Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 110: 117833, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996544

RESUMO

Prolidase (EC.3.4.13.9) is a Mn+2-dependent dipeptidase that is well known to play a crucial role in several physiological and pathological processes affecting humans. More in particular, this enzyme is involved in the cleavage of proline- and hydroxyproline-containing dipeptides (imidodipeptides), providing a fine regulation of the homeostasis of these two amino acids. Hyperactivity or deficiency of prolidase have been clearly associated to the development and progress of several acute and chronic syndromes (e.g. chronic liver fibrosis, viral and acute hepatitis, cancer, neurological disorders, inflammation, skin diseases, intellectual disability, respiratory infection). Thus, targeting prolidase and modulating its activity is an intriguing field of research with a great therapeutic potential for the next future and for the design of specific and selective drugs. Prolidase can be exploited in two essential ways: as an activator of proline containing prodrugs and by direct interaction. In this latter case, few specific ligands for the title enzyme have been described, but with no reports about their structure-activity relationship. The aim of this comprehensive review is to gather all available information on prolidase targeting so far reported in the literature, to rationalize the observed data and effect into a preliminary structure-relationship picture, to comment about the effectiveness of each reported ligands, and to address future research activities providing new potential and putative natural, semisynthetic, and purely synthetic molecules able to trigger prolidase as the main biological target.


Assuntos
Dipeptidases , Dipeptidases/metabolismo , Dipeptidases/antagonistas & inibidores , Dipeptidases/química , Humanos , Relação Estrutura-Atividade , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Animais
2.
Anal Biochem ; 689: 115506, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460899

RESUMO

Prolidase (EC.3.4.13.9) is a dipeptidase known nowadays to play a pivotal role in several physiological and pathological processes. More in particular, this enzyme is involved in the cleavage of proline- and hydroxyproline-containing dipeptides (imidodipeptides), thus finely regulating the homeostasis of free proline and hydroxyproline. Abnormally high or low levels of prolidase have been found in numerous acute and chronic syndromes affecting humans (chronic liver fibrosis, viral and acute hepatitis, cancer, neurological disorders, inflammation, skin diseases, intellectual disability, respiratory infection, and others) for which the content of proline is well recognized as a clinical marker. As a consequence, the accurate analytical determination of prolidase activity is of greatly significant importance in clinical diagnosis and therapy. Apart from the Chinard's assay, some other more sensitive and well validated methodologies have been published. These include colorimetric and spectrophotometric determinations of free proline produced by enzymatic reactions, capillary electrophoresis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, electrochemoluminescence, thin layer chromatography, and HPLC. The aim of this comprehensive review is to make a detailed survey of the in so far reported analytical techniques, highlighting their general features, as well as their advantages and possible drawbacks, providing in the meantime suggestions to stimulate further research in this intriguing field.


Assuntos
Dipeptidases , Ensaios Enzimáticos , Humanos , Colorimetria , Dipeptidases/análise , Dipeptidases/química , Fibrose , Hidroxiprolina , Prolina/análise , Ensaios Enzimáticos/métodos
3.
Drug Discov Today ; 29(2): 103860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128717

RESUMO

Carnosine, an endogenous dipeptide, has been found to have a plethora of medicinal properties, such as antioxidant, antiageing, and chelating effects, but with one downside: a short half-life. Carnosinases and two hydrolytic enzymes, which remain enigmatic, are responsible for these features. Hence, here we emphasize why research is valuable for better understanding crucial concepts like ageing, neurodegradation, and cancerogenesis, given that inhibition of carnosinases might significantly prolong carnosine bioavailability and allow its further use in medicine. Herein, we explore the literature regarding carnosinases and present a short in silico analysis aimed at elucidating the possible recognition pattern between CN1 and its ligands.


Assuntos
Carnosina , Dipeptidases , Humanos , Carnosina/química , Carnosina/metabolismo , Antioxidantes , Dipeptidases/química , Dipeptidases/metabolismo , Envelhecimento
4.
Methods Enzymol ; 684: 289-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37230592

RESUMO

Proline residues highly impact protein stability when present either in the first or second N-terminal position. While the human genome encodes for more than 500 proteases, only few proteases are capable of hydrolyzing a proline-containing peptide bond. The two intra-cellular amino-dipeptidyl peptidases DPP8 and DPP9 are exceptional as they possess the rare ability to cleave post-proline. By removing N-terminal Xaa-Pro dipeptides, DPP8 and DPP9 expose a neo N-terminus of their substates, which can consequently alter inter- or intra-molecular interactions of the modified protein. Both DPP8 and DPP9 play key roles in the immune response and are linked to cancer progression, emerging as attractive drug targets. DPP9 is more abundant than DPP8 and is rate limiting for cleavage of cytosolic proline-containing peptides. Only few DPP9 substrates have been characterized; these include Syk, a central kinase for B-cell receptor mediated signaling; Adenylate Kinase 2 (AK2) which is important for cellular energy homeostasis; and the tumor suppressor Breast cancer type 2 susceptibility protein (BRCA2) that is critical for repair of DNA double strand breaks. N-terminal processing of these proteins by DPP9 triggers their rapid turn-over by the proteasome, highlighting a role for DPP9 as upstream components of the N-degron pathway. Whether N-terminal processing by DPP9 leads to substrate-degradation in all cases, or whether additional outcomes are possible, remains to be tested. In this chapter we will describe methods for purification of DPP8 and DPP9 as well as protocols for biochemical and enzymatic characterization of these proteases.


Assuntos
Dipeptidases , Dipeptidil Peptidases e Tripeptidil Peptidases , Humanos , Peptídeos , Endopeptidases , Ensaios Enzimáticos , Dipeptidases/genética , Dipeptidases/química , Dipeptidases/metabolismo
5.
J Struct Biol ; 211(1): 107512, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32325220

RESUMO

Dipeptidase 3 (DPEP3) is one of three glycosylphosphatidylinositol-anchored metallopeptidases potentially involved in the hydrolytic metabolism of dipeptides. While its exact biological function is not clear, DPEP3 expression is normally limited to testis, but can be elevated in ovarian cancer. Antibody drug conjugates targeting DPEP3 have shown efficacy in preclinical models with a pyrrolobenzodiazepine conjugate, SC-003, dosed in a phase I clinical trial (NCT02539719). Here we reveal the novel atomic structure of DPEP3 alone and in complex with the SC-003 Fab fragment at 1.8 and 2.8 Å, respectively. The structure of DPEP3/SC-003 Fab complex reveals an eighteen-residue epitope across the DPEP3 dimerization interface distinct from the enzymatic active site. DPEP1 and DPEP3 extracellular domains share a conserved, dimeric TIM (ß/α)8-barrel fold, consistent with 49% sequence identity. However, DPEP3 diverges from DPEP1 and DPEP2 in key positions of its active site: a histidine to tyrosine variation at position 269 reduces affinity for the ß zinc and may cause substrate steric hindrance, whereas an aspartate to asparagine change at position 359 abolishes activation of the nucleophilic water/hydroxide, resulting in no in vitro activity against a variety of dipeptides and biological substrates (imipenem, leukotriene D4 and cystinyl-bis-glycine). Hence DPEP3, unlike DPEP1 and DPEP2, may require an activating co-factor in vivo or may remain an inactive, degenerate enzyme. This report sheds light on the structural discriminants between active and inactive membrane dipeptidases and provides a benchmark to characterize current and future DPEP3-targeted therapeutic approaches.


Assuntos
Dipeptidases/ultraestrutura , Epitopos/ultraestrutura , Imunoconjugados/ultraestrutura , Anticorpos/química , Anticorpos/imunologia , Anticorpos/ultraestrutura , Dipeptidases/química , Dipeptidases/genética , Dipeptidases/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Imunoconjugados/genética , Imunoconjugados/imunologia , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Proteínas de Membrana/imunologia , Proteínas de Membrana/ultraestrutura , Proteólise
6.
Biol Chem ; 401(5): 629-642, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-31913843

RESUMO

Prevotella intermedia, a Gram-negative anaerobic rod, is frequently observed in subgingival polymicrobial biofilms from adults with chronic periodontitis. Peptidases in periodontopathic bacteria are considered to function as etiological reagents. Prevotella intermedia OMA14 cells abundantly express an unidentified cysteine peptidase specific for Arg-4-methycoumaryl-7-amide (MCA). BAU17746 (locus tag, PIOMA14_I_1238) and BAU18827 (locus tag, PIOMA14_II_0322) emerged as candidates of this peptidase from the substrate specificity and sequence similarity with C69-family Streptococcus gordonii Arg-aminopeptidase. The recombinant form of the former solely exhibited hydrolyzing activity toward Arg-MCA, and BAU17746 possesses a 26.6% amino acid identity with the C69-family Lactobacillus helveticus dipeptidase A. It was found that BAU17746 as well as L. helveticus dipeptidase A was a P1-position Arg-specific dipeptidase A, although the L. helveticus entity, a representative of the C69 family, had been reported to be specific for Leu and Phe. The full-length form of BAU17746 was intramolecularly processed to a mature form carrying the N-terminus of Cys15. In conclusion, the marked Arg-MCA-hydrolyzing activity in Pre. intermedia was mediated by BAU17746 belonging to the C69-family dipeptidase A, in which the mature form carries an essential cysteine at the N-terminus.


Assuntos
Dipeptidases/metabolismo , Prevotella intermedia/enzimologia , Dipeptidases/química , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
7.
Bull Exp Biol Med ; 165(5): 629-634, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30225711

RESUMO

Enzymatic hydrolysis of biopolymers of the cartilage tissue was studied for obtaining a complex of type II collagen peptides and glycosaminoglycan oligosaccharides. Hydrothermal hydrolysis in a high pressure homogenizer followed by enzymatic hydrolysis of the cartilage tissue biopolymers with proteolytic enzyme preparation Karipazim yielded a complex of collagen peptides and glycosaminoglycan oligosaccharides with molecular weights of 240-720 Da. Low molecular weight of the components increases their bioavailability. Entering into the cells (chondrocytes), low-molecular-weight peptides, disaccharides, and oligosaccharides as structural elements of the matrix can participate in the formation of fibrils of collagen and proteoglycans. Exogenous substances replenish deficient components of the matrix and/or their concentrations, affect the formation and strengthen the cartilage tissue. Thus, using cattle and porcine hyaline cartilages, we prepared a complex of biopolymers with lower molecular weights in comparison with previously developed nutraceuticals.


Assuntos
Colágeno Tipo II/química , Glicosaminoglicanos/química , Cartilagem Hialina/química , Peptídeos/química , Proteoglicanas/química , Aminopeptidases/química , Animais , Transporte Biológico , Bovinos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Quimopapaína/química , Dipeptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Glicosaminoglicanos/farmacologia , Hidrólise , Peso Molecular , Muramidase/química , Papaína/química , Peptídeos/farmacologia , Proteoglicanas/farmacologia , Suínos
8.
Sci Rep ; 8(1): 9430, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930383

RESUMO

Prolidase is cytosolic manganese dependent exopeptidase responsible for the catabolism of imido di and tripeptides. Prolidase levels have been associated with a number of diseases such as bipolar disorder, erectile dysfunction and varied cancers. Single nucleotide polymorphism present in coding region of proteins (nsSNPs) has the potential to alter the primary structure as well as function of the protein. Hence, it becomes necessary to differentiate the potential harmful nsSNPs from the neutral ones. 19 nsSNPs were predicted as damaging by in-silico analysis of 298 nsSNPs retrieved from dbSNP database. Consurf analysis showed 18 out of 19 substitutions were present in the conserved regions. 4 substitutions (D276N, D287N, E412K, and G448R) that observed to have damaging effect are present in catalytic pocket. Four SNPs listed in splice site region were found to affect splicing of mRNA by altering acceptor site. On 3'UTR scan of 77 SNPs listed in SNP database, 9 SNPs were lead to alter miRNA target sites. These results provide a filtered data to explore the effect of uncharacterized nsSNP and SNP related to UTRs and splice site of prolidase to find their association with the disease susceptibility and to design the target dependent drugs for therapeutics.


Assuntos
Dipeptidases/genética , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único , Regiões 3' não Traduzidas , Substituição de Aminoácidos , Dipeptidases/química , Estabilidade Enzimática , Humanos
9.
Proc Natl Acad Sci U S A ; 115(7): E1437-E1445, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382749

RESUMO

Dipeptidyl peptidases 8 and 9 are intracellular N-terminal dipeptidyl peptidases (preferentially postproline) associated with pathophysiological roles in immune response and cancer biology. While the DPP family member DPP4 is extensively characterized in molecular terms as a validated therapeutic target of type II diabetes, experimental 3D structures and ligand-/substrate-binding modes of DPP8 and DPP9 have not been reported. In this study we describe crystal and molecular structures of human DPP8 (2.5 Å) and DPP9 (3.0 Å) unliganded and complexed with a noncanonical substrate and a small molecule inhibitor, respectively. Similar to DPP4, DPP8 and DPP9 molecules consist of one ß-propeller and α/ß hydrolase domain, forming a functional homodimer. However, they differ extensively in the ligand binding site structure. In intriguing contrast to DPP4, where liganded and unliganded forms are closely similar, ligand binding to DPP8/9 induces an extensive rearrangement at the active site through a disorder-order transition of a 26-residue loop segment, which partially folds into an α-helix (R-helix), including R160/133, a key residue for substrate binding. As vestiges of this helix are also seen in one of the copies of the unliganded form, conformational selection may contributes to ligand binding. Molecular dynamics simulations support increased flexibility of the R-helix in the unliganded state. Consistently, enzyme kinetics assays reveal a cooperative allosteric mechanism. DPP8 and DPP9 are closely similar and display few opportunities for targeted ligand design. However, extensive differences from DPP4 provide multiple cues for specific inhibitor design and development of the DPP family members as therapeutic targets or antitargets.


Assuntos
Dipeptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Homeostase/fisiologia , Conformação Proteica , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Dipeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Estrutura Molecular , Domínios Proteicos
10.
Biochimie ; 119: 6-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453811

RESUMO

Cysteine proteases of the liver fluke Fasciola have been described as essential molecules in the infection process of the mammalian host. Destinct cathepsin Bs, which are already expressed in the metacercarial stage and released by the newly excysted juvenile are major actors in this process. Following infection their expression is stopped and the proteins will not be detectable any longer after the first month of development. On the contrary, the novel cathepsin B5 of Fasciola gigantica (FgCB5) described in this work was also found expressed in later juvenile stages and the mature worm. Like all previously described Fasciola family members it was located in the cecal epithelium of the parasite. Western blot analysis of adult antigen preparations detected procathepsin B5 in crude worm extract and in small amounts in the ES product. In support of these data, the sera of infected rabbits and mice were reactive with recombinant FgCB5 in Western blot and ELISA. Biochemical analysis of yeast-expressed FgCB5 revealed that it has properties of a lysosomal hydrolase optimized for activity at acid pH and that it is able to efficiently digest a broad spectrum of host proteins. Unlike previously characterized Fasciola family members FgCB5 carries a histidine doublet in the occluding loop equivalent to residues His110 and His111 of human mature cathepsin B and consequently showed substantial carboxydipeptidyl activity which depends on these two residues.


Assuntos
Carboxipeptidases/metabolismo , Catepsina B/metabolismo , Dipeptidases/metabolismo , Fasciola/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Carboxipeptidases/química , Carboxipeptidases/genética , Catepsina B/química , Catepsina B/genética , Ceco/enzimologia , Ceco/crescimento & desenvolvimento , Sequência Conservada , Dipeptidases/química , Dipeptidases/genética , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Estabilidade Enzimática , Fasciola/crescimento & desenvolvimento , Proteínas de Helminto/química , Proteínas de Helminto/genética , Histidina/química , Concentração de Íons de Hidrogênio , Mucosa Intestinal/enzimologia , Mucosa Intestinal/crescimento & desenvolvimento , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
11.
Drug Chem Toxicol ; 38(1): 37-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24641262

RESUMO

In this study, we determined the ability of recombinant human liver prolidase to hydrolyze nerve agents in vitro and its ability to afford protection in vivo in mice. Using adenovirus containing the human liver prolidase gene, the enzyme was over expressed by 200- to 300-fold in mouse liver and purified to homogeneity by affinity and gel filtration chromatography. The purified enzyme hydrolyzed sarin, cyclosarin and soman with varying rates of hydrolysis. The most efficient hydrolysis was with sarin, followed by soman and by cyclosarin {apparent kcat/Km [(1.9 ± 0.3), (1.7 ± 0.2), and (0.45 ± 0.04)] × 10(5 )M(-1 )min(-1), respectively}; VX and tabun were not hydrolyzed by the recombinant enzyme. The enzyme hydrolyzed P (+) isomers faster than the P (-) isomers. The ability of recombinant human liver prolidase to afford 24 hour survival against a cumulative dose of 2 × LD50 of each nerve agent was investigated in mice. Compared to mice injected with a control virus, mice injected with the prolidase expressing virus contained (29 ± 7)-fold higher levels of the enzyme in their blood on day 5. Challenging these mice with two consecutive 1 × LD50 doses of sarin, cyclosarin, and soman resulted in the death of all animals within 5 to 8 min from nerve agent toxicity. In contrast, mice injected with the adenovirus expressing mouse butyrylcholinesterase, an enzyme which is known to afford protection in vivo, survived multiple 1 × LD50 challenges of these nerve agents and displayed no signs of toxicity. These results suggest that, while prolidase can hydrolyze certain G-type nerve agents in vitro, the enzyme does not offer 24 hour protection against a cumulative dose of 2 × LD50 of G-agents in mice in vivo.


Assuntos
Substâncias para a Guerra Química/toxicidade , Dipeptidases/farmacologia , Fígado/enzimologia , Adenoviridae/genética , Animais , Biocatálise , Butirilcolinesterase/genética , Butirilcolinesterase/farmacologia , Substâncias para a Guerra Química/química , Substâncias para a Guerra Química/metabolismo , Dipeptidases/sangue , Dipeptidases/química , Dipeptidases/genética , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Hidrólise , Técnicas In Vitro , Dose Letal Mediana , Masculino , Camundongos , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
12.
Biochemistry ; 53(50): 7870-83, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25427234

RESUMO

Dug1p, a M20 family metallopeptidase and human orthologue of carnosinase, hydrolyzes Cys-Gly dipeptide, the last step of glutathione (GSH) degradation in Saccharomyces cerevisiae. Molecular bases of peptide recognition by Dug1p and other M20 family peptidases remain unclear in the absence of structural information about enzyme-peptide complexes. We report the crystal structure of Dug1p at 2.55 Å resolution in complex with a Gly-Cys dipeptide and two Zn(2+) ions. The dipeptide is trapped in the tunnel-like active site; its C-terminus is held by residues at the S1' binding pocket, whereas the S1 pocket coordinates Zn(2+) ions and the N-terminus of the peptide. Superposition with the carnosinase structure shows that peptide mimics the inhibitor bestatin, but active site features are altered upon peptide binding. The space occupied by the N-terminus of bestatin is left unoccupied in the Dug1p structure, suggesting that tripeptides could bind. Modeling of tripeptides into the Dug1p active site showed tripeptides fit well. Guided by the structure and modeling, we examined the ability of Dug1p to hydrolyze tripeptides, and results show that Dug1p hydrolyzes tripeptides selectively. Point mutations of catalytic residues do not abolish the peptide binding but abolish the hydrolytic activity, suggesting a noncooperative mode in peptide recognition. In summary, results reveal that peptides are recognized primarily through their amino and carboxyl termini, but hydrolysis depends on the properties of peptide substrates, dictated by their respective sequences. Structural similarity between the Dug1p-peptide complex and the bestatin-bound complex of CN2 suggests that the Dug1p-peptide structure can be used as a template for designing natural peptide inhibitors.


Assuntos
Dipeptidases/química , Metaloproteases/química , Modelos Moleculares , Peptídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Zinco/química , Sítios de Ligação , Cristalografia por Raios X , Dipeptidases/genética , Dipeptidases/metabolismo , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Zinco/metabolismo
13.
Food Chem ; 156: 29-36, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24629934

RESUMO

The hydrolytic specificity of Aspergillus niger prolyl endoproteinase (An-PEP) on purified ß-casein (ß-CN) was assessed. This analysis confirmed cleavage at the C-terminal side of Pro residues. An-PEP also had the ability to cleave at the C-terminal side of Ala, Glu, Gly, Ser, Lys and Leu. Incubation of purified ß-CN with An-PEP resulted in the generation of highly potent angiotensin converting enzyme (ACE) inhibitory hydrolysates. The most potent hydrolysate was obtained after 24h incubation (ACE IC50=16.41±6.06µg/mL). Fourteen ß-CN derived C-terminal Pro-containing di-, tri, and tetrapeptides which were predicted in silico to be released following An-PEP hydrolysis or which were detected by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) in the 24h hydrolysate were synthesised and characterised for their ACE inhibitory activity. The most potent inhibitory peptides were Ile-Gln-Ala (ß-CN f187-189) and Val-Glu-Pro (ß-CN f116-118) having ACE IC50 values of 32.9±9.2 and 63.7±12.0µM, respectively. The hydrolysates generated appear to have the most potent ACE IC50 values reported for a food derived hydrolysate to date.


Assuntos
Aspergillus niger/enzimologia , Caseínas/química , Dipeptidases/química , Proteínas Fúngicas/química , Peptídeos/química , Inibidores da Enzima Conversora de Angiotensina , Animais , Bovinos , Hidrólise , Espectrometria de Massas , Mapeamento de Peptídeos , Peptidil Dipeptidase A/análise , Espectrometria de Massas em Tandem
14.
Molecules ; 19(2): 2299-329, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24566305

RESUMO

Carnosinases are Xaa-His dipeptidases that play diverse functions throughout all kingdoms of life. Human isoforms of carnosinase (CN1 and CN2) under appropriate conditions catalyze the hydrolysis of the dipeptides carnosine (ß-alanyl-L-histidine) and homocarnosine (γ-aminobutyryl-L-histidine). Alterations of serum carnosinase (CN1) activity has been associated with several pathological conditions, such as neurological disorders, chronic diseases and cancer. For this reason the use of carnosinase levels as a biomarker in cerebrospinal fluid (CSF) has been questioned. The hydrolysis of imidazole-related dipeptides in prokaryotes and eukaryotes is also catalyzed by aminoacyl-histidine dipeptidases like PepD (EC 3.4.13.3), PepV (EC 3.4.13.19) and anserinase (EC 3.4.13.5). The review deals with the structure and function of this class of enzymes in physiological and pathological conditions. The main substrates of these enzymes, i.e., carnosine, homocarnosine and anserine (ß-alanyl-3-methyl-L-histidine) will also be described.


Assuntos
Dipeptidases/química , Neoplasias/enzimologia , Doenças do Sistema Nervoso/enzimologia , Carnosina/análogos & derivados , Carnosina/metabolismo , Dipeptidases/sangue , Dipeptidases/genética , Dipeptídeos/química , Humanos , Neoplasias/etiologia , Neoplasias/patologia , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/patologia , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
15.
J Biol Chem ; 288(45): 32787-32796, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24072711

RESUMO

The intracellular peptidases dipeptidyl peptidase (DPP) 8 and DPP9 are involved in multiple cellular pathways including antigen maturation, cellular homeostasis, energy metabolism, and cell viability. Previously we showed that the small ubiquitin-like protein modifier SUMO1 interacts with an armlike structure in DPP9, leading to allosteric activation of the peptidase. Here we demonstrate that the E67-interacting loop (EIL) peptide, which corresponds to the interaction surface of SUMO1 with DPP9, acts as a noncompetitive inhibitor of DPP9. Moreover, by analyzing the sensitivity of DPP9 arm mutants to the EIL peptide, we mapped specific residues in the arm that are important for inhibition by the EIL, suggesting that the peptide acts as an allosteric inhibitor of DPP9. By modifying the EIL peptide, we constructed peptide variants with more than a 1,000-fold selectivity toward DPP8 (147 nM) and DPP9 (170 nM) over DPPIV (200 µM). Furthermore, application of these peptides to cells leads to a clear inhibition of cellular prolyl peptidase activity. Importantly, in line with previous publications, inhibition of DPP9 with these novel allosteric peptide inhibitors leads to an increase in EGF-mediated phosphorylation of Akt. This work highlights the potential use of peptides that mimic interaction surfaces for modulating enzyme activity.


Assuntos
Dipeptidases/antagonistas & inibidores , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Proteína SUMO-1/metabolismo , Regulação Alostérica/efeitos dos fármacos , Dipeptidases/química , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Células HeLa , Humanos , Peptídeos/síntese química , Peptídeos/química , Fosforilação/efeitos dos fármacos , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/genética
16.
Mol Cancer Res ; 11(12): 1487-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038034

RESUMO

DPP8 and DPP9 are recently identified members of the dipeptidyl peptidase IV (DPPIV) enzyme family, which is characterized by the rare ability to cleave a post-proline bond two residues from the N-terminus of a substrate. DPP8 and DPP9 have unique cellular localization patterns, are ubiquitously expressed in tissues and cell lines, and evidence suggests important contributions to various biological processes including: cell behavior, cancer biology, disease pathogenesis, and immune responses. Importantly, functional differences between these two proteins have emerged, such as DPP8 may be more associated with gut inflammation whereas DPP9 is involved in antigen presentation and intracellular signaling. Similarly, the DPP9 connections with H-Ras and SUMO1, and its role in AKT1 pathway downregulation provide essential insights into the molecular mechanisms of DPP9 action. The recent discovery of novel natural substrates of DPP8 and DPP9 highlights the potential role of these proteases in energy metabolism and homeostasis. This review focuses on the recent progress made with these post-proline dipeptidyl peptidases and underscores their emerging importance.


Assuntos
Dipeptidases/metabolismo , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Metabolismo Energético , Homeostase , Animais , Domínio Catalítico , Dipeptidases/química , Dipeptidases/genética , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Especificidade por Substrato
17.
J Biochem ; 154(5): 419-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986487

RESUMO

Dipeptide Gly-Pro, a hard-to-degrade and collagenous peptide, is thought to be hydrolysed by prolidases that can work on various X-Pro dipeptides. Here, we found an entirely different type of dipeptidase from Lactobacillus farciminis JCM1097 that cleaves Gly-Pro far more efficiently and with higher specificity than prolidases, and then investigated its properties by use of a recombinant enzyme. Although L. farciminis dipeptidase was expressed in the form of an inclusion body in Escherichia coli at 37 °C, it was smoothly over-expressed in a soluble form at a lower temperature. The maximal Gly-Pro hydrolytic activity was attained in E. coli at 30 °C. In contrast to prolidases that are metallopeptidases showing the modest or marginal activity toward Gly-Pro, this L. farciminis dipeptidase belongs to the cysteine peptidase family C69. Lactobacillus farciminis dipeptidase occurs in cytoplasm and utilizes the side chain of an amino-terminal cysteine residue to perform the nucleophilic attack on the target amide bond between Gly-Pro after processing eight amino acid residues at the N-terminus. Furthermore, L. farciminis dipeptidase is potent enough to synthesize Gly-Pro from Gly and Pro by a reverse reaction. These novel properties could be revealed by virtue of the success in preparing recombinant enzymes in higher yield and in a stable form.


Assuntos
Cisteína/metabolismo , Dipeptidases/metabolismo , Dipeptídeos/química , Dipeptídeos/metabolismo , Lactobacillus/enzimologia , Dipeptidases/química , Dipeptidases/genética , Hidrólise , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de Proteína , Especificidade por Substrato
18.
Biochim Biophys Acta ; 1834(1): 197-204, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22999980

RESUMO

Human prolidase, the enzyme responsible for the hydrolysis of the Xaa-Pro/Hyp peptide bonds, is a key player in the recycling of imino acids during the final stage of protein catabolism and extracellular matrix remodeling. Its metal active site composition corresponding to the maximal catalytic activity is still unknown, although prolidase function is of increasing interest due to the link with carcinogenesis and mutations in prolidase gene cause a severe connective tissue disorder. Here, using EPR and ICP-MS on human recombinant prolidase produced in Escherichia coli (hRecProl), the Mn(II) ion organized in a dinuclear Mn(II)-Mn(II) center was identified as the protein cofactor. Furthermore, thermal denaturation, CD/fluorescence spectroscopy and limited proteolysis revealed that the Mn(II) is required for the proper protein folding and that a protein conformational modification is needed in the transition from apo- to Mn(II)loaded-enzyme. The collected data provided a better knowledge of the human holo-prolidase and, although limited to the recombinant enzyme, the exact identity and organization of the metal cofactor as well as the conformational change required for activity were proven.


Assuntos
Dipeptidases/química , Precursores Enzimáticos/química , Manganês/química , Espectrometria de Fluorescência , Catálise , Domínio Catalítico , Dicroísmo Circular , Dipeptidases/metabolismo , Precursores Enzimáticos/metabolismo , Humanos , Hidrólise , Manganês/metabolismo , Desnaturação Proteica , Dobramento de Proteína
19.
Xenobiotica ; 42(12): 1178-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22742779

RESUMO

Following conjugation with glutathione, xenobiotics are converted into cysteinylglycine conjugates, cysteine conjugates, and finally, mercapturic acids. The structural factors determining the activities of dipeptidases for the metabolism of toxicologically-relevant cysteinylglycine conjugates are not well understood. We purified porcine kidney cortex membrane dipeptidase (MDP) to homogeneity, via phosphatidylinositol-specific phospholipase C-mediated cleavage of the protein's membrane anchor and cilastatin affinity chromatography. The homodimeric structure of the MDP protein was confirmed by mass spectrometry. The cysteinylglycine conjugates of 1-(chloromethyl)naphthalene, 4-nitrobenzyl chloride, and 1-chloro-2,4-dinitrobenzene were synthesized and HPLC separation methods for their quantitation were developed. MDP catalyzed the hydrolysis of all three conjugates, but the rate of this activity was strongly dependent on the nature of the substituent on the cysteine sulfur atom.


Assuntos
Biocatálise , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Córtex Renal/enzimologia , Sus scrofa/metabolismo , Animais , Cisteína/metabolismo , Dipeptidases/química , Dipeptidases/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Glutationa/metabolismo , Hidrólise , Cinética , Membranas/enzimologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
20.
Biochimie ; 93(2): 175-86, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20868722

RESUMO

Dug1p is a recently identified novel dipeptidase and plays an important role in glutathione (GSH) degradation. To understand the mechanism of its substrate recognition and specificity towards Cys-Gly dipeptides, we characterized the solution properties of Dug1p and studied the thermodynamics of Dug1p-peptide interactions. In addition, we used homology modeling and ligand docking approaches to get structural insights into Dug1p-peptide interaction. Dug1p exists as dimer and the stoichiometry of peptide-Dug1p complex is 2:1 indicating each monomer in the dimer binds to one peptide. Thermodynamic studies indicate that the free energy change for Dug1p-peptide complex formation is similar (▵G(bind) âˆ¼ -7.0 kcal/mol) for a variety of peptides of different composition and length (22 peptides). Three-dimensional model of Dug1p is constructed and docking of peptides to the modeled structure suggests that hydrogen bonding to active site residues (E172, E171, and D137) lock the N-terminal of the peptide into the binding site. Dug1p recognizes peptides in a metal independent manner and peptide binding is not sensitive to salts (dlogK/dlog[salt] âˆ¼ 0) over a range of [NaCl] (0.02-0.5 M), [ZnCl(2)], and [MnCl(2)] (0-0.5 mM). Our results indicate that promiscuity in peptide binding results from the locking of peptide N-terminus into the active site. These observations were supported by our competitive inhibition activity assays. Dug1p activity towards Cys-Gly peptide is significantly reduced (∼ 70%) in the presence of Glu-Cys-Gly. Therefore, Dug1p can recognize a variety of oligopeptides, but has evolved with post-binding screening potential to hydrolyze Cys-Gly peptides selectively.


Assuntos
Dipeptidases/química , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos , Regulação Alostérica , Ligação Competitiva , Dipeptídeos/química , Estabilidade Enzimática , Ligantes , Manganês/farmacologia , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Análise Espectral , Especificidade por Substrato , Termodinâmica , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA