Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 755
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 367, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918838

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is an important cause of female infertility and seriously impacts the physical and psychological health of patients. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSCs-Exs, H-Exs) have exhibited protective effects on ovarian function with unclear mechanisms. METHODS: A comprehensive analysis of the Gene Expression Omnibus (GEO) database were used to identify POI-associated circRNAs and miRNAs. The relationship between HucMSC-derived exosomal circBRCA1/miR-642a-5p/FOXO1 axis and POI was examined by RT-qPCR, Western blotting, reactive oxygen species (ROS) staining, senescence-associated ß-gal (SA-ß-gal) staining, JC-1 staining, TEM, oxygen consumption rate (OCR) measurements and ATP assay in vivo and in vitro. RT-qPCR detected the expression of circBRCA1 in GCs and serum of patients with normal ovarian reserve function (n = 50) and patients with POI (n = 50); then, the correlation of circBRCA1 with ovarian reserve function indexes was analyzed. RESULTS: Herein, we found that circBRCA1 was decreased in the serum and ovarian granulosa cells (GCs) of patients with POI and was associated with decreased ovarian reserve. H-Exs improved the disorder of the estrous cycles and reproductive hormone levels, reduced the number of atretic follicles, and alleviated the apoptosis and senescence of GCs in rats with POI. Moreover, H-Exs mitigated mitochondrial damage and reversed the reduced circBRCA1 expression induced by oxidative stress in GCs. Mechanistically, FTO served as an eraser to increase the stability and expression of circBRCA1 by mediating the m6A demethylation of circBRCA1, and exosomal circBRCA1 sponged miR-642a-5p to block its interaction with FOXO1. CircBRCA1 insufficiency aggravated mitochondrial dysfunction, mimicking FTO or FOXO1 depletion effects, which was counteracted by miR-642a-5p inhibition. CONCLUSION: H-Exs secreted circBRCA1 regulated by m6A modification, directly sponged miR-642a-5p to upregulate FOXO1, resisted oxidative stress injuries in GCs and protected ovarian function in rats with POI. Exosomal circBRCA1 supplementation may be a general prospect for the prevention and treatment of POI.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Exossomos , Células da Granulosa , MicroRNAs , Estresse Oxidativo , Insuficiência Ovariana Primária , RNA Circular , Feminino , Células da Granulosa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Ratos , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo , Adulto
2.
Proc Natl Acad Sci U S A ; 121(25): e2404457121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865275

RESUMO

The fat mass and obesity-associated fatso (FTO) protein is a member of the Alkb family of dioxygenases and catalyzes oxidative demethylation of N6-methyladenosine (m6A), N1-methyladenosine (m1A), 3-methylthymine (m3T), and 3-methyluracil (m3U) in single-stranded nucleic acids. It is well established that the catalytic activity of FTO proceeds via two coupled reactions. The first reaction involves decarboxylation of alpha-ketoglutarate (αKG) and formation of an oxyferryl species. In the second reaction, the oxyferryl intermediate oxidizes the methylated nucleic acid to reestablish Fe(II) and the canonical base. However, it remains unclear how binding of the nucleic acid activates the αKG decarboxylation reaction and why FTO demethylates different methyl modifications at different rates. Here, we investigate the interaction of FTO with 5-mer DNA oligos incorporating the m6A, m1A, or m3T modifications using solution NMR, molecular dynamics (MD) simulations, and enzymatic assays. We show that binding of the nucleic acid to FTO activates a two-state conformational equilibrium in the αKG cosubstrate that modulates the O2 accessibility of the Fe(II) catalyst. Notably, the substrates that provide better stabilization to the αKG conformation in which Fe(II) is exposed to O2 are demethylated more efficiently by FTO. These results indicate that i) binding of the methylated nucleic acid is required to expose the catalytic metal to O2 and activate the αKG decarboxylation reaction, and ii) the measured turnover of the demethylation reaction (which is an ensemble average over the entire sample) depends on the ability of the methylated base to favor the Fe(II) state accessible to O2.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Ferro , Ácidos Cetoglutáricos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/química , Ferro/metabolismo , Ferro/química , Humanos , Especificidade por Substrato , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , Conformação Proteica , Uracila/metabolismo , Uracila/análogos & derivados , Uracila/química , Simulação de Dinâmica Molecular , Timina/análogos & derivados
3.
Nutrients ; 16(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38892547

RESUMO

BACKGROUND: Variants in fat mass and the obesity-associated protein (FTO) gene have long been recognized as the most significant genetic predictors of body fat mass and obesity. Nevertheless, despite the overall evidence, there are conflicting reports regarding the correlation between different polymorphisms of the FTO gene and body mass index (BMI). Additionally, it is unclear whether FTO influences metabolic syndrome (MetS) through mechanisms other than BMI's impact. In this work, we aimed to analyze the impact of the following FTO polymorphisms on the BMI as well as MetS components in a population of young adult men. METHODS: The patient group consisted of 279 Polish young adult men aged 28.92 (4.28) recruited for the MAGNETIC trial. The single-nucleotide polymorphisms (SNPs), located in the first intron of the FTO gene, were genotyped, and the results were used to identify "protective" and "risk" haplotypes and diplotypes based on the literature data. Laboratory, as well as anthropometric measurements regarding MetS, were performed. Measured MetS components included those used in the definition in accordance with the current guidelines. Data regarding dietary patterns were also collected, and principal components of the dietary patterns were identified. RESULTS: No statistically significant correlations were identified between the analyzed FTO diplotypes and BMI (p = 0.53) or other MetS components (waist circumference p = 0.55; triglycerides p = 0.72; HDL cholesterol p = 0.33; blood glucose p = 0.20; systolic blood pressure p = 0.06; diastolic blood pressure p = 0.21). Stratification by the level of physical activity or adherence to the dietary patterns also did not result in any statistically significant result. CONCLUSIONS: Some studies have shown that FTO SNPs such as rs1421085, rs1121980, rs8050136, rs9939609, and rs9930506 have an impact on the BMI or other MetS components; nevertheless, this was not replicated in this study of Polish young adult males.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Índice de Massa Corporal , Haplótipos , Estilo de Vida , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Adulto , Polônia , Adulto Jovem , Dieta , Predisposição Genética para Doença , Comportamento Alimentar , Padrões Dietéticos
4.
Exp Gerontol ; 193: 112463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38789015

RESUMO

Fat mass and obesity-related (FTO) gene single nucleotide polymorphisms (SNPs) interferes with food preferences that impact macronutrient intake. Few studies have investigated the relationship of this polymorphisms with the intake of micronutrients. Moreover, studies have shown multiple micronutrient deficiencies in patients with obesity. This work evaluated the effect of the FTO rs9939609 gene polymorphism on dietary nutritional quality and food intake of macronutrients and vitamins in of women with obesity candidates for metabolic surgery. The study included 106 women (24 to 60 years old) with BMIs of 36.1 to 64.8 kg/m2. A food frequency questionnaire validated for the local population was applied to obtain information about food intake. The Index of Nutritional Quality (INQ) was used to assess the adequacy of macronutrient and vitamin intake. Energy, protein and lipid intakes were higher in carriers of the A allele compared to TT in the younger age groups but were similar in the class of subjects aged ≥45 years. The INQ for protein was higher in carriers of the A allele than in carriers of the TT allele. The INQs for protein, carbohydrate, vitamins B2, B3 and B6 decreased, whereas the INQ for vitamin C increased with advancing age. The INQ for vitamin A was lower in AA than in TT, regardless of age, whereas vitamin E was higher in younger AA than in older AA. The INQ for vitamin B9 was higher in younger women than in older women. In conclusion, the FTO gene contributed to the intake of more energy, protein and lipids and interfered with the intake of vitamins B9, A and E. With the exception of vitamin A, the effect of the genotype was attenuated with ageing.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Nutrientes , Obesidade Mórbida , Polimorfismo de Nucleotídeo Único , Vitaminas , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Feminino , Pessoa de Meia-Idade , Adulto , Obesidade Mórbida/genética , Vitaminas/administração & dosagem , Nutrientes/administração & dosagem , Ingestão de Energia , Adulto Jovem , Alelos , Estado Nutricional/genética , Fatores Etários
5.
J Dermatol Sci ; 114(3): 124-132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749796

RESUMO

BACKGROUND: Ultraviolet (UV) damage is closely related to skin photoaging and many skin diseases, including dermatic tumors. N6-methyladenosine (m6A) modification is an important epigenetic regulatory mechanism. However, the role of m6A methylation in apoptosis induced by repeated UV irradiation has not been characterized. OBJECTIVE: To explore m6A methylation changes and regulatory mechanisms in the repeated UV-induced skin damage process, especially apoptosis. METHODS: HaCaT cells and BALB/c-Nu nude mice were exposed to repeated UVB/UVA+UVB irradiation. Colorimetry and flow cytometry were used to measure cellular viability and apoptosis. m6A-modified genes were detected via colorimetry and methylated RNA immunoprecipitation (MeRIP) sequencing. Methyltransferases and demethylases were detected via RT-PCR, western blotting and immunohistochemistry. Transfection of siRNA and plasmid was performed to knock down or overexpress the selected genes. RESULTS: After UVB irradiation, 861 m6A peaks were increased and 425 m6A peaks were decreased in HaCaT cells. The differentially modified genes were enriched in apoptosis-related pathways. The m6A demethylase FTO was decreased in both HaCaT cells and mouse skin after UV damage. Overexpressing FTO could improve cell viability, inhibit apoptosis and decrease RNA-m6A methylation, including LPCAT3-m6A, which increase LPCAT3 expression, cell viability promotion and apoptosis inhibition. CONCLUSION: Our study identified the cell m6A methylation change lists after repeated UVB irradiation, and revealed that FTO and LPCAT3 play key roles in the m6A methylation pathogenesis of UV-induced skin cell apoptosis. FTO-m6A-LPCAT3 might serve as a novel upstream target for preventing and treating photoaging and UV-induced skin diseases.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Apoptose , Células HaCaT , Camundongos Endogâmicos BALB C , Camundongos Nus , Envelhecimento da Pele , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Apoptose/efeitos da radiação , Apoptose/genética , Humanos , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Metilação/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Envelhecimento da Pele/genética , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Queratinócitos/efeitos da radiação , Queratinócitos/metabolismo , Sobrevivência Celular/efeitos da radiação , Epigênese Genética/efeitos da radiação , Feminino
6.
J Hazard Mater ; 472: 134440, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723480

RESUMO

N6-methyladenosine (m6A) is the most common form of internal post-transcriptional methylation observed in eukaryotic mRNAs. The abnormally increased level of m6A within the cells can be catalyzed by specific demethylase fat mass and obesity-associated protein (FTO) and stay in a dynamic and reversible state. However, whether and how FTO regulates oxidative damage via m6A modification remain largely unclear. Herein, by using both in vitro and in vivo models of oxidative damage induced by arsenic, we demonstrated for the first time that exposure to arsenic caused a significant increase in SUMOylation of FTO protein, and FTO SUMOylation at lysine (K)- 216 site promoted the down-regulation of FTO expression in arsenic target organ lung, and therefore, remarkably elevating the oxidative damage via an m6A-dependent pathway by its specific m6A reader insulin-like growth factor-2 mRNA-binding protein-3 (IGF2BP3). Consequently, these findings not only reveal a novel mechanism underlying FTO-mediated oxidative damage from the perspective of m6A, but also imply that regulation of FTO SUMOylation may serve as potential approach for treatment of oxidative damage.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Estresse Oxidativo , Proteínas de Ligação a RNA , Sumoilação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Sumoilação/efeitos dos fármacos , Animais , Estresse Oxidativo/efeitos dos fármacos , Adenosina/análogos & derivados , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Arsênio/toxicidade , Camundongos , Masculino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo
7.
BMC Biol ; 22(1): 104, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702712

RESUMO

BACKGROUND: Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS: Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS: Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Hormônio Liberador de Gonadotropina , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Animais , Gonadotropinas/metabolismo , Camundongos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metilação de RNA
8.
Lab Invest ; 104(6): 102059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615731

RESUMO

High-grade serous ovarian cancer (HGSOC) remains the most lethal female cancer by far. Herein, clinical HGSOC samples had higher N6-methyladenosine (m6A) modification than normal ovarian tissue, and its dysregulation had been reported to drive aberrant transcription and translation programs. However, Kringle-containing transmembrane protein 2 (KREMEN2) and its m6A modification have not been fully elucidated in HGSOC. In this study, the data from the high-throughput messenger RNA (mRNA) sequencing of clinical samples were processed using the weighted correlation network analysis and functional enrichment analysis. Results revealed that KREMEN2 was a driver gene in the tumorigenesis of HGSOC and a potential target of m6A demethylase fat-mass and obesity-associated protein (FTO). KREMEN2 and FTO levels were upregulated and downregulated, respectively, and correlation analysis showed a significant negative correlation in HGSOC samples. Importantly, upregulated KREMEN2 was remarkably associated with lymph node metastasis, distant metastasis, peritoneal metastasis, and high International Federation of Gynecology and Obstetrics stage (Ⅲ/Ⅳ), independent of the age of patients. KREMEN2 promoted the growth of HGSOC in vitro and in vivo, which was dependent on FTO. The methylated RNA immunoprecipitation qPCR and RNA immunoprecipitation assays were performed to verify the m6A level and sites of KREMEN2. FTO overexpression significantly decreased m6A modification in the 3' and 5' untranslated regions of KREMEN2 mRNA and downregulated its expression. In addition, we found that FTO-mediated m6A modification of KREMEN2 mRNA was recognized and stabilized by the m6A reader IGF2BP1 rather than by IGF2BP2 or IGF2BP3. This study highlights the m6A modification of KREMEN2 and extends the importance of RNA epigenetics in HGSOC.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Pessoa de Meia-Idade , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/secundário , Progressão da Doença , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Nus , Camundongos , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C
9.
Genes (Basel) ; 15(4)2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674326

RESUMO

Bariatric surgery (BS) is considered the most effective intervention for patients with severe obesity and is used to maintain long-term weight loss and glycemic control. The aim of this study was to analyze the effects of genotypes and haplotypes of the fat mass and obesity-associated (FTO) and melanocortin 4 receptor (MC4R) genes on total body weight loss (TBWL), post-surgery weight, and post-BMI after bariatric surgery. We retrospectively selected 101 patients from Bajio High Specialty Regional Hospital, León Guanajuato, México, who underwent Roux-en-Y gastric bypass (RYGB) to determine their body mass index (BMI), blood pressure, biochemical characteristics, and comorbidities. Post-surgery, patients were referred for registered anthropometry and blood pressure. Glucose, lipid and hepatic profiles, and insulin, leptin, and ghrelin levels were measured, and rs9939609, rs9930506, and rs1421085 FTO and rs17782313 MC4R polymorphisms were genotyped. Six (4-8) years after BS, post-surgery weight was greater in carriers of the rs9939609 and rs1421085 risk genotypes. TBWL was lower for the rs9930506 and rs1421085 risk genotypes. Insulin and HOMA-IR were greater in patients with the three FTO polymorphisms. There were significant interaction effects of the rs9930506 and rs1421085 FTO risk genotypes on weight and BMI in response to BS. No association was found with the MC4R polymorphism. The genotypes and haplotypes of the FTO gene influence post-surgery weight, TBWL, insulin levels, and HOMA-IR.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Cirurgia Bariátrica , Índice de Massa Corporal , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina , Redução de Peso , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Receptor Tipo 4 de Melanocortina/genética , Masculino , Feminino , Adulto , Redução de Peso/genética , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Obesidade Mórbida/genética , Estudos Retrospectivos , Haplótipos , Genótipo
10.
Int Immunopharmacol ; 133: 112142, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669948

RESUMO

BACKGROUND: Identifying patients who can benefit from immune checkpoint inhibitors (ICIs) is a critical challenge in immunotherapy. This study aimed to investigate the association between fat mass and obesity-associated protein (FTO) polymorphisms and ICIs treatment outcomes. METHOD: This retrospective study was conducted on 371 patients with malignant tumors who received ICIs treatment and were followed-up for a minimum duration of 12 months. Seven variants in FTO gene were genotyped using the Sequenome MassARRAY platform, and their associations with ICIs treatment outcomes were analyzed. RESULTS: Pharmacogenomic research revealed that individuals carrying the rs11075995AT/TT genotype were more likely to benefit from ICIs treatment compare to TT genotype. Cox regression analysis showed that rs1125338TT carriers exhibited a shorter progression-free survival (PFS, hazard ratio (HR) = 1.72, 95 % confidence interval (CI) = 1.12-2.46), while rs12596638GG carriers experienced extended PFS (HR = 0.71, 95 % CI = 0.50-0.99). Multiple Cox regression analysis indicated that rs12596638GG (HR = 6.81, 95 %CI = 1.20-38.56) and rs1125338CC (HR = 1.78, 95 %CI = 0.07-0.45), rs12600192CC (HR = 0.13, 95 %CI = 0.037-0.44) genotypes were independently associated with overall survival (OS) after adjusting clinical characteristics. Furthermore, patients with rs12600192CC genotype had a lower risk of severe irAEs compared to those with GG/GC genotypes (P < 0.01). CONCLUSION: We identified FTO gene polymorphisms associated with treatment outcomes of ICI treatment in patients with multiple solid cancers, which might serve as potential predictive biomarkers.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Inibidores de Checkpoint Imunológico , Neoplasias , Polimorfismo de Nucleotídeo Único , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Feminino , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Idoso , Adulto , Genótipo , Resultado do Tratamento
11.
Mol Biol Rep ; 51(1): 558, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643323

RESUMO

BACKGROUND: Our previous research shows that Curcumin (CUR) attenuates myocardial ischemia-reperfusion injury (MIRI) by reducing intracellular total RNA m6A levels. However, the mechanism remains unknown. METHODS: For ischemia-reperfusion (IR), H9c2 cells were cultured for 6 h in serum-free low-glycemic (1 g/L) medium and a gas environment without oxygen, and then cultured for 6 h in high-glycemic (4.5 g/L) medium supplemented with 10% FBS and a 21% oxygen environment. The effects of different concentrations of CUR (5, 10, and 20 µM) treatments on signaling molecules in conventionally cultured and IR-treated H9c2 cells were examined. RESULTS: CUR treatment significantly up-regulated the H2S levels, and the mRNA and protein expression of cystathionine γ-lyase (CSE), and down-regulated the mRNAs and proteins levels of thiosulfate sulfurtransferase (TST) and ethylmalonic encephalopathy 1 (ETHE1) in H9c2 cells conventionally cultured and subjected to IR. Exogenous H2S supply (NaHS and GYY4137) significantly reduced intracellular total RNA m6A levels, and the expression of RNA m6A "writers" METTL3 and METTL14, and increased the expression of RNA m6A "eraser" FTO in H9c2 cells conventionally cultured and subjected to IR. CSE knockdown counteracted the inhibitory effect of CUR treatment on ROS production, promotion on cell viability, and inhibition on apoptosis of H9c2 cells subjected to IR. CONCLUSION: CUR attenuates MIRI by regulating the expression of H2S level-regulating enzymes and increasing the endogenous H2S levels. Increased H2S levels could regulate the m6A-related proteins expression and intracellular total RNA m6A levels.


Assuntos
Curcumina , Sulfeto de Hidrogênio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Curcumina/farmacologia , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , RNA , Oxigênio/metabolismo , Metiltransferases/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Dioxigenase FTO Dependente de alfa-Cetoglutarato
12.
Int Immunopharmacol ; 132: 111968, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579565

RESUMO

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease whose pathogenesis and mechanisms have not been fully described. The m6A methylation modification is a general mRNA modification in mammalian cells and is closely associated with the onset and progression of inflammatory bowel disease (IBD). Palmatine (PAL) is a biologically active alkaloid with anti-inflammatory and protective effects in animal models of colitis. Accordingly, we examined the role of PAL on colitis by regulating N6-methyladenosine (m6A) methylation. METHODS: A rat experimental colitis model was established by 5 % dextran sulfate sodium (DSS) in drinking water for seven days, then PAL treatment was administered for seven days. The colonic tissue pathology was assessed using hematoxylin-eosin (HE) and disease activity index (DAI). In in vitro studies, a human, spontaneously immortalized non-cancerous colon mucosal epithelial cell line (NCM460) was exposed to 2 % DSS and treated with PAL and cell viability was assayed using Cell Counting Kit-8 (CCK-8). The levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, IL-6, and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA) kits. The level of Zonula occludens-1 (ZO-1) was dectected by immunofluorescence. Transepithelial electrical resistance (TEER) of cells was also assessed. The methyltransferase-like 3 (METTL3), METTL14, AlkB homologate 5 (ALKBH5), and fat mass and obesity-associated protein (FTO) expression levels were assessed by western blotting. The localized expression of m6A was measured by immunofluorescence. RESULTS: PAL significantly prevented bodyweight loss and shortening of the colon in experimental colitis rats, as well as decreasing the DAI and histological damage scores. Furthermore, PAL inhibited the levels of inflammatory factors (TNF-α, IL-6, IL-8, and IL-1ß) in both DSS treated rats and NCM460 cells. In addition, PAL enhanced the expression level of ZO-1, and increased the transepithelial electrical resistance to repaire intestinal barrier dysfunction. Colitis occurred due to decreased m6A levels, and the increased FTO expression led to a colitis phenotype. PAL markedly enhanced the METTL3 and METTL14 expression levels while decreasing ALKBH5 and FTO expression levels. CONCLUSIONS: The findings demonstrated that PAL improved DSS-induced experimental colitis. This effect was associated with inhibiting FTO expression and regulating m6A methylation.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Alcaloides de Berberina , Citocinas , Sulfato de Dextrana , Modelos Animais de Doenças , Ratos Sprague-Dawley , Animais , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Masculino , Alcaloides de Berberina/farmacologia , Alcaloides de Berberina/uso terapêutico , Citocinas/metabolismo , Ratos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Linhagem Celular , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo
13.
J Exp Clin Cancer Res ; 43(1): 108, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600610

RESUMO

Ferroptosis is a newly identified iron-dependent form of death that is becoming increasingly recognized as a promising avenue for cancer therapy. N6-methyladenosine (m6A) is the most abundant reversible methylation modification in mRNA contributing to tumorigenesis. However, the crucial role of m6A modification in regulating ferroptosis during colorectal cancer (CRC) tumorigenesis remains elusive. Herein, we find that m6A modification is increased during ferroptotic cell death and correlates with the decreased m6A demethylase fat mass and obesity-associated protein (FTO) expression. Functionally, we demonstrate that suppressing FTO significantly induces CRC ferroptotic cell death, as well as enhancing CRC cell sensitivity to ferroptosis inducer (Erastin and RSL3) treatment. Mechanistically, high FTO expression increased solute carrier family 7 member 11 (SLC7A11) or glutathione peroxidase 4 (GPX4) expressions in an m6A-YTHDF2 dependent manner, thereby counteracting ferroptotic cell death stress. In addition, we identify Mupirocin as a novel inhibitor of FTO, and Mupirocin induces CRC ferroptosis and inhibits tumor growth. Clinically, the levels of FTO, SLC7A11, and GPX4, are highly correlated expression in CRC tissues. Our findings reveal that FTO protects CRC from ferroptotic cell death in promoting CRC tumorigenesis through triggering SLC7A11/GPX4 expression.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Neoplasias Colorretais , Mupirocina , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos , Carcinogênese , Morte Celular , Transformação Celular Neoplásica , Neoplasias Colorretais/tratamento farmacológico
14.
Biosens Bioelectron ; 256: 116276, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599073

RESUMO

Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA Catalítico , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Metalocenos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Humanos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Nitrilas/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/química , Nanoestruturas/química , Compostos Ferrosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
15.
Biochem Soc Trans ; 52(2): 707-717, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629637

RESUMO

The RNA modification N6-methyladenosine (m6A) is conserved across eukaryotes, and profoundly influences RNA metabolism, including regulating RNA stability. METTL3 and METTL14, together with several accessory components, form a 'writer' complex catalysing m6A modification. Conversely, FTO and ALKBH5 function as demethylases, rendering m6A dynamic. Key to understanding the functional significance of m6A is its 'reader' proteins, exemplified by YTH-domain-containing proteins (YTHDFs) canonical reader and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) non-canonical reader. These proteins play a crucial role in determining RNA stability: YTHDFs mainly promote mRNA degradation through different cytoplasmic pathways, whereas IGF2BPs function to maintain mRNA stability. Additionally, YTHDC1 functions within the nucleus to degrade or protect certain m6A-containing RNAs, and other non-canonical readers also contribute to RNA stability regulation. Notably, m6A regulates retrotransposon LINE1 RNA stability and/or transcription via multiple mechanisms. However, conflicting observations underscore the complexities underlying m6A's regulation of RNA stability depending upon the RNA sequence/structure context, developmental stage, and/or cellular environment. Understanding the interplay between m6A and other RNA regulatory elements is pivotal in deciphering the multifaceted roles m6A plays in RNA stability regulation and broader cellular biology.


Assuntos
Adenosina , Adenosina/análogos & derivados , Estabilidade de RNA , Proteínas de Ligação a RNA , Adenosina/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Metiltransferases/metabolismo , RNA/metabolismo , RNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Processamento Pós-Transcricional do RNA , Metilação de RNA
16.
Med Oncol ; 41(5): 120, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643333

RESUMO

Gastric cancer (GC) is a serious malignant tumour with a high mortality rate and a poor prognosis. Recently, emerging evidence has suggested that N6-methyladenosine (m6A) modification plays a crucial regulatory role in cancer progression. However, the exact role of m6A regulatory factors FTO in GC is unclear. First, the expression of m6A methylation-related regulatory factors in clinical samples and the clinical data of the corresponding patients were obtained from The Cancer Genome Atlas (TCGA-STAD) dataset, and correlation analysis between FTO expression and patient clinicopathological parameters was subsequently performed. qRT-PCR, immunohistochemistry (IHC) and western blotting (WB) were used to verify FTO expression in GC. CCK-8, EdU, flow cytometry and transwell assays were used to evaluate the effect of FTO on the behaviour of GC cells. Transcriptome sequencing and RNA immunoprecipitation analysis were used to explore the potential regulatory mechanisms mediated by FTO. FTO was highly expressed in GC tissues and cells, and high expression of FTO predicted a worse prognosis than low expression. Functionally, overexpression of FTO promoted the proliferation, migration and invasion of GC cells but inhibited cell apoptosis. Mechanistically, we found that FTO is upregulated in GC and promotes GC progression by modulating the expression of MAP4K4. Taken together, our findings provide new insights into the effects of FTO-mediated m6A demethylation and could lead to the development of new strategies for GC monitoring and aggressive treatment.


Assuntos
Adenina , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Desmetilação , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
17.
Cancer Lett ; 592: 216911, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38685450

RESUMO

Cancer-associated fibroblasts (CAFs) exhibit notable versatility, plasticity, and robustness, actively participating in cancer progression through intricate interactions within the tumor microenvironment (TME). N6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic mRNA, playing essential roles in mRNA metabolism and various biological processes. Howbeit, the precise involvement of m6A in CAF activation remains enigmatic. In this study, we revealed that the m6A demethylase FTO supports CAF-mediated angiogenesis through activation of EGR1 and VEGFA in conjunctival melanoma (CoM). First, single-cell transcriptome analysis revealed that FTO was specifically upregulated in the CAF population, thereby contributing to the hypo-m6A status in the TME of CoM. Moreover, CAFs of CoM displayed extensive proangiogenic potential, which was largely compromised by FTO inhibition, both in vitro and in vivo. By employing multi-omics analysis, we showed that FTO effectively eliminates the m6A modifications of VEGFA and EGR1. This process subsequently disrupts the YTHDF2-dependent mRNA decay pathway, resulting in increased mRNA stability and upregulated expression of these molecules. Collectively, our findings initially indicate that the upregulation of FTO plays a pivotal role in tumor development by promoting CAF-mediated angiogenesis. Therapeutically, targeting FTO may show promise as a potential antiangiogenic strategy to optimize cancer treatment.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Fibroblastos Associados a Câncer , Proteína 1 de Resposta de Crescimento Precoce , Neovascularização Patológica , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos , Estabilidade de RNA , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Indutores da Angiogênese/metabolismo
18.
Mol Biomed ; 5(1): 11, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556586

RESUMO

Gastric cancer (GC) is a common malignant tumor worldwide, especially in East Asia, with high incidence and mortality rate. Epigenetic modifications have been reported to participate in the progression of gastric cancer, among which m6A is the most abundant and important chemical modification in RNAs. Fat mass and obesity-associated protein (FTO) is the first identified RNA demethylase but little is known about its role in gastric cancer. In our study, data from TCGA and clinical samples showed that FTO was highly expressed in gastric cancer tissues. Kaplan-Meier plotter suggested that patients with the high level of FTO had a poor prognosis. In vitro and in vivo experiments confirmed the role of FTO in promoting gastric cancer cell proliferation. Mechanistically, we found that FTO bound to circFAM192A at the specific site and removed the m6A modification in circFAM192A, protecting it from degradation. CircFAM192A subsequently interacted with the leucine transporter solute carrier family 7 member 5 (SLC7A5) and enhancing its stability. As a result, an increased amount of SLC7A5 was on the membrane, which facilitated leucine uptake and activated the mTOR signaling pathway. Therefore, our study demonstrated that FTO promoted gastric cancer proliferation through the circFAM192A/SLC7A5 axis in the m6A-dependent manner. Our study shed new light on the role of FTO in gastric cancer progression.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Transportador 1 de Aminoácidos Neutros Grandes , RNA Circular , Neoplasias Gástricas , Animais , Feminino , Humanos , Masculino , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Linhagem Celular Tumoral , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos Nus , Prognóstico , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Metilação de RNA , RNA Circular/genética , RNA Circular/metabolismo
19.
J Biol Chem ; 300(4): 107199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508309

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.


Assuntos
Interleucina-13 , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas não Estruturais Virais , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Interleucina-13/metabolismo , Interleucina-13/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Macrófagos Alveolares/imunologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Regulação para Cima
20.
Biomed Pharmacother ; 174: 116479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537580

RESUMO

RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.


Assuntos
Adenosina , Adenosina/análogos & derivados , Neoplasias , Microambiente Tumoral , Humanos , Adenosina/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/enzimologia , Metilação , Animais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA