RESUMO
Several markers of pancreatobiliary lineage have been described in the literature. However, none have demonstrated sufficient specificity and sensitivity to warrant diagnostic use. We evaluated the utility of T-complex-associated-testis-expressed 3 (TCTE3) as a pancreatobiliary marker. A set of 247 adenocarcinomas from the gastrointestinal (GI) tract was identified including 18 from the gastroesophageal junction (GEJ), 29 stomach, 17 ampullary, 62 pancreatic, and 16 common bile duct and gallbladder (CBD/GB), 13 non-ampullary small intestine, 32 colon, and 24 rectum. The remainder consisted of 16 cholangiocarcinomas and 20 hepatocellular carcinomas (HCC). Additionally, 163 adenocarcinomas from the breast, gynecologic tract, prostate, urothelium, kidney, and lung were stained for comparison. Immunohistochemistry for TCTE3 and other gastrointestinal markers was performed. Positive expression of TCTE3 was characterized by a strong, well-defined membranous pattern with or without weak cytoplasmic staining. Expression was identified in the normal epithelial cells of pancreatobiliary tree, but staining was absent in normal epithelial cells of esophagus, stomach, and intestine. Hepatocytes, pancreatic acini and islets and other non-epithelial cells were also negative for staining. TCTE3 was expressed in 93.5% of pancreatic ductal adenocarcinomas, 37.5% of CBD/GB adenocarcinomas, 50% of cholangiocarcinomas, 76.4% of ampullary adenocarcinomas, and 33.3% of GEJ adenocarcinomas. Only 3.5% of the gastric, 7.7% of non-ampullary small intestinal and 6.25% of colonic tumors exhibited positive staining. Expression was absent in rectal carcinomas and HCCs. These results suggest that TCTE3 is a useful marker of pancreatobiliary differentiation and may aid in distinguishing these tumors from gastric and intestinal primary tumors.
Assuntos
Adenocarcinoma/química , Neoplasias do Sistema Biliar/química , Biomarcadores Tumorais/análise , Dineínas do Citoplasma/análise , Neoplasias Pancreáticas/química , Adenocarcinoma/patologia , Neoplasias do Sistema Biliar/patologia , Diagnóstico Diferencial , Dineínas , Feminino , Humanos , Imuno-Histoquímica , Masculino , Neoplasias Pancreáticas/patologia , Valor Preditivo dos Testes , Análise Serial de TecidosRESUMO
CD-1 (cytoplasmic dynein-1) is a multisubunit motor protein complex involved in intracellular trafficking and mitosis. The dynein LIC (light intermediate chain) subunits, LIC1 (DLIC-1, gene symbol DYNC1LI1) and LIC2 (DLIC-2, gene symbol DYNC1LI2), associate with the dynein HC (heavy chain) in a mutually exclusive manner and thus define distinct functional CD-1 complexes. Here, we analysed the mitotic distribution of LIC1 and LIC2. We found that from metaphase through anaphase, LIC1 localizes to the mitotic spindle and concentrates within the midbody during the abscission step of cytokinesis. Conversely, LIC2 strongly localizes to the spindle poles from prophase through telophase. These data suggest distinct functions for LIC1 and LIC2-containing CD-1 complexes during cell division.