Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 21(14): 1981-1987, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32189465

RESUMO

Expanding the reaction scope of natural metalloenzymes can provide new opportunities for biocatalysis. Mononuclear non-heme iron-dependent enzymes represent a large class of biological catalysts involved in the biosynthesis of natural products and catabolism of xenobiotics, among other processes. Here, we report that several members of this enzyme family, including Rieske dioxygenases as well as α-ketoglutarate-dependent dioxygenases and halogenases, are able to catalyze the intramolecular C-H amination of a sulfonyl azide substrate, thereby exhibiting a promiscuous nitrene transfer reactivity. One of these enzymes, naphthalene dioxygenase (NDO), was further engineered resulting in several active site variants that function as C-H aminases. Furthermore, this enzyme could be applied to execute this non-native transformation on a gram scale in a bioreactor, thus demonstrating its potential for synthetic applications. These studies highlight the functional versatility of non-heme iron-dependent enzymes and pave the way to their further investigation and development as promising biocatalysts for non-native metal-catalyzed transformations.


Assuntos
Dioxigenases/metabolismo , Compostos Ferrosos/metabolismo , Iminas/metabolismo , Metaloproteínas/metabolismo , Aminação , Biocatálise , Dioxigenases/química , Dioxigenases/isolamento & purificação , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/isolamento & purificação , Iminas/química , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular
2.
J Am Chem Soc ; 140(34): 10909-10914, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30067334

RESUMO

Oxidative rearrangements play key roles in introducing structural complexity and biological activities of natural products biosynthesized by type II polyketide synthases (PKSs). Chartreusin (1) is a potent antitumor polyketide that contains a unique rearranged pentacyclic aromatic bilactone aglycone derived from a type II PKS. Herein, we report an unprecedented dioxygenase, ChaP, that catalyzes the final α-pyrone ring formation in 1 biosynthesis using flavin-activated oxygen as an oxidant. The X-ray crystal structures of ChaP and two homologues, docking studies, and site-directed mutagenesis provided insights into the molecular basis of the oxidative rearrangement that involves two successive C-C bond cleavage steps followed by lactonization. ChaP is the first example of a dioxygenase that requires a flavin-activated oxygen as a substrate despite lacking flavin binding sites, and represents a new class in the vicinal oxygen chelate enzyme superfamily.


Assuntos
Antineoplásicos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Antineoplásicos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Benzopiranos/química , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Glicosídeos/biossíntese , Glicosídeos/química , Modelos Químicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Ligação Proteica , Streptomyces/enzimologia , Streptomyces/genética
3.
Biochemistry ; 55(9): 1362-71, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26878277

RESUMO

Thiol dioxygenases catalyze the synthesis of sulfinic acids in a range of organisms from bacteria to mammals. A thiol dioxygenase from the bacterium Pseudomonas aeruginosa oxidizes both 3-mercaptopropionic acid and cysteine, with a ∼70 fold preference for 3-mercaptopropionic acid over all pHs. This substrate reactivity is widened compared to other thiol dioxygenases and was exploited in this investigation of the residues important for activity. A simple model incorporating two protonation events was used to fit profiles of the Michaelis-Menten parameters determined at different pH values for both substrates. The pKs determined using plots of k(cat)/Km differ at low pH, but not in a way easily attributable to protonation of the substrate alone and share a common value at higher pH. Plots of k(cat) versus pH are also quite different at low pH showing the monoprotonated ES complexes with 3-mercaptopropionic acid and cysteine have different pKs. At higher pH, k(cat) decreases sigmoidally with a similar pK regardless of substrate. Loss of reactivity at high pH is attributed to deprotonation of tyrosine 159 and its influence on dioxygen binding. A mechanism is proposed by which deprotonation of tyrosine 159 both blocks oxygen binding and concomitantly promotes cystine formation. Finally, the role of tyrosine 159 was further probed by production of a G95C variant that is able to form a cysteine-tyrosine crosslink homologous to that found in mammalian cysteine dioxygenases. Activity of this variant is severely impaired. Crystallography shows that when un-crosslinked, the cysteine thiol excludes tyrosine 159 from its native position, while kinetic analysis shows that the thioether bond impairs reactivity of the crosslinked form.


Assuntos
Ácido 3-Mercaptopropiônico/química , Proteínas de Bactérias/química , Dioxigenases/química , Pseudomonas aeruginosa/enzimologia , Ácido 3-Mercaptopropiônico/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Cristalografia por Raios X , Dioxigenases/isolamento & purificação , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Especificidade por Substrato/fisiologia
4.
Methods Enzymol ; 560: 117-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26253968

RESUMO

N(6)-Methyladenosine (m(6)A) represents the most prevalent internal modification in messenger and long noncoding RNAs. There has been a surge of interest toward understanding the biological significance of m(6)A modification. In this chapter, we describe the methods for biochemically studying the recently uncovered m(6)A methyltransferases (METTL3 and METTL14) and demethylases (FTO and ALKBH5). How to express these proteins, perform their biochemistry reactions against various RNA probes, and characterize the methylation and demethylation activity will be discussed.


Assuntos
Adenosina/análogos & derivados , RNA Longo não Codificante/genética , RNA Nuclear/química , Adenosina/química , Adenosina/genética , Homólogo AlkB 5 da RNA Desmetilase , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Catálise , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Metiltransferases/biossíntese , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Proteínas/química , Proteínas/genética , Proteínas/isolamento & purificação , RNA Longo não Codificante/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Nuclear/genética
5.
Methods Enzymol ; 555: 271-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747485

RESUMO

In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme ß-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.


Assuntos
Proteínas de Arabidopsis/metabolismo , Carbono-Oxigênio Liases/metabolismo , Dioxigenases/metabolismo , Sulfeto de Hidrogênio/metabolismo , Liases/metabolismo , Mitocôndrias/enzimologia , Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Arabidopsis/isolamento & purificação , Carbono-Oxigênio Liases/isolamento & purificação , Dioxigenases/isolamento & purificação , Ensaios Enzimáticos , Cinética , Liases/isolamento & purificação , Serina O-Acetiltransferase/química
6.
Plant J ; 70(3): 460-70, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22168819

RESUMO

Coumarins are important compounds that contribute to the adaptation of plants to biotic or abiotic stresses. Among coumarins, umbelliferone occupies a pivotal position in the plant phenylpropanoid network. Previous studies indicated that umbelliferone is derived from the ortho-hydroxylation of p-coumaric acid by an unknown biochemical step to yield 2,4-dihydroxycinnamic acid, which then undergoes spontaneous lactonization. Based on a recent report of a gene encoding a 2-oxoglutarate-dependent dioxygenase from Arabidopsis thaliana that exhibited feruloyl CoA 6'-hydroxylase activity (Bourgaud et al., 2006), we combined a bioinformatic approach and a cDNA library screen to identify an orthologous ORF (Genbank accession number JF799117) from Ruta graveolens L. This ORF shares 59% amino acid identity with feruloyl CoA 6'-hydroxylase, was functionally expressed in Escherichia coli, and converted feruloyl CoA into scopoletin and p-coumaroyl CoA into umbelliferone with equal activity. Its bi-functionality was further confirmed in planta: transient expression of JF799117 in Nicotiana benthamiana yielded plants with leaves containing high levels of umbelliferone and scopoletin when compared to control plants, which contained barely detectable traces of these compounds. The expression of JF799117 was also tightly correlated to the amount of umbelliferone that was found in UV-elicited R. graveolens leaves. Therefore, JF799117 encodes a p-coumaroyl CoA 2'-hydroxylase in R. graveolens, which represents a previously uncharacterized step in the synthesis of umbelliferone in plants. Psoralen, which is an important furanocoumarin in R. graveolens, was found to be a competitive inhibitor of the enzyme, and it may exert this effect through negative feedback on the enzyme at an upstream position in the pathway.


Assuntos
Dioxigenases/metabolismo , Ruta/enzimologia , Umbeliferonas/biossíntese , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Cumarínicos/análise , Cumarínicos/isolamento & purificação , Cumarínicos/metabolismo , Dioxigenases/antagonistas & inibidores , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Furocumarinas/metabolismo , Furocumarinas/farmacologia , Expressão Gênica/genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Caules de Planta/química , Caules de Planta/enzimologia , Caules de Planta/genética , RNA de Plantas/metabolismo , Ruta/química , Ruta/genética , Escopoletina/análise , Escopoletina/metabolismo , Alinhamento de Sequência , Nicotiana/enzimologia , Nicotiana/genética , Transgenes , Umbeliferonas/análise , Umbeliferonas/metabolismo
7.
DNA Repair (Amst) ; 11(1): 46-52, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22079122

RESUMO

Exocyclic ethenobases are highly mutagenic DNA lesions strongly implicated in inflammation and vinyl chloride-induced carcinogenesis. While the alkyladenine DNA glycosylase, AAG (or MPG), binds the etheno lesions 1,N(6)-ethenoadenine (ɛA) and 3,N(4)-ethenocytosine (ɛC) with high affinity, only ɛA can be excised to initiate base excision repair. Here, we discover that the human AlkB homolog 2 (ALKBH2) dioxygenase enzyme catalyzes direct reversal of ɛC lesions in both double- and single-stranded DNA with comparable efficiency to canonical ALKBH2 substrates. Notably, we find that in vitro, the non-enzymatic binding of AAG to ɛC specifically blocks ALKBH2-catalyzed repair of ɛC but not that of methylated ALKBH2 substrates. These results identify human ALKBH2 as a repair enzyme for mutagenic ɛC lesions and highlight potential consequences for substrate-binding overlap between the base excision and direct reversal DNA repair pathways.


Assuntos
Citosina/análogos & derivados , DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Dioxigenases/metabolismo , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Citosina/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/isolamento & purificação , Enzimas de Restrição do DNA/metabolismo , Dioxigenases/isolamento & purificação , Humanos , Especificidade por Substrato
8.
Int J Biol Sci ; 7(8): 1171-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22043174

RESUMO

Dichlorohydroquinone dioxygenase (PcpA) is the ring-cleavage enzyme in the PCP biodegradation pathway in Sphingobium chlorophenolicum strain ATCC 39723. PcpA dehalogenates and oxidizes 2,6-dichlorohydroquinone to form 2-chloromaleylacetate, which is subsequently converted to succinyl coenzyme A and acetyl coenzyme A via 3-oxoadipate. Previous studies have shown that PcpA is highly substrate-specific and only uses 2,6-dichlorohydroquinone as its substrate. In the current study, we overexpressed and purified recombinant PcpA and showed that PcpA was highly alkaline resistant and thermally stable. PcpA exhibited two activity peaks at pH 7.0 and 10.0, respectively. The apparent k(cat) and K(m) were measured as 0.19 ± 0.01 s(-1) and 0.24 ± 0.08 mM, respectively at pH 7.0, and 0.17 ± 0.01 s(-1) and 0.77 ± 0.29 mM, respectively at pH 10.0. Electron paramagnetic resonance studies showed rapid oxidation of Fe(II) to Fe(III) in PcpA and the formation of a stable radical intermediate during the enzyme catalysis. The stable radical was predicted to be an epoxide type dichloro radical with the unpaired electron density localized on C3.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Pentaclorofenol/metabolismo , Sphingomonadaceae/enzimologia , Biodegradação Ambiental , Dicroísmo Circular , Dioxigenases/isolamento & purificação , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Cinética , Estrutura Molecular , Oxirredução , Especificidade por Substrato , Temperatura
9.
J Mol Biol ; 392(2): 436-51, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19616558

RESUMO

Carbazole 1,9a-dioxygenase (CARDO) consists of terminal oxygenase (Oxy), ferredoxin (Fd), and ferredoxin reductase (Red) components and is a member of the Rieske nonheme iron oxygenases. Rieske nonheme iron oxygenases are divided into five subclasses (IA, IB, IIA, IIB, and III) based on the number of constituents and the nature of their redox centers. Each component of a class IIB CARDO from Nocardioides aromaticivorans IC177 was purified, and the interchangeability of the electron transfer reactions with each component from the class III CARDOs was investigated. Despite the fact that the Fds of both classes are Rieske-type, strict specificities between the Oxy and Fd components were observed. On the other hand, the Fd and Red components were interchangeable, even though the Red components differ in cofactor composition; the class IIB Red contains flavin-adenine-dinucleotide (FAD)- and NADH-binding domains, whereas the class III Red has a chloroplast-type [2Fe-2S] cluster in addition to the FAD- and NADH-binding domains. The crystal structures of the class IIB Oxy and Fd components were compared to the previously reported Fd:Oxy complex structure of class III CARDO. This comparison suggested residues in common between class IIB and class III CARDOs that are important for interactions between Fd and Oxy. In the class IIB CARDOs, these included His75 and Glu71 in Fd and Lys20 and Glu357 in Oxy for electrostatic interactions, and Phe74 and Pro90 in Fd and Trp21, Leu359, and Val367 in Oxy for hydrophobic interactions. The residues that formed the interacting surface but were not conserved between classes were thought to be necessary to form the appropriate geometry and to determine electron transfer specificity between Fd and Oxy.


Assuntos
Actinomycetales/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas de Bactérias/isolamento & purificação , Cristalografia por Raios X , Dioxigenases/isolamento & purificação , Ferredoxinas/química , Ferredoxinas/isolamento & purificação , Ferredoxinas/metabolismo , Modelos Biológicos , Modelos Moleculares , Oxigenases/química , Oxigenases/isolamento & purificação , Oxigenases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/isolamento & purificação
10.
Chembiochem ; 7(12): 1899-908, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17051653

RESUMO

The non-heme-iron(II)-dependent extradiol catechol dioxygenases catalyse the oxidative cleavage of substituted catechols found on bacterial aromatic degradation pathways. The reaction mechanism of the extradiol dioxygenases is believed to proceed through the same proximal hydroperoxide intermediate as the iron(III)-dependent intradiol catechol dioxygenases. Directed evolution was carried out on members of the class III extradiol catechol dioxygenases, by using 1) error-prone polymerase chain reaction, 2) a primer-based cross-over method; the mutant dioxygenases were then screened for their ability to process a range of substituted catechols. Several mutant enzymes were found to show higher activity towards certain substituted catechols, including 4-chlorocatechol, and higher affinity for the iron(II) cofactor. Two mutants isolated from error-prone PCR of Escherichia coli MhpB (mutants R215W and K273R) were found to produce a mixture of extradiol and intradiol cleavage products, as detected by GC-MS and 1H NMR spectroscopy. The residue corresponding to K273 in protocatechuate 4,5-dioxygenase (LigAB), Val244, is located approximately 12 A from the iron(II) centre, but close to the putative dioxygen channel; R215 is found on a sequence loop not present in LigB.


Assuntos
Dioxigenases/química , Dioxigenases/genética , Evolução Molecular Direcionada , Mutação , Ferroproteínas não Heme/química , Oxigenases/genética , Dioxigenases/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Estrutura Molecular , Mutagênese , Oxirredução , Oxigenases/química , Oxigenases/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Sphingomonas/enzimologia , Sphingomonas/genética , Especificidade por Substrato/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-16582486

RESUMO

Pathogen-inducible oxygenase (PIOX) is a heme-containing membrane-associated protein found in monocotyledon and dicotyledon plants that utilizes molecular oxygen to convert polyunsaturated fatty acids into their corresponding 2R-hydroperoxides. PIOX is a member of a larger family of fatty-acid alpha-dioxygenases that includes the mammalian cyclooxygenase enzymes cyclooxygenase 1 and 2 (COX-1 and COX-2). Single crystals of PIOX from rice (Oryza sativa) have been grown from MPD using recombinant protein expressed in Escherichia coli and subsequently extracted utilizing decyl maltoside as the solubilizing detergent. Crystals diffract to 3.0 angstroms resolution using a rotating-anode generator and R-AXIS IV detector, and belong to space group P1. Based on the Matthews coefficient and self-rotation function analyses, there are presumed to be four molecules in the asymmetric unit related by noncrystallographic 222 symmetry.


Assuntos
Dioxigenases/química , Proteínas de Membrana/química , Oryza/enzimologia , Proteínas de Plantas/química , Cristalização , Dioxigenases/isolamento & purificação , Dioxigenases/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ácido Linoleico/metabolismo , Substâncias Macromoleculares , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Difração de Raios X
12.
Biochemistry ; 44(21): 7623-31, 2005 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-15909977

RESUMO

3-Hydroxyanthranilate-3,4-dioxygenase (HAD) is a non-heme Fe(II) dependent enzyme that catalyzes the oxidative ring-opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconic semialdehyde. The enzymatic product subsequently cyclizes to quinolinate, an intermediate in the biosynthesis of nicotinamide adenine dinucleotide. Quinolinate has also been implicated in important neurological disorders. Here, we describe the mechanism by which 4-chloro-3-hydroxyanthranilate inhibits the HAD catalyzed reaction. Using overexpressed and purified bacterial HAD, we demonstrate that 4-chloro-3-hydroxyanthranilate functions as a mechanism-based inactivating agent. The inactivation results in the consumption of 2 +/- 0.8 equiv of oxygen and the production of superoxide. EPR analysis of the inactivation reaction demonstrated that the inhibitor stimulated the oxidation of the active site Fe(II) to the catalytically inactive Fe(III) oxidation state. The inactivated enzyme can be reactivated by treatment with DTT and Fe(II). High resolution ESI-FTMS analysis of the inactivated enzyme demonstrated that the inhibitor did not form an adduct with the enzyme and that four conserved cysteines were oxidized to two disulfides (Cys125-Cys128 and Cys162-Cys165) during the inactivation reaction. These results are consistent with a mechanism in which the enzyme, complexed to the inhibitor and O2, generates superoxide which subsequently dissociates, leaving the inhibitor and the oxidized iron center at the active site.


Assuntos
Ácido 3-Hidroxiantranílico/análogos & derivados , Ácido 3-Hidroxiantranílico/química , Dioxigenases/antagonistas & inibidores , Inibidores Enzimáticos/química , Ralstonia/enzimologia , 3-Hidroxiantranilato 3,4-Dioxigenase , Sequência de Aminoácidos , Dioxigenases/biossíntese , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Dissulfetos/química , Ácido Ditionitrobenzoico , Ativação Enzimática/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Espectrometria de Massas , Dados de Sequência Molecular , Consumo de Oxigênio/genética , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato/genética , Superóxidos/metabolismo
13.
J Biol Chem ; 280(11): 9865-9, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15623508

RESUMO

Cysteine dioxygenase (CDO, EC 1.13.11.20) catalyzes the oxidation of cysteine to cysteine sulfinic acid, which is the first major step in cysteine catabolism in mammalian tissues. Rat liver CDO was cloned and expressed in Escherichia coli as a 26.8-kDa N-terminal fusion protein bearing a polyhistidine tag. Purification by immobilized metal affinity chromatography yielded homogeneous protein, which was catalytically active even in the absence of the secondary protein-A, which has been reported to be essential for activity in partially purified native preparations. As compared with those existing purification protocols for native CDO, the milder conditions used in the isolation of the recombinant CDO allowed a more controlled study of the properties and activity of CDO, clarifying conflicting findings in the literature. Apo-protein was inactive in catalysis and was only activated by iron. Metal analysis of purified recombinant protein indicated that only 10% of the protein contained iron and that the iron was loosely bound to the protein. Kinetic studies showed that the recombinant enzyme displayed a K(m) value of 2.5 +/- 0.4 mm at pH 7.5 and 37 degrees C. The enzyme was shown to be specific for l-cysteine oxidation, whereas homocysteine inhibited CDO activity.


Assuntos
Cisteína/análogos & derivados , Dioxigenases/química , Dioxigenases/isolamento & purificação , Proteínas Recombinantes/química , Animais , Catálise , Cromatografia Líquida de Alta Pressão , Cisteína/química , Cisteína Dioxigenase , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Histidina/química , Homocisteína/química , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Modelos Químicos , Fases de Leitura Aberta , Oxigênio/química , Oxigênio/metabolismo , Estrutura Terciária de Proteína , Ratos , Espectrometria de Massas por Ionização por Electrospray , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA