non-toxic, cost-effective and effective method for improving the microenvironment of cells, promoting the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs), and promoting the osseointegration of grafts and further improving their biocompatibility under clinical environmental conditions. SIRT1 plays an important regulatory role in the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs). However, it remains unknown whether SIRT1 plays an important regulatory role in the osteogenic differentiation of BM-MSCs with regard to surface morphology. Polydimethylsiloxane (PDMS) with different surface morphologies were prepared using different grits of sandpaper. The value for BMSCs added on different surfaces was detected by cell proliferation assays. RT-qPCR and Western blotting were performed to detect SIRT1 activation and osteogenic differentiation of MSCs. Osteogenesis of MSCs was detected by alkaline phosphatase (ALP) and alizarin red S staining. SIRT1 inhibition experiments were performed to investigate the role of SIRT1 in the osteogenic differentiation of MSCs induced by surface morphology. We found that BM-MSCs have better value and osteogenic differentiation ability on a surface with roughness of PDMS-1000M. SIRT1 showed higher gene and protein expression on a PDMS-1000M surface with a roughness of 13.741 ± 1.388 µm. The promotion of the osteogenic differentiation of MSCs on the PDMS-1000M surface was significantly decreased after inhibiting SIRT1 expression. Our study demonstrated that a surface morphology with certain roughness can activate the SIRT1 pathway of MSCs and promote the osteogenic differentiation of BMSCs via the SIRT1 pathway.


Assuntos
Diferenciação Celular , Dimetilpolisiloxanos , Células-Tronco Mesenquimais , Osteogênese , Transdução de Sinais , Sirtuína 1 , Propriedades de Superfície , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo
5.
Cell Signal ; 99: 110404, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835331

RESUMO

Extracellular matrix (ECM) stiffness is an important biophysical factor in human bone marrow mesenchymal stem cells (hBMSCs) differentiation. Although there is evidence that Yes-associated protein (YAP) plays an important role in ECM elasticity induced osteogenesis, but the regulatory mechanism and signaling pathways have not been distinctly uncovered. In this study, hBMSCs were cultured on collagen-coated polydimethylsiloxane hydrogels with stiffness corresponding to Young's moduli of 0.5 kPa and 32 kPa, and gene chip analyses revealed the phosphoinositide 3-kinase (PI3K)-AKT pathway was highly correlated with ECM stiffness. Following western blots indicated that AKT phosphorylation was evidently affected in 5th-7th days after ECM stiffness stimulation, while PI3K showed little difference. The AKT activator SC79 and inhibitor MK2206 were utilized to modulate AKT phosphorylation. SC79 and MK2206 caused alteration in the mRNA expression and protein level of alkaline phosphatase (ALP), collagen type I alpha 1 (COL1A1) and runt related transcription factor 2 (RUNX2). On 32 kPa substrates, YAP enrichment in nucleus were significantly promoted by SC79 and remarkably decreased by MK2206. Besides, the ratio of YAP/p-YAP is upregulated by SC79 on both 32 kPa and 0.5 kPa substrates. In conclusion, these findings suggest that AKT is involved in the modulation of ECM stiffness induced osteogenesis, and AKT phosphorylation also influences the subcellular localization and activation of YAP.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Dimetilpolisiloxanos/metabolismo , Dimetilpolisiloxanos/farmacologia , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Sinalização YAP
6.
Bull Exp Biol Med ; 172(4): 478-482, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35175474

RESUMO

A comparative study of the effect of a sorbent with nanotubes (Al2O3@ WCNT-PDMS) and a carbon-mineral sorbent (Al2O3@C) on the parameters of human erythrocytes was carried out. Using scanning flow cytometry, the morphological and functional parameters of venous blood erythrocytes as well as drainage blood after its perfusion through columns with sorbents were determined. The compared samples Al2O3@SWCNT-PDMS and Al2O3@C are similar by their effect on the morphological and functional parameters of erythrocytes. The maximum membrane extensibility increased to a greatest extent after contact with Al2O3@C, the amount of hemoglobin in erythrocytes decreased to the greatest extent after perfusion through a column with Al2O3@SWCNT-PDMS sorbent. The scanning flow cytometry is promising for assessing the effect on erythrocytes of new sorption materials intended for blood detoxification. Changes in the parameters of erythrocytes of blood collected in a sterile drainage system for subsequent reinfusion were revealed.


Assuntos
Óxido de Alumínio , Nanotubos de Carbono , Óxido de Alumínio/farmacologia , Dimetilpolisiloxanos/farmacologia , Eritrócitos , Humanos , Minerais
7.
Acta Biomater ; 129: 122-137, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33979672

RESUMO

A large population of patients is reported to suffer from urinary bladder-associated irreversible physiological disorders, rationalizing a continuous surge for structural and functional substitutes of urinary tissues, including ureters, bladder-wall, and urethra. The current gold standard for bladder reconstruction, an autologous gastrointestinal graft, is proven not to be an ideal substitute in the clinic. While addressing this unmet clinical need, a unique platform of antimicrobial polydimethyl siloxane-modified polyurethanes (TPU/PDMS) is designed and developed for its potential application as a urological implant. To the best of our knowledge, this study reports for the first time the successful integration of varying contents of PDMS within the molten polyurethane matrix using in situ crosslinking methodology. Thus, compatibilized binary blends possess clinically relevant viscoelastic properties to sustain high pressure, large distensions, and surgical manipulation. Furthermore, different chemical strategies are explored to covalently incorporate quaternized moieties, including 4-vinyl pyridine (4-VP), branched-polyethyleneimine (bPEI) as well as bPEI-grafted-(acrylic acid-co-vinylbenzyltriphenyl phosphonium chloride) (PAP), and counter urinary tract infections. The modified compositions, endowed with contact killing surfaces, reveal nearly three log reduction in bacterial growth in pathogenically infected artificial urine. Importantly, the antimicrobial TPU/PDMS blends support the uninhibited growth of mitochondrially viable murine fibroblasts, in a manner comparable to the medical-grade polyurethane. Collectively, the obtained results affirmed the newly developed polymers as promising biomaterials in reconstructive urology. STATEMENT OF SIGNIFICANCE: The clinical procedure for end-stage bladder disease remains replacement or augmentation of the bladder wall with a section of the patient's gastrointestinal tract. However, the absorptive and mucus-producing epithelium of intestinal segment is liable to short- and long-term complications. The dynamically crosslinked polydimethyl siloxane-based polyurethanes proposed herein, and the associated synthesis strategies to induce polycation grafted non-exhaustive contact-killing surfaces against uropathogents, have a significant clinical prospect in reconstructive urology. As an 'off-the-shelf' available alloplastic substitute, these blends offer the potential to circumvent the challenges associated with non-urinary autografts or scaffold based regenerative engineering and, thereby, shorten as well as simplify the surgical treatment. The targeted application has been conceived for a bladder patch to assist in various urinary diseases including, bladder carcinoma, refractory overactive bladder, interstitial cystitis, etc. However, given the ease of fabrication, moldability and the wide spectrum of mechanical properties that could be encompassed, these blends also present the possibility to be manifested into artificial ureteral or urethral conduits.


Assuntos
Anti-Infecciosos , Poliuretanos , Animais , Materiais Biocompatíveis , Dimetilpolisiloxanos/farmacologia , Humanos , Camundongos , Poliuretanos/farmacologia
8.
Biomolecules ; 11(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946440

RESUMO

Cell's microenvironment has been shown to exert influence on cell behavior. In particular, matrix-cell interactions strongly impact cell morphology and function. The purpose of this study was to analyze the influence of different culture substrate materials on phenotype and functional properties of lung epithelial adenocarcinoma (A549) cells. A549 cells were seeded onto two different biocompatible, commercially available substrates: a polyester coverslip (Thermanox™ Coverslips), that was used as cell culture plate control, and a polydimethylsiloxane membrane (PDMS, Elastosil® Film) investigated in this study as alternative material for A549 cells culture. The two substrates influenced cell morphology and the actin cytoskeleton organization. Further, the Yes-associated protein (YAP) and its transcriptional coactivator PDZ-binding motif (TAZ) were translocated to the nucleus in A549 cells cultured on polyester substrate, yet it remained mostly cytosolic in cells on PDMS substrate. By SEM analysis, we observed that cells grown on Elastosil® Film maintained an alveolar Type II cell morphology. Immunofluorescence staining for surfactant-C revealing a high expression of surfactant-C in cells cultured on Elastosil® Film, but not in cells cultured on Thermanox™ Coverslips. A549 cells grown onto Elastosil® Film exhibited morphology and functionality that suggest retainment of alveolar epithelial Type II phenotype, while A549 cells grown onto conventional plastic substrates acquired an alveolar Type I phenotype.


Assuntos
Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Poliésteres/farmacologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/efeitos dos fármacos , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Meios de Cultura , Humanos , Lipopeptídeos/biossíntese , Pulmão/citologia , Pulmão/efeitos dos fármacos , Microscopia Eletroquímica de Varredura , Peptídeos Cíclicos/biossíntese , Fatores de Transcrição/biossíntese , Proteínas de Sinalização YAP
9.
ACS Appl Mater Interfaces ; 12(40): 44393-44406, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32697572

RESUMO

Controlling the behavior of mesenchymal stem cells (MSCs) through topographic patterns is an effective approach for stem cell studies. We, herein, reported a facile method to create a dopamine (DA) pattern on poly(dimethylsiloxane) (PDMS). The topography of micropatterned DA was produced on PDMS after plasma treatment. The grid-topographic-patterned surface of PDMS-DA (PDMS-DA-P) was measured for adhesion force and Young's modulus by atomic force microscopy. The surface of PDMS-DA-P demonstrated less stiff and more elastic characteristics compared to either nonpatterned PDMS-DA or PDMS. The PDMS-DA-P evidently enhanced the differentiation of MSCs into various tissue cells, including nerve, vessel, bone, and fat. We further designed comprehensive experiments to investigate adhesion, proliferation, and differentiation of MSCs in response to PDMS-DA-P and showed that the DA-patterned surface had good biocompatibility and did not activate macrophages or platelets in vitro and had low foreign body reaction in vivo. Besides, it protected MSCs from apoptosis as well as excessive reactive oxygen species (ROS) generation. Particularly, the patterned surface enhanced the differentiation capacity of MSCs toward neural and endothelial cells. The stromal cell-derived factor-1α/CXantiCR4 pathway may be involved in mediating the self-recruitment and promoting the differentiation of MSCs. These findings support the potential application of PDMS-DA-P in either cell treatment or tissue repair.


Assuntos
Materiais Biocompatíveis/farmacologia , Dimetilpolisiloxanos/farmacologia , Dopamina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dimetilpolisiloxanos/química , Dopamina/química , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica , Estrutura Molecular , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
10.
PLoS One ; 15(6): e0234638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32569325

RESUMO

Hematopoietic stem cell transplantation is successfully applied since the late 1950s; however, its efficacy still needs to be increased. A promising strategy is to transplant high numbers of pluripotent hematopoietic stem cells (HSCs). Therefore, an improved ex vivo culture system that supports proliferation and maintains HSC pluripotency would override possible limitations in cell numbers gained from donors. To model the natural HSC niche in vitro, we optimized the HSC medium composition with a panel of cytokines and valproic acid and used an artificial 3D bone marrow-like scaffold made of polydimethylsiloxane (PDMS). This 3D scaffold offered a suitable platform to amplify human HSCs in vitro and, simultaneously, to support their viability, multipotency and ability for self-renewal. Silicon oxide-covering of PDMS structures further improved amplification of CD34+ cells, although the conservation of naïve HSCs was better on non-covered 3D PDMS. Finally, we found that HSC cultivated on non-covered 3D PDMS generated most pluripotent colonies within colony forming unit assays. In conclusion, by combining biological and biotechnological approaches, we optimized in vitro HSCs culture conditions, resulting in improved amplification, multipotency maintenance and vitality of HSCs.


Assuntos
Materiais Biomiméticos/farmacologia , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/farmacologia , Dimetilpolisiloxanos/farmacologia , Feminino , Fibronectinas/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Masculino , Purinas/farmacologia , Nicho de Células-Tronco/efeitos dos fármacos , Ácido Valproico/farmacologia
11.
Sci Rep ; 10(1): 7173, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346066

RESUMO

To evaluate the effect of GuttaFlow bioseal (GFB) and MTA Fillapex (MTAF) in comparison with Endofill (EF) in the subcutaneous tissue. Polyethylene tubes with GFB, MTAF, EF or empty tubes (control group; CG) were implanted into subcutaneous of rats. After 7, 15, 30 and 60 days, the capsule thickness, inflammatory reaction, interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), caspase-3, TUNEL-positive cells, von Kossa and ultrastructural features were evaluated. The data were statistically analyzed (p ≤ 0.05). At all periods, the number of IL-6- and VEGF-immunolabelled cells, and capsule thickness were lower in GFB than MTAF, which was lower than EF (p < 0.0001). At 60 days, the number of inflammatory cells was similar in GFB and MTAF (p = 0.58). Significant differences in the number of TUNEL- and caspase-3-positive cells were not observed among GFB, MTAF and CG whereas the highest values were found in EF specimens. The EF specimens exhibited several cells with condensed chromatin, typical of apoptosis. von Kossa-positive and birefringent structures were only observed in GFB and MTAF, suggesting the presence of calcite crystals. Taken together, these results show that cellular and structural damage induced by GFB and MTAF sealers were recovery over time. Moreover, these sealers express bioactive potential in subcutaneous tissue.


Assuntos
Apoptose/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Guta-Percha/farmacologia , Materiais Restauradores do Canal Radicular/farmacologia , Tela Subcutânea/imunologia , Animais , Apoptose/imunologia , Caspase 3/imunologia , Combinação de Medicamentos , Inflamação/imunologia , Inflamação/patologia , Interleucina-6/imunologia , Masculino , Ratos , Ratos Sprague-Dawley , Tela Subcutânea/patologia , Fator A de Crescimento do Endotélio Vascular/imunologia
12.
Colloids Surf B Biointerfaces ; 191: 110995, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32276214

RESUMO

Polydimethylsiloxane (PDMS) has been extensively used as a supporting material for studies of cell mechanobiology, cell micropatterning and microscale-cell analysis in microfluidic chips due to its numerous advantages, such as low cytotoxicity, ease of modification, inexpensive costs and biocompatibility. However, the innate hydrophobicity of PDMS often poses a problem for stable cell adhesion, seriously limiting its applicability for prolonged cell culture. UV exposure and protein coating are suboptimal solutions, while chemical surface functionalization is often associated with laborious procedures and producing environmental toxics. Plasma treatment can render a hydrophilic substrate by altering the surface chemistry, but such effect is often short-lived due to its tendency to hydrophobic recovery. Variation of physical properties of the substratum are known to influence cell behaviour. Nevertheless, the combination of varying PDMS substratum properties via base:curing agent ratio and plasma treatment to stabilize the long-term culture of bone marrow derived stromal cells (BMSCs) still remain poorly understood. In this study, we developed a protocol to maintain the hydrophilicity of the plasma-treated PDMS over a range of substratum properties. This study demonstrated that varying the substratum properties of PDMS can enhance the stability of BMSC culture for at least three weeks, while plasma treatment with or without additional collagen coating further enhanced such effect. The changes in the physical properties of PDMS have rendered difference in BMSCs adhesion, proliferation and in-vitro plasticity, thereby offering a simple and effective strategy for PDMS surface modification to enable long term cell analysis in PDMS-based culture platform.


Assuntos
Dimetilpolisiloxanos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/química , Dimetilpolisiloxanos/química , Humanos , Tamanho da Partícula , Propriedades de Superfície
13.
J Cosmet Dermatol ; 19(2): 407-415, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31134729

RESUMO

BACKGROUND: Premature skin aging results from exposure to a range of environmental factors, primarily ultraviolet radiation, but also high-energy visible light in the blue spectrum, infrared radiation, and environmental pollution. These extrinsic factors result in the generation of reactive oxygen species which promote photoaging and DNA damage resulting in skin cancers. AIMS: To formulate skincare products utilizing a new coating applied to zinc oxide and titanium dioxide particles and complimentary skincare ingredients to provide broad protection against a range of environmental insults. METHODS: A cross-polymer, multifunctional coating of silicate, polyalkylsilsesquioxane, and polydimethylsiloxane moieties increases the photostability and decreases the reactivity of mineral sunscreen agents when interacting with energy sources. These products are also formulated with antioxidants to minimize free radical propagation. Additionally, this coating improves the esthetic feel of mineral sunscreens, while the appearance is enhanced by formulating products with a blend of iron oxides. RESULTS: A series of in vitro and ex vivo studies demonstrated the ability of mineral-based products formulated with the new multifunctional coating to provide protection against ultraviolet radiation, high-energy visible light, infrared radiation, and environmental pollution. CONCLUSION: Newly formulated mineral-based skincare products provide environmental protection, are ecologically safe, and can replace chemical-based sunscreen ingredients.


Assuntos
Exposição Ambiental/efeitos adversos , Minerais/farmacologia , Substâncias Protetoras/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Higiene da Pele/métodos , Antioxidantes/química , Antioxidantes/farmacologia , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Poluentes Ambientais/efeitos adversos , Humanos , Raios Infravermelhos/efeitos adversos , Minerais/química , Substâncias Protetoras/química , Silicatos/química , Silicatos/farmacologia , Envelhecimento da Pele/efeitos da radiação , Fator de Proteção Solar , Protetores Solares/química , Protetores Solares/farmacologia , Titânio , Raios Ultravioleta/efeitos adversos , Óxido de Zinco/química , Óxido de Zinco/farmacologia
14.
Bone ; 127: 460-473, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301402

RESUMO

Bisphosphonate-related osteonecrosis of the jaw is a disease appearing after tooth removal in patients undergoing bisphosphonate treatment for metastasizing cancers and osteoporosis. The complexity of the condition requires a multicellular model to address the net effects of two key risk factors: mechanical trauma (pathologic overload) and inflammation. In this work, a system comprised of a polydimethylsiloxane chip and mechanical loading device is used to expose bisphosphonate-treated osteocytes to mechanical trauma. Specifically, osteocytes are treated with the potent nitrogen-containing bisphosphonate, zoledronic acid, and exposed to short-term pathologic overload via substrate stretch. During bone remodeling, osteocyte apoptosis plays a role in attracting pre-osteoclasts to sites of damage; as such, lactate dehydrogenase activity, cell death and protein expression are evaluated as functions of load. Additionally, the effects of osteocyte soluble factors on osteoclast and osteoblast functional activity are quantified. Osteoclast activity and bone resorption are quantified in the presence and absence of inflammatory components, lipopolysaccharide and interferon gamma. Results suggest that inflammation associated with bacterial infection may hinder bone resorption by osteoclasts. In addition, osteocytes may respond to overload by altering expression of soluble signals that act on osteoblasts to attenuate bone formation. These findings give insight into the multicellular interactions implicated in bisphosphonate-related osteonecrosis of the jaw.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Difosfonatos/farmacologia , Inflamação/patologia , Osteócitos/patologia , Estresse Mecânico , Animais , Anexina A5/metabolismo , Reabsorção Óssea/patologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Dimetilpolisiloxanos/farmacologia , Análise de Elementos Finitos , L-Lactato Desidrogenase/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteócitos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células RAW 264.7 , Fosfatase Ácida Resistente a Tartarato/metabolismo
15.
Artif Cells Nanomed Biotechnol ; 47(1): 1888-1897, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31072140

RESUMO

Storage lesions in red blood cells (RBCs) hinder efficient circulation and tissue oxygenation. The absence of flow mechanics and gas exchange may contribute to this problem. To test if in vitro compensation of flow mechanics and gas exchange helps RBC recovery, three-dimensional polydimethylsiloxane (PDMS) porous structures were fabricated with a sugar mould, simulating lung alveoli. RBC suspensions were passed through the porous structure cyclically, simulating in vivo blood circulation. Acid-base indices, partial gas pressures, ions, glucose and RBC indices were analyzed. An atomic force microscope was used to investigate local mechanical properties of intact RBCs. RBCs suspensions that passed through the porous structures had a higher pH and oxygen partial pressure, and a lower potassium concentration and carbon dioxide partial pressure. Meantime they had better biochemical properties relative to static samples, namely, they exhibited a more homogenous distribution of Young's Modulus. RBCs that passed through a PDMS porous structure were healthier than static ones, giving hints to prevent RBC storage lesions.


Assuntos
Preservação de Sangue , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Eritrócitos/efeitos dos fármacos , Gases/metabolismo , Hemorreologia/efeitos dos fármacos , Nylons/química , Nylons/farmacologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Módulo de Elasticidade/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Masculino , Porosidade , Ratos , Ratos Wistar
16.
Mater Sci Eng C Mater Biol Appl ; 100: 915-927, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948128

RESUMO

The nepenthes-inspired slippery liquid-infused surface has led to multiple potentials in biomedical devices' design. This study aims to develop a biomimetic, environmentally-friendly slippery layer of oil-infused 3D printed polydimethylsiloxane with anti-bacterial nanosilver (iPDMS/AgNPs) for wound dressing. The engineered 3D printed iPDMS can cater the different requirements of wounds with antifouling, anti-blood staining, and kill bacteria. iPDMS/AgNPs not only exhibits biocompatibility, against adherence and effective antibacterial activity but also effectively promotes neo-epithelial and granulation tissue formation to accelerate wound healing in vivo. Optimized rheologic parameters were obtained for the 3D printable iPDMS pre-polymerization condition. Scanning electronic micrograph (SEM) and Energy Dispersive Spectrometer (EDS) show a uniform mesh with AgNPs dotted on the printed dressing. No cytotoxicity of iPDMS/AgNPs has been found via cell Counting Kit-8(CCK-8) assay. Meanwhile, the membranes infused with silicon oil effectively prevented from the adherence of the two standard drug-resistant bacteria, Staphylococcus aureus and Escherichia coli (PDMS vs. PDMS+oil, p < 0.05; PDMS+0.5%AgNPs vs. iPDMS+0.5%AgNPs, p < 0.05; PDMS+2.5%AgNPs vs. iPDMS+2.5%AgNPs, p < 0.05). By bacteria co-culture model iPDMS/AgNPs can kill about 80% of Staphylococcus aureus and Escherichia coli. When applied to a full-thickness wound defect model of murine, iPDMS/AgNPs was effective in anti-infection. It also promotes the epithelialization, the granulation tissue formation, and wound healing. These findings demonstrate that iPDMS/AgNPs may have therapeutic promise as an ideal wound dressing shortly.


Assuntos
Antibacterianos/uso terapêutico , Incrustação Biológica , Biomimética , Dimetilpolisiloxanos/farmacologia , Óleos/química , Impressão Tridimensional , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Tecido de Granulação/efeitos dos fármacos , Tecido de Granulação/patologia , Íons , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Nanocompostos/química , Nanocompostos/ultraestrutura , Reologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Infecção dos Ferimentos/patologia
17.
J Biomed Mater Res A ; 107(8): 1569-1581, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30884131

RESUMO

To date, a myriad of strategies has been suggested for targeting the chemical signaling of cancer cells. Also, biomechanical features are gaining much more attention. These features can be used as biomarkers which influence cancer progression. Current approaches on cancer treatment are mainly focused on changing the biochemical signaling of cancer cells, whereas less attention was devoted to their biomechanical properties. Herein, we propose targeting of cancer cell mechanics through the microenvironmental mechanical and chemical cues. As such, we examined the role of substrate stiffness as well as the effect of epidermal growth factor receptor (EGFR) blockade in the cell mechanics. As a mechanical stimulus, stiff and soft polydimethylsiloxane substrates were utilized, while as a chemical stimulus, EGFR blockade was considered. Thus, breast cancer cell lines, MCF7 and MDA-MB-231, were cultured among chemical and mechanical groups. The local elasticity of cancer cells was assessed by atomic force microscopy nanoindentation method. Furthermore, we evaluated the effect of mentioned mechanical and chemical treatments on the morphology, actin cytoskeleton structures, and cancer cell migration abilities. The stiffness and migration ability of cancer cells increased by substrate stiffening while Cetuximab treatment demonstrated an elevation in the elastic modulus of cells followed by a reduction in the migration ability. These findings indicate that cancer cell mechanics is modulated not only by the mechanical cues but also by the chemical ones through EGFR signaling pathway. Overall, our results illustrate that manipulation of cell mechanics allows for the possible modulation of tumor cell migration. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1569-1581, 2019.


Assuntos
Citoesqueleto de Actina/metabolismo , Neoplasias/metabolismo , Estresse Mecânico , Citoesqueleto de Actina/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Módulo de Elasticidade , Humanos , Microscopia de Força Atômica , Neoplasias/patologia
18.
Biomaterials ; 204: 59-69, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884320

RESUMO

The use of biochemical signaling to derive smooth muscle cells (SMCs) from mesenchymal stem cells (MSCs) has been explored, but the induction of a fully functional SMC phenotype remains to be a major challenge. Cell morphology has been shown to regulate MSC differentiation into various lineages, including SMCs. We engineered substrates with microgrooves to induce cell elongation to study the mechanism underlying the MSC shape modulation in SMC differentiation. In comparison to those on flat substrates, MSCs cultured on engineered substrates were elongated with increased aspect ratios for both cell body and nucleus, as well as augmented cytoskeletal tensions. Biochemical studies indicated that the microgroove-elongated cells expressed significantly higher levels of SMC markers. MicroRNA analyses showed that up-regulation of miR-145 and the consequent repression of KLF4 in these elongated cells promoted MSC-to-SMC differentiation. Rho/ROCK inhibitions, which impair cytoskeletal tension, attenuated cell and nuclear elongations and disrupted the miR-145/KLF4 regulation for SMC differentiation. Furthermore, cell traction force measurements showed that miR-145 is essential for the functional contractility in the microgroove-induced SMC differentiation. Collectively, our findings demonstrate that, through a Rho-ROCK/miR-145/KLF4 pathway, the elongated cell shape serves as a decisive geometric cue to direct MSC differentiation into functional SMCs.


Assuntos
Diferenciação Celular , Forma Celular , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Miócitos de Músculo Liso/citologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Dimetilpolisiloxanos/farmacologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Modelos Biológicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Nano Lett ; 19(4): 2280-2290, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30775927

RESUMO

Cancer cell invasion through physical barriers in the extracellular matrix (ECM) requires a complex synergy of traction force against the ECM, mechanosensitive feedback, and subsequent cytoskeletal rearrangement. PDMS microchannels were used to investigate the transition from mesenchymal to amoeboid invasion in cancer cells. Migration was faster in narrow 3 µm-wide channels than in wider 10 µm channels, even in the absence of cell-binding ECM proteins. Cells permeating narrow channels exhibited blebbing and had smooth leading edge profiles, suggesting an ECM-induced transition from mesenchymal invasion to amoeboid invasion. Live cell labeling revealed a mechanosensing period in which the cell attempts mesenchymal-based migration, reorganizes its cytoskeleton, and proceeds using an amoeboid phenotype. Rho/ROCK (amoeboid) and Rac (mesenchymal) pathway inhibition revealed that amoeboid invasion through confined environments relies on both pathways in a time- and ECM-dependent manner. This demonstrates that cancer cells can dynamically modify their invasion programming to navigate physically confining matrix conditions.


Assuntos
Citoesqueleto/efeitos dos fármacos , Mesoderma/efeitos dos fármacos , Invasividade Neoplásica/genética , Neoplasias/genética , Fenômenos Biomecânicos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Citoesqueleto/genética , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Humanos , Mesoderma/patologia , Invasividade Neoplásica/patologia , Neoplasias/patologia , Nylons/química , Nylons/farmacologia
20.
Sci Rep ; 9(1): 1802, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755634

RESUMO

Diabetes is one of the most common metabolic disorders, and is characterized by the inability to secrete/sense insulin and abnormal blood glucose concentration. Many researchers have concentrated their efforts on improving islet transplantation, in particular by fabricating bioartificial pancreatic islets in vitro. One of the critical points for the success of this research direction is the improvement of culture conditions, such as oxygen supply, in the engineering of bioartificial pancreatic islets to ensure their viability and functionality after transplantation. In this work, we fabricated microwell spheroid culture devices made of oxygen-permeable polydimethylsiloxane (PDMS), with which hypoxia in the core of bioartificial islets was alleviated and glucose-stimulated insulin secretion was increased ~2.5-fold compared to a device with the same configuration but made of non-oxygen-permeable plastic. We also demonstrated that antioxidants, such as ascorbic acid-2-phosphate (AA2P), could neutralize islet damage caused by increased reactive oxygen species (ROS) in the cell culture environment. These results suggest that supply of oxygen together with removal of ROS may lead to a better approach to prepare highly viable and functional bioartificial pancreatic islets.


Assuntos
Antioxidantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Oxigênio/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Animais , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacologia , Linhagem Celular , Dimetilpolisiloxanos/farmacologia , Insulina/metabolismo , Camundongos , Compostos Organofosforados/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA