Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 211, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997064

RESUMO

Although the overall survival of hepatocellular carcinoma (HCC) patients has been significantly improved, prognostic clinical evaluation remains a substantial problem owing to the heterogeneity and complexity of tumor. A reliable and accurate predictive biomarker may assist physicians in better monitoring of patient treatment outcomes and follow the overall survival of patients. Accumulating evidence has revealed that DTNBP1 plays functional roles in cancer prognosis. Therefore, the expression and function of DTNBP1in HCC was systematically investigated in our study. The expression and prognostic value of DTNBP1 were investigated using the data from Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) cohorts and clinical samples. A series of cellular function assays were performed to elucidate the effect of DTNBP1 on cellular proliferation, apoptosis and metastasis. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment and Protein-protein interaction (PPI) network construction were performed to screen the genes with highest interaction scores with DTNBP1. Finally, the underlying mechanism was also analyzed using Gene Set Enrichment Analysis (GSEA) and confirmed using RT-qPCR and western blotting. DTNBP1 was upregulated in many types of cancers, especially in HCC. The DTNBP1 expression levels is associated with clinicopathologic variables and patient survival status. The differential expression of DTNBP1 could be used to determine the risk stratification of patients with HCC. DTNBP1 deficiency inhibited cell proliferation and metastasis, but promoted cell apoptosis. Mechanistically, DTNBP1 regulated the cell cycle progression through affecting the expression of cell cycle-related genes such as CDC25A, CCNE1, CDK2, CDC20, CDC25B, CCNB1, and CDK1. DTNBP1, which regulates the cell cycle progression, may be used as a prognostic marker for HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Disbindina/metabolismo , Neoplasias Hepáticas/metabolismo , Idoso , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Proliferação de Células , Bases de Dados Genéticas , Disbindina/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Mapas de Interação de Proteínas , Transdução de Sinais
2.
Brain Res Bull ; 164: 339-349, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32795490

RESUMO

BACKGROUND AND PURPOSE: DTNBP1 gene variation and lower dysbindin-1 protein are associated with schizophrenia. Previous evidence suggests that downregulated dysbindin-1 expression results in lower expression of copper transporters ATP7A (intracellular copper transporter) and SLC31A1 (CTR1; extracellular copper transporter), which are required for copper transport across the blood brain barrier. However, whether antipsychotic medications used for schizophrenia treatment may modulate these systems is unclear. EXPERIMENTAL APPROACH: The current study measured behavioral indices of neurological function in dysbindin-1 functional knockout (KO) mice and their wild-type (WT) littermates with or without quetiapine treatment. We assessed serum and brain copper levels, ATP7A and CTR1 mRNA, and copper transporter-expressing cellular population transcripts: TTR (transthyretin; choroid plexus epithelial cells), MBP (myelin basic protein; oligodendrocytes), and GJA1 (gap-junction protein alpha-1; astrocytes) in cortex and hippocampus. KEY RESULTS: Regardless of genotype, quetiapine significantly reduced TTR, MBP, CTR1 mRNA, and serum copper levels. Neurological function of untreated KO mice was abnormal, and ledge instability was rescued with quetiapine. KO mice were hyperactive after 10 min in the open-field assay, which was not affected by treatment. CONCLUSIONS AND IMPLICATIONS: Dysbindin-1 KO results in hyperactivity, altered serum copper, and neurological impairment, the last of which is selectively rescued with quetiapine. Antipsychotic treatment modulates specific cellular populations, affecting myelin, the choroid plexus, and copper transport across the blood brain barrier. Together these results indicate the widespread impact of antipsychotic treatment, and that alteration of dysbindin-1 may be sufficient, but not necessary, for specific schizophrenia pathology.


Assuntos
Encéfalo/metabolismo , Cobre/metabolismo , Disbindina/genética , Esquizofrenia/genética , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Encéfalo/efeitos dos fármacos , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Camundongos , Camundongos Knockout , Fumarato de Quetiapina/farmacologia , Fumarato de Quetiapina/uso terapêutico , Fatores de Risco , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
3.
Cancer Lett ; 477: 107-121, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32120026

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most invasive solid tumours and has the highest cancer-related mortality rate. Despite intense investigation, the molecular mechanisms underlying the invasiveness and aetiology of PDAC remain elusive. MicroRNAs (miRNAs) are key regulators of tumour cell plasticity, but their roles in PDAC metastasis have not been characterized. Our early studies showed that dysbindin protein levels are elevated in PDAC patients compared with control individuals and that dysbindin upregulation elicits PDAC cell proliferation via the PI3K pathway. Here, we show that dysbindin promoted PDAC metastasis via the NF-κB/MDM2 signalling axis. Increased dysbindin levels correlated with aggressive features in PDAC, and the overexpression of dysbindin significantly promoted PDAC metastasis and invasion in vitro and in vivo. Surprisingly, dysbindin was identified as a direct target of miR-342-3p, which promotes NF-κB activation and PDAC metastasis. Thus, dysbindin-mediated NF-κB activation via miR-342-3p represents a context-dependent switch that enables PDAC cell proliferation and metastasis. Our data suggest that dysbindin and miR-342-3p are potential leads for the development of targeted therapy for PDAC.


Assuntos
Carcinoma Ductal Pancreático/patologia , Disbindina/metabolismo , MicroRNAs/genética , NF-kappa B/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Idoso , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Disbindina/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Nus , MicroRNAs/metabolismo , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Neurochem ; 147(5): 609-625, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30062698

RESUMO

Vaccinia-related kinase 2 (VRK2) is a serine/threonine kinase that belongs to the casein kinase 1 family. VRK2 has long been known for its relationship with neurodegenerative disorders such as schizophrenia. However, the role of VRK2 and the substrates associated with it are unknown. Dysbindin is known as one of the strong risk factors for schizophrenia. The expression of dysbindin is indeed significantly reduced in schizophrenia patients. Moreover, dysbindin is involved in neurite outgrowth and regulation of NMDA receptor signaling. Here, we first identified dysbindin as a novel interacting protein of VRK2 through immunoprecipitation. We hypothesized that dysbindin is phosphorylated by VRK2 and further that this phosphorylation plays an important role in the function of dysbindin. We show that VRK2 phosphorylates Ser 297 and Ser 299 of dysbindin using in vitro kinase assay. In addition, we found that VRK2-mediated phosphorylation of dysbindin enhanced ubiquitination of dysbindin and consequently resulted in the decrease in its protein stability through western blotting. Over-expression of VRK2 in human neuroblastoma (SH-SY5Y) cells reduced neurite outgrowth induced by retinoic acid. Furthermore, a phosphomimetic mutant of dysbindin alleviated neurite outgrowth and affected surface expression of N-methyl-d-aspartate 2A, a subunit of NMDA receptor in mouse hippocampal neurons. Together, our work reveals the regulation of dysbindin by VRK2, providing the association of these two proteins, which are commonly implicated in schizophrenia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Disbindina/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Estabilidade Proteica , Animais , Linhagem Celular , Disbindina/genética , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Mutação/fisiologia , Neuritos/efeitos dos fármacos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/farmacologia , Receptores de N-Metil-D-Aspartato/biossíntese , Tretinoína/farmacologia , Ubiquitinação
5.
Mol Neurobiol ; 54(3): 1699-1709, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26873854

RESUMO

Schizophrenia is a chronic debilitating neuropsychiatric disorder that affects about 1 % of the population. Dystrobrevin-binding protein 1 (DTNBP1 or dysbindin) is one of the Research Domain Constructs (RDoC) associated with cognition and is significantly reduced in the brain of schizophrenia patients. To further understand the molecular underpinnings of pathogenesis of schizophrenia, we have performed microarray analyses of the hippocampi from dysbindin knockout mice, and found that genes involved in the lipogenic pathway are suppressed. Moreover, we discovered that maturation of a master transcriptional regulator for lipid synthesis, sterol regulatory element binding protein-1 (SREBP1) is induced by neuronal activity, and is required for induction of the immediate early gene ARC (activity-regulated cytoskeleton-associated protein), necessary for synaptic plasticity and memory. We found that nuclear SREBP1 is dramatically reduced in dysbindin-1 knockout mice and postmortem brain tissues from human patients with schizophrenia. Furthermore, activity-dependent maturation of SREBP1 as well as ARC expression were attenuated in dysbindin-1 knockout mice, and these deficits were restored by an atypical antipsychotic drug, clozapine. Together, results indicate an important role of dysbindin-1 in neuronal activity induced SREBP1 and ARC, which could be related to cognitive deficits in schizophrenia.


Assuntos
Disfunção Cognitiva/metabolismo , Disbindina/deficiência , Neurônios/metabolismo , Esquizofrenia/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Idoso , Idoso de 80 Anos ou mais , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Disbindina/genética , Feminino , Redes Reguladoras de Genes/fisiologia , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Células PC12 , Distribuição Aleatória , Ratos , Esquizofrenia/genética , Psicologia do Esquizofrênico , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
6.
Biochim Biophys Acta ; 1862(8): 1383-91, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27130439

RESUMO

Dysbindin-1 (dystrobrevin binding protein-1, DTNBP1) is now widely accepted as a potential schizophrenia susceptibility gene and accumulating evidence indicates its functions in the neural development. In this study, we tried to identify new binding partners for dysbindin-1 to clarify the novel function of this molecule. When consulted with BioGRID protein interaction database, cyclin D3 was found to be a possible binding partner for dysbindin-1. We then examined the interaction between various dysbindin-1 isoforms (dysbindin-1A, -1B and -1C) and all three D-type cyclins (cyclin D1, D2, and D3) by immunoprecipitation with the COS7 cell expression system, and found that dysbindin-1A preferentially interacts with cyclin D1. The mode of interaction between these molecules was considered as direct binding since recombinant dysbindin-1A and cyclin D1 formed a complex in vitro. Mapping analyses revealed that the C-terminal region of dysbindin-1A binds to the C-terminal of cyclin D1. Consistent with the results of the biochemical analyses, endogenous dysbindin-1was partially colocalized with cyclin D1 in NIH3T3 fibroblast cells and in neuronal stem and/or progenitor cells in embryonic mouse brain. While co-expression of dysbindin-1A with cyclin D1 changed the localization of the latter from the nucleus to cytosol, cyclin D1-binding partner CDK4 inhibited the dysbindin-cyclin D1 interaction. Meanwhile, depletion of endogenous dysbindin-1A increased cyclin D1 expression. These results indicate that dysbindin-1A may control the cyclin D1 function spatiotemporally and might contribute to better understanding of the pathophysiology of dysbindin-1-associated disorders.


Assuntos
Núcleo Celular/metabolismo , Ciclina D1/metabolismo , Citosol/metabolismo , Disbindina/metabolismo , Esquizofrenia , Transporte Ativo do Núcleo Celular , Animais , Encéfalo/embriologia , Células COS , Núcleo Celular/genética , Chlorocebus aethiops , Ciclina D1/genética , Disbindina/genética , Embrião de Mamíferos/metabolismo , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Células-Tronco Neurais/metabolismo , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA