Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Cancer Med ; 13(13): e7394, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38970307

RESUMO

BACKGROUND: Germline mutations have been identified in a small number of hereditary cancers, but the genetic predisposition for many familial cancers remains to be elucidated. METHODS: This study identified a Chinese pedigree that presented different cancers (breast cancer, BRCA; adenocarcinoma of the esophagogastric junction, AEG; and B-cell acute lymphoblastic leukemia, B-ALL) in each of the three generations. Whole-genome sequencing and whole-exome sequencing were performed on peripheral blood or bone marrow and cancer biopsy samples. Whole-genome bisulfite sequencing was conducted on the monozygotic twin brothers, one of whom developed B-ALL. RESULTS: According to the ACMG guidelines, bioinformatic analysis of the genome sequencing revealed 20 germline mutations, particularly mutations in the DNAH11 (c.9463G > A) and CFH (c.2314G > A) genes that were documented in the COSMIC database and validated by Sanger sequencing. Forty-one common somatic mutated genes were identified in the cancer samples, displaying the same type of single nucleotide substitution Signature 5. Meanwhile, hypomethylation of PLEK2, MRAS, and RXRA as well as hypermethylation of CpG island associated with WT1 was shown in the twin with B-ALL. CONCLUSIONS: These findings reveal genomic alterations in a pedigree with multiple cancers. Mutations found in the DNAH11, CFH genes, and other genes predispose to malignancies in this family. Dysregulated methylation of WT1, PLEK2, MRAS, and RXRA in the twin with B-ALL increases cancer susceptibility. The similarity of the somatic genetic changes among the three cancers indicates a hereditary impact on the pedigree. These familial cancers with germline and somatic mutations, as well as epigenomic alterations, represent a common molecular basis for many multiple cancer pedigrees.


Assuntos
Metilação de DNA , Sequenciamento do Exoma , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Linhagem , Humanos , Masculino , Feminino , Sequenciamento Completo do Genoma , Pessoa de Meia-Idade , Genômica/métodos , Adulto , Epigênese Genética , Ilhas de CpG , Epigenômica/métodos , Dineínas do Axonema/genética
2.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007638

RESUMO

Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.


Assuntos
Axonema , Cílios , Peixe-Zebra , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Peixe-Zebra/metabolismo , Camundongos , Axonema/metabolismo , Axonema/ultraestrutura , Dineínas do Axonema/metabolismo , Dineínas do Axonema/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Dineínas/metabolismo
3.
BMC Pulm Med ; 24(1): 343, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014333

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is an autosomal recessive hereditary disease characterized by recurrent respiratory infections. In clinical manifestations, DNAH5 (NM_001361.3) is one of the recessive pathogenic genes. Primary familial brain calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcification in the basal ganglia and other brain regions. PFBC can be inherited in an autosomal dominant or recessive manner. A family with PCD caused by a DNAH5 compound heterozygous variant and PFBC caused by a MYORG homozygous variant was analyzed. METHODS: In this study, we recruited three generations of Han families with primary ciliary dyskinesia combined with primary familial brain calcification. Their clinical phenotype data were collected, next-generation sequencing was performed to screen suspected pathogenic mutations in the proband and segregation analysis of families was carried out by Sanger sequencing. The mutant and wild-type plasmids were constructed and transfected into HEK293T cells instantaneously, and splicing patterns were detected by Minigene splicing assay. The structure and function of mutations were analyzed by bioinformatics analysis. RESULTS: The clinical phenotypes of the proband (II10) and his sister (II8) were bronchiectasis, recurrent pulmonary infection, multiple symmetric calcifications of bilateral globus pallidus and cerebellar dentate nucleus, paranasal sinusitis in the whole group, and electron microscopy of bronchial mucosa showed that the ciliary axoneme was defective. There was also total visceral inversion in II10 but not in II8. A novel splice variant C.13,338 + 5G > C and a frameshift variant C.4314delT (p. Asn1438lysfs *10) were found in the DNAH5 gene in proband (II10) and II8. c.347_348dupCTGGCCTTCCGC homozygous insertion variation was found in the MYORG of the proband. The two pathogenic genes were co-segregated in the family. Minigene showed that DNAH5 c.13,338 + 5G > C has two abnormal splicing modes: One is that part of the intron bases where the mutation site located is translated, resulting in early translation termination of DNAH5; The other is the mutation resulting in the deletion of exon76. CONCLUSIONS: The newly identified DNAH5 splicing mutation c.13,338 + 5G > C is involved in the pathogenesis of PCD in the family, and forms a compound heterozygote with the pathogenic variant DNAH5 c.4314delT lead to the pathogenesis of PCD.


Assuntos
Calcinose , Mutação , Linhagem , Humanos , Masculino , Calcinose/genética , Calcinose/patologia , Feminino , Dineínas do Axonema/genética , Adulto , Transtornos da Motilidade Ciliar/genética , Encefalopatias/genética , Fenótipo , Células HEK293 , China , Splicing de RNA/genética , Pessoa de Meia-Idade , Glicosídeo Hidrolases
4.
Mol Biol Cell ; 35(7): ar90, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758663

RESUMO

Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel Chlamydomonas mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, ttll3(ex5), completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the ttll3(ex5) mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on ß-tubulin in Chlamydomonas, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of ß-tubulin.


Assuntos
Axonema , Cílios , Flagelos , Microtúbulos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Flagelos/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Chlamydomonas/metabolismo , Mutação , Dineínas do Axonema/metabolismo
5.
Lung ; 202(3): 291-298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602513

RESUMO

PURPOSE: We aimed to examine the correlation between clinical characteristics and the pathogenic gene variants in patients with Primary Ciliary Dyskinesia (PCD). METHODS: We conducted a retrospective single-center study in patients with PCD followed at the University Hospitals Leuven. We included patients with genetically confirmed PCD and described their genotype, data from ultrastructural ciliary evaluation and clinical characteristics. Genotype/phenotype correlations were studied in patients with the most frequently involved genes. RESULTS: We enrolled 74 patients with a median age of 25.58 years. The most frequently involved genes were DNAH11 (n = 23) and DNAH5 (n = 19). The most frequent types of pathogenic variants were missense (n = 42) and frameshift variants (n = 36) and most patients had compound heterozygous variants (n = 44). Ciliary ultrastructure (p < 0.001), situs (p = 0.015) and age at diagnosis (median 9.50 vs 4.71 years, p = 0.037) differed between DNAH11 and DNAH5. When correcting for situs this difference in age at diagnosis was no longer significant (p = 0.973). Patients with situs inversus were diagnosed earlier (p = 0.031). Respiratory tract microbiology (p = 0.161), lung function (cross-sectional, p = 0.829 and longitudinal, p = 0.329) and chest CT abnormalities (p = 0.202) were not significantly different between DNAH11 and DNAH5 variants. CONCLUSION: This study suggests a genotype-phenotype correlation for some of the evaluated clinical characteristics of the two most frequently involved genes in this study, namely DNAH11 and DNAH5.


Assuntos
Dineínas do Axonema , Humanos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Bélgica/epidemiologia , Criança , Adolescente , Pré-Escolar , Adulto Jovem , Dineínas do Axonema/genética , Dineínas/genética , Pessoa de Meia-Idade , Síndrome de Kartagener/genética , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/fisiopatologia , Estudos de Associação Genética , Fenótipo , Lactente , Situs Inversus/genética , Situs Inversus/diagnóstico por imagem , Cílios/patologia , Cílios/ultraestrutura , Mutação de Sentido Incorreto , Mutação da Fase de Leitura
6.
Auris Nasus Larynx ; 51(3): 553-568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537559

RESUMO

OBJECTIVE: Primary ciliary dyskinesia (PCD) is a relatively rare genetic disorder that affects approximately 1 in 20,000 people. Approximately 50 genes are currently known to cause PCD. In light of differences in causative genes and the medical system in Japan compared with other countries, a practical guide was needed for the diagnosis and management of Japanese PCD patients. METHODS: An ad hoc academic committee was organized under the Japanese Rhinologic Society to produce a practical guide, with participation by committee members from several academic societies in Japan. The practical guide including diagnostic criteria for PCD was approved by the Japanese Rhinologic Society, Japanese Society of Otolaryngology-Head and Neck Surgery, Japanese Respiratory Society, and Japanese Society of Pediatric Pulmonology. RESULTS: The diagnostic criteria for PCD consist of six clinical features, six laboratory findings, differential diagnosis, and genetic testing. The diagnosis of PCD is categorized as definite, probable, or possible PCD based on a combination of the four items above. Diagnosis of definite PCD requires exclusion of cystic fibrosis and primary immunodeficiency, at least one of the six clinical features, and a positive result for at least one of the following: (1) Class 1 defect on electron microscopy of cilia, (2) pathogenic or likely pathogenic variants in a PCD-related gene, or (3) impairment of ciliary motility that can be repaired by correcting the causative gene variants in iPS cells established from the patient's peripheral blood cells. CONCLUSION: This practical guide provides clinicians with useful information for the diagnosis and management of PCD in Japan.


Assuntos
Testes Genéticos , Síndrome de Kartagener , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/terapia , Síndrome de Kartagener/genética , Diagnóstico Diferencial , Cílios/ultraestrutura , Cílios/patologia , Japão , Dineínas do Axonema/genética , Proteínas
7.
Am J Case Rep ; 25: e942444, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38521969

RESUMO

BACKGROUND Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disease that can present at different ages with different phenotypes. Missed and delayed diagnoses are fairly common. Many variants in the DNAH5 gene have been described that confirm the diagnosis of PCD. Advances in medicine, especially in molecular genetics, have led to increasingly early discoveries of such cases, especially in those with nonclassical presentations. CASE REPORT This report describes a patient with bronchiectasis, lung cysts, finger clubbing, and failure to thrive who was misdiagnosed for several years as having asthma. Many differentials were suspected and worked up, including a suspicion of PCD. Genetic tests with whole-exome sequencing (WES) and whole-genome sequencing (WGS) detected a heterozygous, likely pathogenic, variant in the DNAH5 gene associated with PCD. CONCLUSIONS Despite a thorough workup done for this case, including a genetic workup, a PCD diagnosis was not established. We plan to reanalyze the WGS in the future, and with advent of technology and better coverage of genes, a genetic answer for this challenging case may resolve this diagnostic quandary in the future.


Assuntos
Síndrome de Kartagener , Humanos , Dineínas do Axonema/genética , Testes Genéticos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Pulmão , Mutação
8.
Aging (Albany NY) ; 16(3): 2299-2319, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38277230

RESUMO

BACKGROUND: Kidney renal clear cell cancer (KIRC) is a type of urological cancer that occurs worldwide. Core fucosylation (CF), as the most common post-translational modification, is involved in the tumorigenesis. METHODS: The alterations of CF-related genes were summarized in pan-cancer. The "ConsensusClusterPlus" package was utilized to identify two CF-related KIRC subtypes. The "ssgsea" function was chosen to estimate the CF score, signaling pathways and cell deaths. Multiple algorithms were applied to assess immune responses. The "oncoPredict" was utilized to estimate the drug sensitivity. The IHC and subgroup analysis was performed to reveal the molecular features of FUT8. Single-cell RNA sequencing (scRNA-seq) data were scrutinized to evaluate the CF state. RESULTS: In pan-cancer, there was a noticeable alteration in the expression of CF-related genes. In KIRC, two CF-related subtypes (i.e., C1, C2) were obtained. In comparison to C2, C1 exhibited a higher CF score and correlated with poorer overall survival. Additionally, the TME of C2 demonstrated increased activity in neutrophils, macrophages, myeloid dendritic cells, and B cells, alongside a higher presence of silent mast cells, NK cells, and endothelial cells. Compared to normal samples, higher expression of FUT8 is observed in KIRC. The mutation of SETD2 was more frequent in low-FUT8 samples while the mutation of DNAH9 was more frequent in high-FUT8 samples. scRNA-seq analyses revealed that the CF score was predominantly higher in endothelial cells and fibroblast cells. CONCLUSIONS: Two CF-related subtypes with distinct prognosis and TME were identified in KIRC. FUT8 exhibited elevated expression in KIRC samples.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Células Endoteliais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Glicosilação , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Rim/metabolismo , Dineínas do Axonema/metabolismo
9.
Prostate ; 84(5): 460-472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38192023

RESUMO

BACKGROUND: Through whole-exome sequencing of 60 formalin-fixed paraffin-embedded Nigerian (NGRn) benign prostatic hyperplasia (BPH) samples, we identified germline and somatic alterations in apoptotic pathways impacting BPH development and progression. Prostate enlargement is a common occurrence in male aging; however, this enlargement can lead to lower urinary tract symptoms that negatively impact quality of life. This impact is disproportionately present in men of African ancestry. BPH pathophysiology is poorly understood and studies examining non-European populations are lacking. METHODS: In this study, NGRn BPH, normal prostate, and prostate cancer (PCa) tumor samples were sequenced and compared to characterize genetic alterations in NGRn BPH. RESULTS: Two hundred and two nonbenign, ClinVar-annotated germline variants were present in NGRn BPH samples. Six genes [BRCA1 (92%), HSD3B1 (85%), TP53 (37%), PMS2 (23%), BARD1 (20%), and BRCA2 (17%)] were altered in at least 10% of samples; however, compared to NGRn normal and tumor, the frequency of alterations in BPH samples showed no significant differences at the gene or variant level. BRCA2_rs11571831 and TP53_rs1042522 germline alterations had a statistically significant co-occurrence interaction in BPH samples. In at least two BPH samples, 173 genes harbored somatic variants known to be clinically actionable. Three genes (COL18A1, KIF16B, and LRP1) showed a statistically significant (p < 0.05) higher frequency in BPH. NGRn BPH also had five gene pairs (PKD1/KIAA0100, PKHD1/PKD1, DNAH9/LRP1B, NWD1/DCHS2, and TCERG1/LMTK2) with statistically significant co-occurring interactions. Two hundred and seventy-nine genes contained novel somatic variants in NGRn BPH. Three genes (CABP1, FKBP1C, and RP11-595B24.2) had a statistically significant (p < 0.05) higher alteration frequency in NGRn BPH and three were significantly higher in NGRn tumor (CACNA1A, DMKN, and CACNA2D2). Pairwise Fisher's exact tests showed 14 gene pairs with statistically significant (p < 0.05) interactions and four interactions approaching significance (p < 0.10). Mutational patterns in NGRn BPH were similar to COSMIC (Catalog of Somatic Mutations in Cancer) signatures associated with aging and dysfunctional DNA damage repair. CONCLUSIONS: NGRn BPH contained significant germline alteration interactions (BRCA2_rs11571831 and TP53_rs1042522) and increased somatic alteration frequencies (LMTK2, LRP1, COL18A1, CABP1, and FKBP1C) that impact apoptosis. Normal prostate development is maintained by balancing apoptotic and proliferative activity. Dysfunction in either mechanism can lead to abnormal prostate growth. This work is the first to examine genomic sequencing in NGRn BPH and provides data that fill known gaps in the understanding BPH and how it impacts men of African ancestry.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Humanos , Masculino , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Sequenciamento do Exoma , Qualidade de Vida , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Próstata/patologia , Dineínas do Axonema/genética , Fatores de Elongação da Transcrição/genética , Cinesinas/genética
10.
Proc Natl Acad Sci U S A ; 121(5): e2318522121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261620

RESUMO

Axonemal dynein motors drive ciliary motility and can consist of up to twenty distinct components with a combined mass of ~2 MDa. In mammals, failure of dyneins to assemble within the axonemal superstructure leads to primary ciliary dyskinesia. Syndromic phenotypes include infertility, rhinitis, severe bronchial conditions, and situs inversus. Nineteen specific cytosolic factors (Dynein Axonemal Assembly Factors; DNAAFs) are necessary for axonemal dynein assembly, although the detailed mechanisms involved remain very unclear. Here, we identify the essential assembly factor DNAAF3 as a structural ortholog of S-adenosylmethionine-dependent methyltransferases. We demonstrate that dynein heavy chains, especially those forming the ciliary outer arms, are methylated on key residues within various nucleotide-binding sites and on microtubule-binding domain helices directly involved in the transition to low binding affinity. These variable modifications, which are generally missing in a Chlamydomonas null mutant for the DNAAF3 ortholog PF22 (DAB1), likely impact on motor mechanochemistry fine-tuning the activities of individual dynein complexes.


Assuntos
Dineínas do Axonema , Metiltransferases , Animais , Citosol , Citoesqueleto , Metilação , Mamíferos
11.
Front Immunol ; 14: 1236995, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022557

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide and has a poor prognosis. Thus, there is a need for an effective biomarker to improve and predict the prognosis of HCC. Methods: RNA sequencing data, simple nucleotide variation data, and clinical data of HCC patients from The Cancer Genome Atlas (TCGA) to identify mutant genes, simple nucleotide variation data, and clinical data of HCC patients from the International Cancer Genome Consortium (ICGC) to validate the prognostic value of mutant genes were the data sources of the present study. To identify the overall survival (OS)-related mutant genes, a Kaplan-Meier (KM) analysis was conducted. We carried out univariate Cox and multivariate Cox regression analyses to identify the independent prognostic factors. We also conducted a correlation analysis of immune cells and mutant genes. To explore the molecular mechanisms of mutant genes, we conducted a gene set enrichment analysis (GSEA). A nomogram was constructed to help predict the prognosis of HCC. In addition, we explored the expression profile of mutant genes in HCC based on a TCGA dataset, an ICGC dataset, and our own HCC tissue samples. Results: We identified and validated a mutant gene, dynein axonemal heavy chain 5 (DNAH5), which was negatively related to the OS of HCC patients. Univariate Cox and multivariate Cox regression analyses revealed that the mutant gene DNAH5 could act as an independent prognostic factor for HCC. Most pathways of the mutant gene DNAH5 were involved in cancer development and progression based on GSEA analysis. The mutant gene DNAH5 was negatively correlated with monocytes, naive CD4 T cells, activated dendritic cells, and activated mast cells. In addition, the mRNA and protein levels of DNAH5 had a significantly higher level of expression in the tissue samples of patients with HCC. A nomogram consisting of the pathological stage, DNAH5, and tumor mutation burden (TMB) performed well. Conclusion: The mutant gene DNAH5 had a significantly higher level of expression in the tissue samples of patients with HCC, could act as an independent prognostic factor for HCC, and is a potential new immunotherapy target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Nomogramas , Nucleotídeos , Dineínas do Axonema
12.
FEBS Lett ; 597(17): 2149-2160, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400274

RESUMO

Axonemal dynein is an ATP-dependent microtubular motor protein responsible for cilia and flagella beating, and its dysfunction can cause diseases such as primary ciliary dyskinesia and sperm dysmotility. Despite its biological importance, structure-based mechanisms underlying axonemal dynein motors remain unclear. Here, we determined the X-ray crystal structure of the human inner-arm dynein-d (DNAH1) stalk region, which contains a long antiparallel coiled-coil and a microtubule-binding domain (MTBD), at 2.7 Å resolution. Notably, differences in the relative orientation of the coiled-coil and MTBD in comparison with other dyneins, as well as the diverse orientations of the MTBD flap region among various isoforms, lead us to propose a 'spike shoe model' with an altered stepping angle for the interaction between IAD-d and microtubules. Based on these findings, we discuss isoform-specific functions of the axonemal dynein stalk MTBDs.


Assuntos
Dineínas do Axonema , Dineínas , Masculino , Humanos , Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Dineínas/metabolismo , Sítios de Ligação , Sêmen , Ligação Proteica , Microtúbulos/metabolismo
13.
Mol Biol Cell ; 34(7): ar75, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37133971

RESUMO

Light chain 1 (LC1) is a highly conserved leucine-rich repeat protein associated with the microtubule-binding domain of the Chlamydomonas outer-dynein arm γ heavy chain. LC1 mutations in humans and trypanosomes lead to motility defects, while its loss in oomycetes results in aciliate zoospores. Here we describe a Chlamydomonas LC1 null mutant (dlu1-1). This strain has reduced swimming velocity and beat frequency, can undergo waveform conversion, but often exhibits loss of hydrodynamic coupling between the cilia. Following deciliation, Chlamydomonas cells rapidly rebuild cytoplasmic stocks of axonemal dyneins. Loss of LC1 disrupts the kinetics of this cytoplasmic preassembly so that most outer-arm dynein heavy chains remain monomeric even after several hours. This suggests that association of LC1 with its heavy chain-binding site is a key step or checkpoint in the outer-arm dynein assembly process. Similarly to strains lacking the entire outer arm and inner arm I1/f, we found that loss of LC1 and I1/f in dlu1-1 ida1 double mutants resulted in cells unable to build cilia under normal conditions. Furthermore, dlu1-1 cells do not exhibit the usual ciliary extension in response to lithium treatment. Together, these observations suggest that LC1 plays an important role in the maintenance of axonemal stability.


Assuntos
Chlamydomonas , Dineínas , Humanos , Dineínas/metabolismo , Dineínas do Axonema/metabolismo , Cílios/metabolismo , Chlamydomonas/metabolismo , Axonema/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo , Flagelos/metabolismo
14.
BJS Open ; 7(3)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196196

RESUMO

BACKGROUND: The aim of this study was to construct a predictive signature integrating tumour-mutation- and copy-number-variation-associated features using machine learning to precisely predict early relapse and survival in patients with resected stage I-II pancreatic ductal adenocarcinoma. METHODS: Patients with microscopically confirmed stage I-II pancreatic ductal adenocarcinoma undergoing R0 resection at the Chinese PLA General Hospital between March 2015 and December 2016 were enrolled. Whole exosome sequencing was performed, and genes with different mutation or copy number variation statuses between patients with and without relapse within 1 year were identified using bioinformatics analysis. A support vector machine was used to evaluate the importance of the differential gene features and to develop a signature. Signature validation was performed in an independent cohort. The associations of the support vector machine signature and single gene features with disease-free survival and overall survival were assessed. Biological functions of integrated genes were further analysed. RESULTS: Overall, 30 and 40 patients were included in the training and validation cohorts, respectively. Some 11 genes with differential patterns were first identified; using a support vector machine, four features (mutations of DNAH9, TP53, and TUBGCP6, and copy number variation of TMEM132E) were further selected and integrated to construct a predictive signature (the support vector machine classifier). In the training cohort, the 1-year disease-free survival rates were 88 per cent (95 per cent c.i. 73 to 100) and 7 per cent (95 per cent c.i. 1 to 47) in the low-support vector machine subgroup and the high-support vector machine subgroup respectively (P < 0.001). Multivariable analyses showed that high support vector machine was significantly and independently associated with both worse overall survival (HR 29.20 (95 per cent c.i. 4.48 to 190.21); P < 0.001) and disease-free survival (HR 72.04 (95 per cent c.i. 6.74 to 769.96); P < 0.001). The area under the curve of the support vector machine signature for 1-year disease-free survival (0.900) was significantly larger than the area under the curve values of the mutations of DNAH9 (0.733; P = 0.039), TP53 (0.767; P = 0.024), and TUBGCP6 (0.733; P = 0.023), the copy number variation of TMEM132E (0.700; P = 0.014), TNM stage (0.567; P = 0.002), and differentiation grade (0.633; P = 0.005), suggesting higher predictive accuracy for prognosis. The value of the signature was further validated in the validation cohort. The four genes included in the support vector machine signature (DNAH9, TUBGCP6, and TMEM132E were novel in pancreatic ductal adenocarcinoma) were significantly associated with the tumour immune microenvironment, G protein-coupled receptor binding and signalling, cell-cell adhesion, etc. CONCLUSION: The newly constructed support vector machine signature precisely and powerfully predicted relapse and survival in patients with stage I-II pancreatic ductal adenocarcinoma after R0 resection.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Variações do Número de Cópias de DNA , Recidiva Local de Neoplasia/genética , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/cirurgia , Microambiente Tumoral , Dineínas do Axonema/genética , Neoplasias Pancreáticas
15.
Appl Immunohistochem Mol Morphol ; 31(5): 267-277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036419

RESUMO

Micropapillary carcinoma is an entity defined histologically in many organs. It is associated with lymph node metastasis and poor prognosis. The main mechanism for its histopathologic appearance is reverse polarization. Although the studies on this subject are limited, carcinomas with micropapillary morphology observed in different organs are examined by immunohistochemical and molecular methods. Differences are shown in these tumors compared with conventional carcinomas regarding the rate of somatic mutations, mRNA and miRNA expressions, and protein expression levels. TP53 , PIK3CA , TERT , KRAS , EGFR , MYC , FGFR1 , BRAF , AKT1 , HER2/ERBB2 , CCND1 , and APC mutations, which genes frequently detected in solid tumors, have also been detected in invasive micropapillary carcinoma (IMPC) in various organs. 6q chromosome loss, DNAH9 , FOXO3 , SEC. 63 , and FMN2 gene mutations associated with cell polarity or cell structure and skeleton have also been detected in IMPCs. Among the proteins that affect cell polarity, RAC1, placoglobin, as well as CLDNs, LIN7A, ZEB1, CLDN1, DLG1, CDH1 (E-cadherin), OCLN, AFDN/AF6, ZEB1, SNAI2, ITGA1 (integrin alpha 1), ITGB1 (integrin beta 1), RHOA, Jagged-1 (JAG1) mRNAs differentially express between IMPC and conventional carcinomas. Prediction of prognosis and targeted therapy may benefit from the understanding of molecular mechanisms of micropapillary morphology. This review describes the molecular pathologic mechanisms underlying the micropapillary changes of cancers in various organs in a cell polarity-related dimension.


Assuntos
Neoplasias da Mama , Carcinoma Papilar , MicroRNAs , Humanos , Feminino , Patologia Molecular , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Integrinas , Dineínas do Axonema , Proteínas de Membrana/genética , Proteínas de Transporte Vesicular
16.
EMBO J ; 42(12): e112466, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37051721

RESUMO

Axonemal outer dynein arm (ODA) motors generate force for ciliary beating. We analyzed three states of the ODA during the power stroke cycle using in situ cryo-electron tomography, subtomogram averaging, and classification. These states of force generation depict the prepower stroke, postpower stroke, and intermediate state conformations. Comparison of these conformations to published in vitro atomic structures of cytoplasmic dynein, ODA, and the Shulin-ODA complex revealed differences in the orientation and position of the dynein head. Our analysis shows that in the absence of ATP, all dynein linkers interact with the AAA3/AAA4 domains, indicating that interactions with the adjacent microtubule doublet B-tubule direct dynein orientation. For the prepower stroke conformation, there were changes in the tail that is anchored on the A-tubule. We built models starting with available high-resolution structures to generate a best-fitting model structure for the in situ pre- and postpower stroke ODA conformations, thereby showing that ODA in a complex with Shulin adopts a similar conformation as the active prepower stroke ODA in the axoneme.


Assuntos
Dineínas , Tomografia com Microscopia Eletrônica , Dineínas/metabolismo , Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Cílios/metabolismo , Trifosfato de Adenosina , Flagelos/metabolismo
17.
Cell Death Dis ; 14(2): 127, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792588

RESUMO

The axonemal dynein arms (outer (ODA) and inner dynein arms (IDAs)) are multiprotein structures organized by light, intermediate, light intermediate (LIC), and heavy chain proteins. They hydrolyze ATP to promote ciliary and flagellar movement. Till now, a variety of dynein protein deficiencies have been linked with asthenospermia (ASZ), highlighting the significance of these structures in human sperm motility. Herein, we detected bi-allelic DNALI1 mutations [c.663_666del (p.Glu221fs)], in an ASZ patient, which resulted in the complete loss of the DNALI1 in the patient's sperm. We identified loss of sperm DNAH1 and DNAH7 rather than DNAH10 in both DNALI1663_666del patient and Dnali1-/- mice, demonstrating that mammalian DNALI1 is a LIC protein of a partial IDA subspecies. More importantly, we revealed that DNALI1 loss contributed to asymmetries in the most fibrous sheath (FS) of the sperm flagellum in both species. Immunoprecipitation revealed that DNALI1 might interact with the cytoplasmic dynein complex proteins in the testes. Furthermore, DNALI1 loss severely disrupted the transport and assembly of the FS proteins, especially AKAP3 and AKAP4, during flagellogenesis. Hence, DNALI1 may possess a non-classical molecular function, whereby it regulates the cytoplasmic dynein complex that assembles the flagella. We conclude that a DNALI deficiency-induced IDAs injury and an asymmetric FS-driven tail rigid structure alteration may simultaneously cause flagellum immotility. Finally, intracytoplasmic sperm injection (ICSI) can effectively resolve patient infertility. Collectively, we demonstrate that DNALI1 is a newly causative gene for AZS in both humans and mice, which possesses multiple crucial roles in modulating flagellar assembly and motility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Proteínas de Ancoragem à Quinase A/metabolismo , Astenozoospermia/genética , Astenozoospermia/complicações , Astenozoospermia/metabolismo , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Dineínas/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Mamíferos , Mutação , Proteínas/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/metabolismo
18.
Medicine (Baltimore) ; 101(47): e31798, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36451444

RESUMO

BACKGROUND: Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the two major subtypes of non-small cell lung cancer that pose a serious threat to human health. However, both subtypes currently lack effective indicators for early diagnosis. METHODS: To identify tumor-specific indicators and predict cancer-related signaling pathways, LUSC and LUAD gene weighted co-expression networks were constructed. Combined with clinical data, core genes in LUSC and LUAD modules were then screened using protein-protein interaction networks and their functions and pathways were analyzed. Finally, the effect of core genes on survival of LUSC and LUAD patients was evaluated. RESULTS: We identified 12 network modules in LUSC and LUAD, respectively. LUSC modules "purple" and "green" and LUAD modules "brown" and "pink" are significantly associated with overall survival and clinical traits of tumor node metastasis, respectively. Eleven genes from LUSC and eight genes from LUAD were identified as candidate core genes, respectively. Survival analysis showed that high expression of SLIT3, ABI3BP, MYOCD, PGM5, TNXB, and DNAH9 are associated with decreased survival in LUSC patients. Furthermore, high expression of BUB1, BUB1B, TTK, and UBE2C are associated with lower patient survival. CONCLUSIONS: We found biomarker genes and biological pathways for LUSC and LUAD. These network hub genes are associated with clinical characteristics and patient outcomes and they may play important roles in LUSC and LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Segunda Neoplasia Primária , Humanos , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Carcinoma de Células Escamosas/genética , Pulmão , Dineínas do Axonema
19.
Cells ; 11(24)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36552777

RESUMO

Dynein axonemal heavy chain 5 (DNAH5) is the most mutated gene in primary ciliary dyskinesia (PCD), leading to abnormal cilia ultrastructure and function. Few studies have revealed the genetic characteristics and pathogenetic mechanisms of PCD caused by DNAH5 mutation. Here, we established a child PCD airway organoid directly from the bronchoscopic biopsy of a patient with the DNAH5 mutation. The motile cilia in the organoid were observed and could be stably maintained for an extended time. We further found abnormal ciliary function and a decreased immune response caused by the DNAH5 mutation through single-cell RNA sequencing (scRNA-Seq) and proteomic analyses. Additionally, the directed induction of the ciliated cells, regulated by TGF-ß/BMP and the Notch pathway, also increased the expression of inflammatory cytokines. Taken together, these results demonstrated that the combination of multiomics analysis and organoid modelling could reveal the close connection between the immune response and the DNAH5 gene.


Assuntos
Dineínas do Axonema , Síndrome de Kartagener , Criança , Humanos , Dineínas do Axonema/genética , Síndrome de Kartagener/genética , Fator de Crescimento Transformador beta , Multiômica , Proteômica , Organoides , Diferenciação Celular/genética
20.
Sci Rep ; 12(1): 16722, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202966

RESUMO

Eukaryotic cilia/flagella are cellular bio-machines that drive the movement of microorganisms. Molecular motor axonemal dyneins in the axoneme, which consist of an 9 + 2 arrangement of microtubules, play an essential role in ciliary beating. Some axonemal dyneins have been shown to generate torque coupled with the longitudinal motility of microtubules across an array of dyneins fixed to the coverglass surface, resulting in a corkscrew-like translocation of microtubules. In this study, we performed three-dimensional tracking of a microbead coated with axonemal outer-arm dyneins on a freely suspended microtubule. We found that microbeads coated with multiple outer-arm dyneins exhibited continuous right-handed helical trajectories around the microtubule. This unidirectional helical motion differs from that of other types of cytoplasmic dyneins, which exhibit bidirectional helical motility. We also found that, in an in vitro microtubule gliding assay, gliding microtubules driven by outer-arm dyneins tend to turn to the left, causing a curved path, suggesting that the outer-arm dynein itself is able to rotate on its own axis. Two types of torque generated by the axonemal dyneins, corresponding to the forces used to rotate the microtubule unidirectionally with respect to the long and short axes, may regulate ciliary beating with complex waveforms.


Assuntos
Dineínas , Tetrahymena , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Cílios/metabolismo , Dineínas do Citoplasma , Dineínas/metabolismo , Microtúbulos/metabolismo , Tetrahymena/metabolismo , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA