Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Food Chem ; 448: 139145, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555692

RESUMO

This study aimed to prepare an all-natural water-in-oil high internal phase Pickering emulsion (W/O-HIPPE) using diosgenin/soybean phosphatidylethanolamine complex (DGSP) and investigate the 3D printing performance. Results suggested that the self-assembly of diosgenin crystal was modified by SP in DGSP (diosgenin-SP ratios at 3:1 and 1:1), revealing a variation from large-size outward radiating needle-like to small-size granular-like shape, which facilitated closely packing at the interface. Hydrophilicity of DGSP was also increased (contact angle varying from 133.3 o to 106.4 o), ensuring more adequate interfacial adsorption to reduce interfacial tension more largely (6.5 mN/m). Thus, the W/O-HIPPE made by DGSP with diosgenin-SP = 1:1, exhibited smaller droplets and better freeze/thawing stability. The W/O-HIPPE was also measured improved rheological properties for 3D printing: satisfied shear-thinning behavior, higher recovery and self-supporting (viscoelasticity and deformation resistance). Consequently, the W/O-HIPPE allowed for printing more delicate patterns. This work provided guidance to prepare W/O-HIPPE for 3D printing.


Assuntos
Diosgenina , Emulsões , Fosfatidiletanolaminas , Impressão Tridimensional , Água , Emulsões/química , Diosgenina/química , Fosfatidiletanolaminas/química , Água/química , Glycine max/química , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas , Reologia
2.
Biol Cell ; 116(3): e2300052, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408271

RESUMO

BACKGROUND INFORMATION: Antiproliferative and apoptotic activities have been attributed to the phytosteroid diosgenin ((25R)-spirost-5-en-3ß-ol; 1). It is known that combining glucose with two rhamnoses (the chacotrioside framework) linked to diosgenin increases its apoptotic activity. However, the effects of diosgenin glucosamine glycosides on different cancer cell types and cell death have not been entirely explored. RESULTS: This study reports the antiproliferative, cytotoxic, and apoptotic activities of diosgenin and its glycosylated derivative ((25R)-spirost-5-en-3ß-yl ß-D-glucopyranoside; 2). It also explores the effects of two diosgenin glucosamine derivates, diosgenin 2-acetamido-2-deoxy-ß-D-glucopyranoside (3), and diosgenin 2-amino-2-deoxy-ß-D-glucopyranoside hydrochloride (4), on different cancer cell lines. We found that all the compounds affected proliferative activity with minimal toxicity. In addition, all cancer cell lines showed morphological and biochemical characteristics corresponding to an apoptotic process. Apoptotic cell death was higher in all cell lines treated with compounds 2, 3 and 4 than in those treated with diosgenin. Moreover, compounds 3 and 4 induced apoptosis better than compounds 1 and 2. These results suggest that combining glucosamine with modified glucosamine attached to diosgenin has a greater apoptotic effect than diosgenin or its glycosylated derivative (compound 2). Furthermore, diosgenin and the abovementioned glycosides had a selective effect on tumour cells since the proliferative capacity of human lymphocytes, keratinocytes (HaCaT) and epithelial cells (CCD841) was not significantly affected. CONCLUSIONS: Altogether, these results demonstrate that diosgenin glucosamine compounds exert an antiproliferative effect on cancer cell lines and induce apoptotic effects more efficiently than diosgenin alone without affecting non-tumour cells. SIGNIFICANCE: This study evidences the pro-apoptotic and selective activities of diosgenyl glucosamine compounds in cancer cell lines.


Assuntos
Antineoplásicos , Diosgenina , Neoplasias , Humanos , Glucosamina/farmacologia , Diosgenina/farmacologia , Diosgenina/química , Glicosídeos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
3.
Int J Biol Macromol ; 254(Pt 3): 127975, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944715

RESUMO

The discovery of effective therapeutic approaches with minimum side effects and their tendency to completely eradicate the disease is the main challenge in the history of cancer treatment. Fenugreek (FGK) seeds are a rich source of phytochemicals, especially Diosgenin (DGN), which shows outstanding anticancer activities. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Diosgenin (DGN-ChAgNPs) were synthesized and evaluated for their anticancer activity against breast cancer cell line (MCF-7). For the physical characterization, the hydrodynamic diameter and zeta potential of DGN-ChAgNPs were determined to be 160.4 ± 12 nm and +37.19 ± 5.02 mV, respectively. Transmission electron microscopy (TEM) showed that nanoparticles shape was mostly round with smooth edges. Moreover, DGN was efficiently entrapped in nanoformulation with good entrapment efficacy (EE) of ~88 ± 4 %. The in vitro anti-proliferative activity of DGN-ChAgNPs was performed by sulforhodamine B (SRB) assay with promising inhibitory concentration of 6.902 ± 2.79 µg/mL. DAPI staining, comet assay and flow cytometry were performed to validate the anticancer potential of DGN-ChAgNPs both qualitatively and quantitatively. The percentage of survival rate and tumor reduction weight was evaluated in vivo in different groups of mice. Cisplatin was used as a standard anticancer drug. The DGN-ChAgNPs (12.5 mg/kg) treated group revealed higher percentage of survival rate and tumor reduction weight as compared to pure DGN treated group. These findings suggest that DGN-ChAgNPs could be developed as potential treatment therapy for breast cancer.


Assuntos
Antineoplásicos , Quitosana , Diosgenina , Nanopartículas Metálicas , Nanopartículas , Animais , Camundongos , Quitosana/química , Prata , Diosgenina/farmacologia , Diosgenina/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química
4.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176134

RESUMO

Dioscorea zingiberensis is a perennial herb famous for the production of diosgenin, which is a valuable initial material for the industrial synthesis of steroid drugs. Sterol C26-hydroxylases, such as TfCYP72A616 and PpCYP72A613, play an important role in the diosgenin biosynthesis pathway. In the present study, a novel gene, DzCYP72A12-4, was identified as C26-hydroxylase and was found to be involved in diosgenin biosynthesis, for the first time in D. zingiberensis, using comprehensive methods. Then, the diosgenin heterogenous biosynthesis pathway starting from cholesterol was created in stable transgenic tobacco (Nicotiana tabacum L.) harboring DzCYP90B71(QPZ88854), DzCYP90G6(QPZ88855) and DzCYP72A12-4. Meanwhile, diosgenin was detected in the transgenic tobacco using an ultra-performance liquid chromatography system (Vanquish UPLC 689, Thermo Fisher Scientific, Bremen, Germany) tandem MS (Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer, Thermo Fisher Scientific, Bremen, Germany). Further RT-qPCR analysis showed that DzCYP72A12-4 was highly expressed in both rhizomes and leaves and was upregulated under 15% polyethylene glycol (PEG) treatment, indicating that DzCYP72A12-4 may be related to drought resistance. In addition, the germination rate of the diosgenin-producing tobacco seeds was higher than that of the negative controls under 15% PEG pressure. In addition, the concentration of malonaldehyde (MDA) was lower in the diosgenin-producing tobacco seedlings than those of the control, indicating higher drought adaptability. The results of this study provide valuable information for further research on diosgenin biosynthesis in D. zingiberensis and its functions related to drought adaptability.


Assuntos
Dioscorea , Diosgenina , Animais , Diosgenina/química , Dioscorea/química , Secas , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão , Animais Geneticamente Modificados , Oxigenases de Função Mista/metabolismo
5.
Steroids ; 197: 109256, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37217088

RESUMO

Diosgenin and its derivatives have proved a huge importance in diverse biological activities. The optimized production of the diastereoisomers of the epoxide of diosgenin acetate by means of mCPBA is reported herein. This transformation had a previous design of experiments using the application of a statistical factorial DoE of 4 parameters (nk), where one variable is varied at a time, while others stay constant. The temperature showed the greatest effect on the reaction yield; so, at 298 K the diastereomeric ratio 3:1 of α and ß-epoxides, normally found, was raised to 1:1. Time was the second significant variable, but due to its high correlation with temperature, 30 min were required for a global 90% conversion at least. These diastereoisomers were characterized both isolated and in the mixtures obtained, to determine their antioxidant, antimicrobial and antiproliferative activity, finding a low antioxidant capacity by DPPH, but antimicrobial activity at the level of penicillin in gram negative bacteria by 1ß better to 1α. The antiproliferative capacity was higher for diastereoisomer ß, agreeing with the proportion of the mixture obtained by different conditions, increasing this in relation to the amount of this diastereoisomer present in hormone-dependent cancer cell lines such as Hela, PC-3 and MCF-7, with 10.0 µM obtained values of viability at 21.8 %, 35.8 % and 12.3 % respectively. DoE optimization allows to manipulate the ratio between diastereoisomers with the minimum number of experiments, extending the analysis of the effect of the ratio between diastereoisomers and the in silico potential as well as the biological activity.


Assuntos
Anti-Infecciosos , Diosgenina , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Diosgenina/química , Linhagem Celular Tumoral , Anti-Infecciosos/química , Células HeLa
6.
Steroids ; 190: 109133, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36328088

RESUMO

Diosgenin is of significant interest due to its biological activity and synthetic application. In this study, we report the synthesis of a series of spirostanic 1,4,5-trisubstituted 1,2,3-triazoles by the three component reaction of (25R)-6-azidospirostan-3,5-diols with acetophenones and aryl aldehydes. The one-pot two step synthesis proceeds through the in situ formation of (E)-chalcones and copper catalyzed reaction with organic azides in DMF medium. Structural diversity was achieved by varying the aldehyde and acetophenone nature as well as the spirostanic azide stereochemistry. The results of in vitro biological assays showed that fully decorated spirostanic 1,2,3-triazoles exerted significant and selective antiproliferative activity against MCF-7, glioblastoma (SNB-19, T98G, A-172) and neuroblastoma (IMR-32, SH-SYSY) (HCT116) cell lines (GI50 in the single-digit micromolar range). The data revealed that benzoyl and aryl substitutions in the triazole ring introduced at the 6ß-position significantly improved the anti-tumor activity of (25R)-6-azidospirostan-3ß,5α-diols. This position on the spirostan core may be the favourable to synthesize of potent anticancer leads from diosgenin.


Assuntos
Antineoplásicos , Diosgenina , Diosgenina/química , Azidas/química , Aldeídos/química , Triazóis/química , Antineoplásicos/química , Acetofenonas
7.
Biofactors ; 48(1): 22-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34919768

RESUMO

Dioscin has gained immense popularity as a natural, bioactive steroid saponin, which offers numerous medical benefits. The growing global incidence of disease-associated morbidity and mortality continues to compromise human health, facilitating an increasingly urgent need for nontoxic, noninvasive, and efficient treatment alternatives. Natural compounds can contribute vastly to this field. Over recent years, studies have demonstrated the remarkable protective actions of dioscin against a variety of human malignancies, metabolic disorders, organ injuries, and viral/fungal infections. The successful usage of this phytocompound has been widely seen in medical treatment procedures under traditional Chinese medicine, and it is becoming progressively prevalent worldwide. This review provides an insight into the wide spectrum of pharmacological activities of dioscin, as reported and compiled in recent literature. The various novel approaches and applications of dioscin also verify the advantages exhibited by plant extracts against commercially available drugs, highlighting the potential of phytochemical agents like dioscin to be further incorporated into clinical practice.


Assuntos
Diosgenina , Neoplasias , Saponinas , Diosgenina/análogos & derivados , Diosgenina/química , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Extratos Vegetais/química
8.
J Steroid Biochem Mol Biol ; 216: 106038, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861390

RESUMO

In discovering new powerful antitumor agents, two series of novel diosgenin-amino acid-benzoic acid mustard trihybrids (7a-7 g and 12a-12 g) were designed and synthesized. The antiproliferative activities were tested against five human tumor cell lines and one normal cell line using CCK-8 assays. Among the trihybrids, 12e was the most promising compound, which inhibited T24 cells with IC50 value of 6.96 µM, and was stronger than its parent compound diosgenin (IC50 = 32.33 µM). In addition, 12e had weak cytotoxicity on the normal GES-1 cell line (IC50 = 213.74 µM). Moreover, 12e could cause G2/M cell cycle arrest, increase the percentage of apoptosis, induce mitochondrial depolarization, and promote reactive oxygen species generation in T24 cells. Further studies on antitumor mechanism demonstrated that 12e triggered the intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathways. More importantly, 12e could inhibit T24 cell proliferation in an in vivo zebrafish xenograft model. Therefore, 12e, as a novel trihybrid with potent cytotoxicity, might be applied as a promising skeleton for antitumor agents, which deserved further optimization.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ácido Benzoico/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diosgenina/farmacologia , Células A549 , Aminoácidos/química , Aminoácidos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Ácido Benzoico/química , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Diosgenina/química , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mostardeira/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
9.
Eur J Med Chem ; 217: 113361, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740546

RESUMO

Diosgenin (DSG) has attracted attention recently as a potential anticancer therapeutic agent due to its profound antitumor activity. To better utilize DSG as an antitumor compound, two series of DSG-amino acid ester derivatives (3a-3g and 7a-7g) were designed and synthesized, and their cytotoxic activities against six human cancer cell lines (K562, T24, MNK45, HepG2, A549, and MCF-7) were evaluated. The results obtained showed that a majority of derivatives exhibited cytotoxic activities against these six human tumor cells. Structure-activity relationship analysis revealed that the introduction of l-tryptophan to the C-3 position of DSG and the C-26 position of derivative 5 was the preferred option for these compounds to display significant cytotoxic activities. Among them, compound 7g exhibited significant cytotoxicity against the K562 cell line (IC50 = 4.41 µM) and was 6.8-fold more potent than diosgenin (IC50 = 30.04 µM). Further cellular mechanism studies in K562 cells elucidated that compound 7g triggered mitochondrial-related apoptosis by increasing the generation of intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), which was associated with upregulation of the gene and protein expression levels of Bax, downregulation of the gene and protein expression levels of Bcl-2 and activation of the caspase cascade. The above results suggested that compound 7g might be considered a promising scaffold for further modification of more potent anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diosgenina/farmacologia , Desenho de Fármacos , Mitocôndrias/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Diosgenina/síntese química , Diosgenina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Food Chem Toxicol ; 151: 112101, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33684518

RESUMO

Diosgenin (DG) isolated from yam roots revealed various bioactivities and applications as drug carrier. In the present study, a conjugate of DG with cytarabine (Ara-C) was used to prepare the self-assembled nanoparticles (NPs) of DG-Ara-C by a nanoprecipitation method. Dynamic light scattering (DLS) as well as transmission electron microscopy (TEM) were employed to analyze the size and the morphology of NPs, respectively. The stability and absorption of DG-Ara-C NPs were measured. Additionally, the cytotoxicity of the NPs was determined via MTT assay. The results indicated that the average particle size of DG-Ara-C NPs was around 190 nm with a narrow size distribution (PDI = 0.1). TEM showed that DG-Ara-C NPs had a spherical morphology. Compared to free DG or Ara-C, the self-assembled DG-Ara-C NPs exhibited a better anti-tumor activity against solid tumor cells as well as leukemia cells. In conclusion, DG possesses dual role in the self-assembled NPs of DG-Ara-C conjugate, being as a promising anticancer drug and drug carrier.


Assuntos
Antimetabólitos Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Citarabina/química , Diosgenina/química , Nanopartículas/química , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citarabina/administração & dosagem , Citarabina/farmacologia , Diosgenina/administração & dosagem , Diosgenina/farmacologia , Portadores de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
11.
ChemMedChem ; 16(9): 1488-1498, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33476082

RESUMO

To systematically evaluate the impact of neoglycosylation upon the anticancer activities and selectivity of steroids, four series of neoglycosides of diosgenin, pregnenolone, dehydroepiandrosterone and estrone were designed and synthesized according to the neoglycosylation approach. The structures of all the products were elucidated by NMR analysis, and the stereochemistry of C20-MeON-pregnenolone was confirmed by crystal X-ray diffraction. The compounds' cytotoxicity on five human cancer cell lines was evaluated using a Cell Counting Kit-8 assay, and structure-activity relationships (SAR) are discussed. 2-deoxy-d-glucoside 5 k displayed the most potent antiproliferative activities against HepG2 cells with an IC50 value of 1.5 µM. Further pharmacological experiments on compound 5 k on HepG2 cells revealed that it could cause morphological changes and cell-cycle arrest at the G0/G1 phase and then induced the apoptosis, which might be associated with the enhanced expression of high-mobility group Box 1 (HMGB1). Taken together, these findings prove that the neoglycosylation of steroids could be a promising strategy for the discovery of potential antiproliferative agents.


Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Glicoconjugados/química , Esteroides/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Diosgenina/química , Ensaios de Seleção de Medicamentos Antitumorais , Estrona/química , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glicoconjugados/síntese química , Glicoconjugados/farmacologia , Proteína HMGB1/metabolismo , Humanos , Conformação Molecular , Pregnenolona/química , Relação Estrutura-Atividade
12.
J Ethnopharmacol ; 270: 113842, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33460752

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional medicinal plants have gained attention as a potential therapeutic agent to combat cancer and inflammation. Diosgenin rich fresh extracts of Paris polyphylla rhizome from Indian Himalaya is traditionally used as wound healing, anti-bleeding, anti-inflammatory and anti-cancer agent by the folk healers. AIM OF THE STUDY: Present study was aimed to prepare two types of extracts from Paris polyphylla rhizome of Indian Himalayan landraces - 1. ethanolic extract of Paris polyphylla rhizome (EEPPR) and 2. Diosgenin enriched Paris polyphylla rhizome extract (DPPE), quantification of diosgenin content, and to evaluate their in vitro anti-oxidant, in vivo anti-inflammatory and in vitro cytotoxicity and anti-cancer activities of the DPPE. MATERIALS AND METHODS: Diosgenin content of EEPPR was quantified through GC-MS while diosgenin content of DPPE was quantified through HPTLC, and the diosgenin yield from EEPPR and DPPE were compared. In vitro antioxidant activities of DPPE were performed using DPPH, NOD, RP and SOD assay while in vivo anti-inflammatory activity of DPPE were evaluated in dextran induced hind paw edema in rats. In vitro cytotoxicity and anti-cancer activities of DPPE were evaluated in human breast cancer cell lines (MCF-7, MDA-MB-231), cervical cancer cell lines (HeLa) and Hep-2 cell lines. RESULTS: EEPPR obtained through cold extraction method using 70% ethanol showed maximum diosgenin content of 17.90% quantified through GC-MS while similar compounds pennogenin (3.29%), 7ß-Dehydrodiosgenin (1.90%), 7-Ketodiosgenin acetate (1.14%), and 7 ß-hydroxydiosgenin (0.55%) were detected in low concentration, and thus confirmed diosgenin as major and lead phytochemical. However, DPPE obtained through both cold and repeated hot extraction with the same solvent (70% ethanol) showed diosgenin content of 60.29% which is significantly higher (p < 0.001) than the diosgenin content in EEPPR. DPPE demonstrated significant in vitro antioxidant activities by dose-dependently quenched (p < 0.001) SOD free radicals by 76.66%, followed by DPPH (71.43%), NOD (67.35%), and RP (63.74%) at a max concentration of 2 µg/µl of ascorbic acid and test drugs with remarkable IC50 values (p < 0.01). Further, DPPE also showed potent anti-inflammatory activities by dose-dependently suppressed dextran induced paw edema in rats (p < 0.01) from 2 h to 4 h. DPPE suppressed the proliferation of MCF-7, MDA-MB-231, Hep-2 and HeLa cell lines. Maximum activity was observed in MCF-7 cells. The DPPE also induced apoptosis in MCF-7 cell lines as measured by AO/PI and DAPI staining, as well as DNA laddering, cell cycle analysis and phosphatidylserine externalization assay. The growth-inhibitory effect of DPPE on MCF-7 breast cancer cells was further confirmed from the colony-formation assay. DPPE upregulated expression of Bax and downregulated Bcl-2 and survivin mRNA transcripts. CONCLUSION: DPPE obtained through both cold and repeated hot extraction using ethanol showed significantly higher content of diosgenin than the diosgenin content detected in EEPPR. However, diosgenin yield of both the extracts (EEPPR & DPPE) clearly confirmed diosgenin as major and lead phytochemical of Paris polyphylla rhizome of Indian Himalayan landraces. Further, DPPE also demonstrated potent in vitro anti-oxidative and in vivo anti-inflammatory activities and showed in vitro cytotoxicity and significant anti-cancer (apoptosis) effects in MCF-7 breast cancer cells.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Diosgenina/farmacologia , Melanthiaceae/química , Extratos Vegetais/farmacologia , Rizoma/química , Animais , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dextranos/toxicidade , Diosgenina/química , Diosgenina/isolamento & purificação , Diosgenina/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Humanos , Índia , Masculino , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos Wistar , Survivina/genética , Ensaio Tumoral de Célula-Tronco , Proteína X Associada a bcl-2/genética
13.
J Steroid Biochem Mol Biol ; 205: 105776, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130020

RESUMO

Solasodine analogues containing a seven-membered F ring with a nitrogen atom placed at position 22a were prepared from diosgenin or tigogenin in a four-step synthesis comprising of the simultaneous opening of the F-ring and introduction of cyanide in position 22α, activation of the 26-hydroxyl group as mesylate, nitrile reduction, and N-cyclization. Solasodine, six obtained 22a(N)-homo analogues, as well as four 26a-homosolasodine derivatives and their open-chain precursors (13 in total) were tested as potential inhibitors of acetyl- and butyryl-cholinesterases and showed activity at micromolar concentrations. The structure-activity relationship study revealed that activities against studied esterases are affected by the structure of E/F rings and the substitution pattern of ring A. The most potent compound 8 acted as non-competitive inhibitors and exerted IC50 = 8.51 µM and 7.05 µM for eeAChE and eqBChE, respectively. Molecular docking studies revealed the hydrogen bond interaction of 8 with S293 of AChE; further rings are stabilized via hydrophobic interaction (ring A) or interaction with Y341 and W286 (rings B and C). Biological experiments showed no neurotoxicity of differentiated SH-SY5Y cells. More importantly, results from neuroprotective assay based on glutamate-induced cytotoxicity revealed that most derivatives had the ability to increase the viability of differentiated SH-SY5Y cells in comparison to galantamine and lipoic acid assayed as standards. The newly synthesized solasodine analogues are able to inhibit and to bind cholinesterases in noncompetitive mode of inhibition and exhibited neuroprotection potential of differentiated neuroblastoma cells after Glu-induced toxicity.


Assuntos
Inibidores da Colinesterase/química , Fármacos Neuroprotetores/química , Síndromes Neurotóxicas/tratamento farmacológico , Alcaloides de Solanáceas/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Colinesterases/química , Colinesterases/efeitos dos fármacos , Diosgenina/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/enzimologia , Síndromes Neurotóxicas/patologia , Nitrogênio/química , Alcaloides de Solanáceas/síntese química , Alcaloides de Solanáceas/farmacologia , Relação Estrutura-Atividade
14.
J Nat Prod ; 84(3): 616-629, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33381964

RESUMO

Thirty-two new diosgenin derivatives were designed, synthesized, and evaluated for their cytotoxic activities in three human cancer cell lines (A549, MCF-7, and HepG2) and normal human liver cells (L02) using an MTT assay in vitro. Most compounds, especially 8, 18, 26, and 30, were more potent when compared with diosgenin. The structure-activity relationship results suggested that the presence of a succinic acid or glutaric acid linker, a piperazinyl amide terminus, and lipophilic cations are all beneficial for promoting cytotoxic activity. Notably, compound 8 displayed excellent cytotoxic activity against HepG2 cells (IC50 = 1.9 µM) and showed relatively low toxicity against L02 cells (IC50 = 18.6 µM), showing some selectivity between normal and tumor cells. Studies on its cellular mechanism of action showed that compound 8 induces G0/G1 cell cycle arrest and apoptosis in HepG2 cells. Predictive studies indicated that p38α mitogen-activated protein kinase (MAPK) is the optimum target of 8 based on its 3D molecular similarity, and docking studies showed that compound 8 fits well into the active site of p38α-MAPK and forms relatively strong interactions with the surrounding amino acid residues. Accordingly, compound 8 may be used as a promising lead compound for the development of new antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Diosgenina/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Diosgenina/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
15.
Int J Nanomedicine ; 15: 6545-6560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32943867

RESUMO

BACKGROUND: The metastasis, one of the biggest barriers in cancer therapy, is the leading cause of tumor deterioration and recurrence. The anti.-metastasis has been considered as a feasible strategy for clinical cancer management. It is well known that diosgenin could inhibit tumor metastasis and doxorubicin (DOX) could induce tumor apoptosis. However, their efficient delivery remains challenging. PURPOSE: To address these issues, a novel pH-sensitive polymer-prodrug based on diosgenin nanoparticles (NPs) platform was developed to enhance the efficiency of DOX delivery (DOX/NPs) for synergistic therapy of cutaneous melanoma, the most lethal form of skin cancer with high malignancy, early metastasis and high mortality. METHODS AND RESULTS: The inhibitory effect of DOX/NPs on tumor proliferation and migration was superior to that of NPs or free DOX. What is more, DOX/NPs could combine mitochondria-associated metastasis and apoptosis with unique internalization pathway of carrier to fight tumors. In addition, biodistribution experiments proved that DOX/NPs could efficiently accumulate in tumor sites through enhancing permeation and retention (EPR) effect compared with free DOX. Importantly, the data from in vivo experiment revealed that DOX/NPs without heart toxicity significantly inhibited tumor metastasis by exerting synergistic therapeutic effect, and reduced tumor volume and weight by inducing apoptosis. CONCLUSION: The nanocarrier DOX/NPs with satisfying pharmaceutical characteristics based on the establishment of two different functional agents is a promising strategy for synergistically enhancing effects of cancer therapy.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Melanoma/tratamento farmacológico , Nanopartículas/química , Pró-Fármacos/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Diosgenina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Masculino , Melanoma/patologia , Melanoma/secundário , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Pró-Fármacos/farmacologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/secundário , Distribuição Tecidual , Melanoma Maligno Cutâneo
16.
Molecules ; 25(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756514

RESUMO

The target diosgenin-betulinic acid conjugates are reported to investigate their ability to enhance and modify the pharmacological effects of their components. The detailed synthetic procedure that includes copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction), and palladium-catalyzed debenzylation by hydrogenolysis is described together with the results of cytotoxicity screening tests. Palladium-catalyzed debenzylation reaction of benzyl ester intermediates was the key step in this synthetic procedure due to the simultaneous presence of a 1,4-disubstituted 1,2,3-triazole ring in the molecule that was a competing coordination site for the palladium catalyst. High pressure (130 kPa) palladium-catalyzed procedure represented a successful synthetic step yielding the required products. The conjugate 7 showed selective cytotoxicity in human T-lymphoblastic leukemia (CEM) cancer cells (IC50 = 6.5 ± 1.1 µM), in contrast to the conjugate 8 showing no cytotoxicity, and diosgenin (1), an adaptogen, for which a potential to be active on central nervous system was calculated in silico. In addition, 5 showed medium multifarious cytotoxicity in human T-lymphoblastic leukemia (CEM), human cervical cancer (HeLa), and human colon cancer (HCT 116). Betulinic acid (2) and the intermediates 3 and 4 showed no cytotoxicity in the tested cancer cell lines. The experimental data obtained are supplemented by and compared with the in silico calculated physico-chemical and absorption, distribution, metabolism, and excretion (ADME) parameters of these compounds.


Assuntos
Antineoplásicos/síntese química , Diosgenina/química , Triterpenos Pentacíclicos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reação de Cicloadição , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrogenação , Paládio/química , Pressão , Relação Estrutura-Atividade , Ácido Betulínico
17.
Biomed Res Int ; 2020: 5149417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733943

RESUMO

To investigate whether Polyphyllin I (PPI) might induce the autophagy and apoptosis of melanoma cells by regulating PI3K/Akt/mTOR signal pathway. Melanoma A375 cells were incubated with different concentrations of Polyphyllin I (0, 1.5, 3.0, and 6.0 mg/L) and PI3K/Akt/mTOR signaling pathway activator IGF-1(20 mg/L). CCK-8 assay was utilized to detect cell proliferation; Cell apoptosis and cell cycle were measured by flow cytometry; Western blot was used to examine the expressions of proteins. Immunofluorescence analysis was performed to evaluate autophagy of A375 cells; In addition, xenograft-bearing nude mice were applied to study the role of Polyphyllin I on melanoma development, melanoma cell proliferation, as well as melanoma cell apoptosis in vivo. The outcomes represented that Polyphyllin I promoted A375 cell apoptosis via upregulating Bax level and cleaved caspase-3 level and downregulating Bcl-2 level, inhibited the growth of A375 cells at the G0/G1 phase, and enhanced cell autophagy via regulating the levels of Beclin 1, LC3II, and p62. However, IGF-1 (an activator of PI3K/Akt/mTOR signal pathway) attenuated these changes that Polyphyllin I induced. Furthermore, the xenograft model experiment confirmed that Polyphyllin I treatment suppressed xenograft tumor growth, increased apoptotic index evaluated by the TUNEL method, and reduced the level of Ki67 in tumor tissues in vivo. In conclusion, Polyphyllin I treatment enhanced melanoma cell autophagy and apoptosis, as well as blocked melanoma cell cycle via suppressing PI3K/Akt/mTOR signal pathway. Meanwhile, Polyphyllin I treatment suppressed the development of melanoma in vivo. Therefore, Polyphyllin I possibly is a promising molecular targeted agent used in melanoma therapy.


Assuntos
Apoptose/efeitos dos fármacos , Diosgenina/análogos & derivados , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diosgenina/química , Diosgenina/farmacologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Drug Des Devel Ther ; 14: 2135-2147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32546976

RESUMO

PURPOSE: Dioscin, a natural glycoside derived from many plants, has been proved to exert anti-cancer activity. Several studies have found that it reverses TGF-ß1-induced epithelial-mesenchymal transition (EMT). Whether dioscin can reverse EMT by pathways other than TGF-ß is still unknown. METHODS: We used network-based pharmacological methods to systematically explore the potential mechanisms by which dioscin acts on lung cancer. Cell Counting Kit-8 assay, scratch healing, Transwell assay, Matrigel invasion assay, immunofluorescence assay, and Western blotting were employed to confirm the prediction of key targets and the effects of dioscin on EMT. RESULTS: Here, using network-based pharmacological methods, we found 42 possible lung cancer-related targets of dioscin, which were assigned to 98 KEGG pathways. Among the 20 with the lowest p-values, the PI3K-AKT signaling pathway is involved and significantly related to EMT. AKT1 and mTOR, with high degrees (reflecting higher connectivity) in the compound-target analysis, participate in the PI3K-AKT signaling pathway. Molecular docking indicated the occurrence of dioscin-AKT1 and dioscin-mTOR binding. Functional experiments demonstrated that dioscin suppressed the proliferation, migration, invasion, and EMT of human lung adenocarcinoma cells in a dose-dependent manner, without TGF-ß stimulation. Furthermore, we determined that dioscin downregulated p-AKT, p-mTOR and p-GSK3ß in human lung adenocarcinoma cells without affecting their total protein levels. The PI3K inhibitor LY294002 augmented these changes. CONCLUSION: Dioscin suppressed proliferation, invasion and EMT of lung adenocarcinoma cells via the inactivation of AKT/mTOR/GSK3ß signaling, probably by binding to AKT and mTOR, and inhibiting their phosphorylation.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Diosgenina/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diosgenina/química , Diosgenina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
19.
Drug Dev Ind Pharm ; 46(6): 916-930, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32362146

RESUMO

Tumor invasion and metastasis are the nodus of anti-tumor. Epithelial cell-mesenchymal transition is widely regarded as one of the key steps in the invasion and metastasis of breast cancer. In this study, GGP modified daunorubicin plus dioscin liposomes are constructed and characterized. GGP modified daunorubicin plus dioscin liposome has suitable particle size, narrow PDI, zeta potential of about -5 mV, long cycle effect, and enhanced cell uptake due to surface modification of GGP making the liposome could enter the inside of the tumor to fully exert its anti-tumor effect. The results of in vitro experiments show that the liposome has superior killing effect on tumor cells and invasion. In vivo results indicate that the liposome prolongs the drug's prolonged time in the body and accumulates at the tumor site with little systemic toxicity. In short, the targeted liposome can effectively inhibit tumor invasion and may provide a new strategy for the treatment of invasive breast cancer.


Assuntos
Neoplasias da Mama , Daunorrubicina/química , Diosgenina/análogos & derivados , Transição Epitelial-Mesenquimal , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Diosgenina/química , Humanos , Lipossomos
20.
Mater Sci Eng C Mater Biol Appl ; 109: 110621, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228903

RESUMO

The current study explores the facile fabrication of multilayer self-assembled electrostatic oil-in-water Pickering emulsions (PEs) using quaternized nanocellulose (Q-NC) and diosgenin-conjugate alginate (DGN-ALG) particles as stabilizers to form hydrocolloid nanocarriers. The conditions of formulation such as storage time, pH, temperature and salt effect on the emulsion stability were evaluated. The results deduced showed good emulsion droplet stability over a period of 30 days. Morphological analysis revealed the hydrodynamic sizes of the PE droplets to be spherically shaped with an average diameter of 150 ± 3.51 nm. Creaming index, wettability and critical aggregation concentrations (CAC) as well as chemical characterization of the PEs were examined. In vitro release kinetics of encapsulated quinalizarin as a model drug was investigated with a determined cumulative drug release (CDR) of 89 ± 1.21% in simulated pH blood medium of pH 7.4. In addition, cellular internalization of the PEs was studied via confocal microscopy imaging and showed high cellular uptake. Also, evaluated in vitro cytotoxicity by MTT assay demonstrated excellent anticancer activity in human lung (A549) and breast (MCF-7) cancer cell lines.


Assuntos
Alginatos , Antraquinonas , Neoplasias da Mama/tratamento farmacológico , Celulose , Diosgenina , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Alginatos/química , Alginatos/farmacocinética , Alginatos/farmacologia , Antraquinonas/química , Antraquinonas/farmacocinética , Antraquinonas/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Celulose/química , Celulose/farmacocinética , Celulose/farmacologia , Diosgenina/química , Diosgenina/farmacocinética , Diosgenina/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA