Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Exp Hematol ; 133: 104211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527589

RESUMO

Leukemias are a set of clonal hematopoietic malignant diseases that develop in the bone marrow. Several factors influence leukemia development and progression. Among these, the gut microbiota is a major factor influencing a wide array of its processes. The gut microbial composition is linked to the risk of tumor development and the host's ability to respond to treatment, mostly due to the immune-modulatory effects of their metabolites. Despite such strong evidence, its role in the development of hematologic malignancies still requires attention of investigators worldwide. In this review, we make an effort to discuss the role of host gut microbiota-immune crosstalk in leukemia development and progression. Additionally, we highlight certain recently developed strategies to modify the gut microbial composition that may help to overcome dysbiosis in leukemia patients in the near future.


Assuntos
Disbiose , Microbioma Gastrointestinal , Leucemia , Humanos , Disbiose/imunologia , Disbiose/complicações , Microbioma Gastrointestinal/imunologia , Leucemia/imunologia , Leucemia/microbiologia , Leucemia/etiologia , Animais
2.
Alcohol ; 107: 136-143, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36150609

RESUMO

Alcohol use among older adults is on the rise. This increase is clinically relevant as older adults are at risk for increased morbidity and mortality from many alcohol-related chronic diseases compared to younger patients. However, little is known regarding the synergistic effects of alcohol and age. There are intriguing data suggesting that aging may lead to impaired intestinal barrier integrity and dysbiosis of the intestinal microbiome, which could increase susceptibility to alcohol's negative effects. To study the effects of alcohol in age we exposed aged and young mice to 3 days of moderate ethanol and evaluated changes in gut parameters. We found that these levels of drinking do not have obvious effects in young mice but cause significant alcohol-induced gut barrier dysfunction and expression of the pro-inflammatory cytokine TNFα in aged mice. Ethanol-induced downregulation of expression of the gut-protective antimicrobial peptides Defa-rs1, Reg3b, and Reg3g was observed in aged, but not young mice. Analysis of the fecal microbiome revealed age-associated shifts in microbial taxa, which correlated with intestinal and hepatic inflammatory gene expression. Taken together, these data demonstrate that age drives microbiome dysbiosis, while ethanol exposure in aged mice induces changes in the expression of antimicrobial genes important for separating these potentially damaging microbes from the intestinal lumen. These changes highlight potential mechanistic targets for prevention of the age-related exacerbation of effects of ethanol on the gut.


Assuntos
Disbiose , Etanol , Microbioma Gastrointestinal , Inflamação , Intestinos , Animais , Camundongos , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/imunologia , Citocinas/imunologia , Disbiose/induzido quimicamente , Disbiose/genética , Disbiose/imunologia , Disbiose/microbiologia , Etanol/farmacologia , Etanol/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , alfa-Defensinas/genética , alfa-Defensinas/imunologia
3.
J Immunol Res ; 2022: 6839356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224112

RESUMO

Intestinal bacterial compositions of rheumatoid arthritis (RA) patients have been reported to be different from those of healthy people. Dysbiosis, imbalance of the microbiota, is widely known to cause gut barrier damage, resulting in an influx of bacteria and their substances into host bloodstreams in animal studies. However, few studies have investigated the effect of bacterial substances on the pathophysiology of RA. In this study, eighty-seven active RA patients who had inadequate responses to conventional synthetic disease-modifying antirheumatic drugs or severe comorbidities were analyzed for correlations between many factors such as disease activities, disease biomarkers, intestinal bacterial counts, fecal and serum lipopolysaccharide (LPS), LPS-binding protein (LBP), endotoxin neutralizing capacity (ENC), and serum antibacterial substance IgG and IgA antibody levels by multiple regression analysis with consideration for demographic factors such as age, sex, smoking, and methotrexate treatment. Serum LBP levels, fecal LPS levels, total bacteria counts, serum anti-LPS from Porphyromonas gingivalis (Pg-LPS) IgG antibody levels, and serum anti-Pg-LPS IgA antibody levels were selected for multiple regression analysis using Spearman's correlation analysis. Serum LBP levels were correlated with disease biomarker levels, such as erythrocyte sedimentation rate (p < 0.001), C-reactive protein (p < 0.001), matrix metalloproteinase-3 (p < 0.001), and IL-6 (p = 0.001), and were inversely correlated with hemoglobin (p = 0.005). Anti-Pg-LPS IgG antibody levels were inversely correlated with activity indices such as patient global assessments using visual analogue scale (VAS) (p = 0.002) and painVAS (p < 0.001). Total bacteria counts were correlated with ENC (p < 0.001), and inversely correlated with serum LPS (p < 0.001) and anti-Pg-LPS IgA antibody levels (p < 0.001). These results suggest that substances from oral and gut microbiota may influence disease activity in RA patients.


Assuntos
Artrite Reumatoide/microbiologia , Infecções por Bacteroidaceae/microbiologia , Disbiose/microbiologia , Boca/microbiologia , Porphyromonas gingivalis/fisiologia , Proteínas de Fase Aguda/metabolismo , Idoso , Artrite Reumatoide/imunologia , Autoanticorpos/sangue , Carga Bacteriana , Infecções por Bacteroidaceae/imunologia , Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Estudos Transversais , Disbiose/imunologia , Feminino , Microbioma Gastrointestinal , Humanos , Imunoglobulina A/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade
4.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163596

RESUMO

Because both endotoxemia and gut dysbiosis post-splenectomy might be associated with systemic infection, the susceptibility against infection was tested by dextran sulfate solution (DSS)-induced colitis and lipopolysaccharide (LPS) injection models in splenectomy mice with macrophage experiments. Here, splenectomy induced a gut barrier defect (FITC-dextran assay, endotoxemia, bacteria in mesenteric lymph nodes, and the loss of enterocyte tight junction) and gut dysbiosis (increased Proteobacteria by fecal microbiome analysis) without systemic inflammation (serum IL-6). In parallel, DSS induced more severe mucositis in splenectomy mice than sham-DSS mice, as indicated by mortality, stool consistency, gut barrier defect, serum cytokines, and blood bacterial burdens. The presence of green fluorescent-producing (GFP) E. coli in the spleen of sham-DSS mice after an oral gavage supported a crucial role of the spleen in the control of bacteria from gut translocation. Additionally, LPS administration in splenectomy mice induced lower serum cytokines (TNF-α and IL-6) than LPS-administered sham mice, perhaps due to LPS tolerance from pre-existing post-splenectomy endotoxemia. In macrophages, LPS tolerance (sequential LPS stimulation) demonstrated lower cell activities than the single LPS stimulation, as indicated by the reduction in supernatant cytokines, pro-inflammatory genes (iNOS and IL-1ß), cell energy status (extracellular flux analysis), and enzymes of the glycolysis pathway (proteomic analysis). In conclusion, a gut barrier defect after splenectomy was vulnerable to enterocyte injury (such as DSS), which caused severe bacteremia due to defects in microbial control (asplenia) and endotoxemia-induced LPS tolerance. Hence, gut dysbiosis and gut bacterial translocation in patients with a splenectomy might be associated with systemic infection, and gut-barrier monitoring or intestinal tight-junction strengthening may be useful.


Assuntos
Bacteriemia/imunologia , Colite/imunologia , Sulfato de Dextrana/toxicidade , Disbiose/imunologia , Tolerância Imunológica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Esplenectomia , Animais , Colite/induzido quimicamente , Disbiose/induzido quimicamente , Masculino , Camundongos
5.
Front Immunol ; 13: 1096551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726985

RESUMO

The gastrointestinal tract is inhabited by trillions of commensal microorganisms that constitute the gut microbiota. As a main metabolic organ, the gut microbiota has co-evolved in a symbiotic relationship with its host, contributing to physiological homeostasis. Recent advances have provided mechanistic insights into the dual role of the gut microbiota in cancer pathogenesis. Particularly, compelling evidence indicates that the gut microbiota exerts regulatory effects on the host immune system to fight against cancer development. Some microbiota-derived metabolites have been suggested as potential activators of antitumor immunity. On the contrary, the disequilibrium of intestinal microbial communities, a condition termed dysbiosis, can induce cancer development. The altered gut microbiota reprograms the hostile tumor microenvironment (TME), thus allowing cancer cells to avoid immunosurvelliance. Furthermore, the gut microbiota has been associated with the effects and complications of cancer therapy given its prominent immunoregulatory properties. Therapeutic measures that aim to manipulate the interplay between the gut microbiota and tumor immunity may bring new breakthroughs in cancer treatment. Herein, we provide a comprehensive update on the evidence for the implication of the gut microbiota in immune-oncology and discuss the fundamental mechanisms underlying the influence of intestinal microbial communities on systemic cancer therapy, in order to provide important clues toward improving treatment outcomes in cancer patients.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Microambiente Tumoral , Humanos , Microbioma Gastrointestinal/imunologia , Sistema Imunitário , Neoplasias/imunologia , Resultado do Tratamento , Microambiente Tumoral/imunologia , Disbiose/imunologia
6.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884961

RESUMO

Lipocalin 2 (LCN2) mediates key roles in innate immune responses. It has affinity for many lipophilic ligands and binds various siderophores, thereby limiting bacterial growth by iron sequestration. Furthermore, LCN2 protects against obesity and metabolic syndrome by interfering with the composition of gut microbiota. Consequently, complete or hepatocyte-specific ablation of the Lcn2 gene is associated with higher susceptibility to bacterial infections. In the present study, we comparatively profiled microbiota in fecal samples of wild type and Lcn2 null mice and show, in contrast to previous reports, that the quantity of DNA in feces of Lcn2 null mice is significantly lower than that in wild type mice (p < 0.001). By using the hypervariable V4 region of the 16S rDNA gene and Next-Generation Sequencing methods, we found a statistically significant change in 16 taxonomic units in Lcn2-/- mice, including eight gender-specific deviations. In particular, members of Clostridium, Escherichia, Helicobacter, Lactococcus, Prevotellaceae_UCG-001 and Staphylococcus appeared to expand in the intestinal tract of knockout mice. Interestingly, the proportion of Escherichia (200-fold) and Staphylococcus (10-fold) as well as the abundance of intestinal bacteria encoding the LCN2-sensitive siderphore enterobactin (entA) was significantly increased in male Lcn2 null mice (743-fold, p < 0.001). This was accompanied by significant higher immune cell infiltration in the ileum as demonstrated by increased immunoreactivity against the pan-leukocyte protein CD45, the lymphocyte transcription factor MUM-1/IRF4, and the macrophage antigen CD68/Macrosialin. In addition, we found a higher expression of mucosal mast cell proteases indicating a higher number of those innate immune cells. Finally, the ileum of Lcn2 null mice displayed a high abundance of segmented filamentous bacteria, which are intimately associated with the mucosal cell layer, provoking epithelial antimicrobial responses and affecting T-helper cell polarization.


Assuntos
Bactérias/classificação , Disbiose/microbiologia , Lipocalina-2/genética , Mutação com Perda de Função , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Disbiose/genética , Disbiose/imunologia , Fezes/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Knockout , Filogenia , RNA Ribossômico 16S/genética , Fatores Sexuais
7.
Front Immunol ; 12: 799788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925385

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that was traditionally thought to be closely related to genetic and environmental risk factors. Although treatment options for SLE with hormones, immunosuppressants, and biologic drugs are now available, the rates of clinical response and functional remission of these drugs are still not satisfactory. Currently, emerging evidence suggests that gut microbiota dysbiosis may play crucial roles in the occurrence and development of SLE, and manipulation of targeting the gut microbiota holds great promises for the successful treatment of SLE. The possible mechanisms of gut microbiota dysbiosis in SLE have not yet been well identified to date, although they may include molecular mimicry, impaired intestinal barrier function and leaky gut, bacterial biofilms, intestinal specific pathogen infection, gender bias, intestinal epithelial cells autophagy, and extracellular vesicles and microRNAs. Potential therapies for modulating gut microbiota in SLE include oral antibiotic therapy, fecal microbiota transplantation, glucocorticoid therapy, regulation of intestinal epithelial cells autophagy, extracellular vesicle-derived miRNA therapy, mesenchymal stem cell therapy, and vaccination. This review summarizes novel insights into the mechanisms of microbiota dysbiosis in SLE and promising therapeutic strategies, which may help improve our understanding of the pathogenesis of SLE and provide novel therapies for SLE.


Assuntos
Disbiose/complicações , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Lúpus Eritematoso Sistêmico/microbiologia , Animais , Humanos , Lúpus Eritematoso Sistêmico/imunologia
8.
Nat Commun ; 12(1): 6664, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795263

RESUMO

Crohn's disease is an inflammatory disease of the gastrointestinal tract characterized by an aberrant response to microbial and environmental triggers. This includes an altered microbiome dominated by Enterobacteriaceae and in particular adherent-invasive E. coli (AIEC). Clinical evidence implicates periods of psychological stress in Crohn's disease exacerbation, and disturbances in the gut microbiome might contribute to the pathogenic mechanism. Here we show that stress-exposed mice develop ileal dysbiosis, dominated by the expansion of Enterobacteriaceae. In an AIEC colonisation model, stress-induced glucocorticoids promote apoptosis of CD45+CD90+ cells that normally produce IL-22, a cytokine that is essential for the maintenance of ileal mucosal barrier integrity. Blockade of glucocorticoid signaling or administration of recombinant IL-22 restores mucosal immunity, prevents ileal dysbiosis, and blocks AIEC expansion. We conclude that psychological stress impairs IL-22-driven protective immunity in the gut, which creates a favorable niche for the expansion of pathobionts that have been implicated in Crohn's disease. Importantly, this work also shows that immunomodulation can counteract the negative effects of psychological stress on gut immunity and hence disease-associated dysbiosis.


Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Estresse Psicológico/imunologia , Animais , Aderência Bacteriana/imunologia , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Disbiose/microbiologia , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/imunologia , Escherichia coli/imunologia , Escherichia coli/fisiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Íleo/imunologia , Íleo/microbiologia , Íleo/patologia , Interleucinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/imunologia , Receptores de Glucocorticoides/metabolismo , Antígenos Thy-1/imunologia , Antígenos Thy-1/metabolismo , Interleucina 22
9.
Gut Microbes ; 13(1): 1997292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34818131

RESUMO

Men who have sex with men (MSM), regardless of HIV infection status, have an intestinal microbiome that is compositionally distinct from men who have sex with women (MSW) and women. We recently showed HIV-negative MSM have elevated levels of intestinal CD4+ T cells expressing CCR5, a critical co-receptor for HIV. Whether elevated expression of CCR5 is driven by the altered gut microbiome composition in MSM has not been explored. Here we used in vitro stimulation of gut Lamina Propria Mononuclear Cells (LPMCs) with whole intact microbial cells isolated from stool to demonstrate that fecal bacterial communities (FBCs) from HIV-positive/negative MSM induced higher frequencies of CCR5+ CD4+ T cells compared to FBCs from HIV-negative MSW and women. To identify potential microbial drivers, we related the frequency of CCR5+ CD4+ T cells to the abundance of individual microbial taxa in rectal biopsy of HIV-positive/negative MSM and controls, and Holdemanella biformis was strongly associated with increased frequency of CCR5+ CD4+ T cells. We used in vitro stimulation of gut LPMCs with the type strain of H. biformis, a second strain of H.biformis and an isolate of the closely related Holdemanella porci , cultured from either a HIV-positive or a HIV-negative MSM stool. H. porci elevated the frequency of both CCR5+ CD4+ T cells and the ratio of TNF-α/IL-10 Genomic comparisons of the 3 Holdemanella isolates revealed unique cell wall and capsular components, which may be responsible for their differences in immunogenicity. These findings describe a novel mechanism potentially linking intestinal dysbiosis in MSM to HIV transmission and mucosal pathogenesis.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Firmicutes/imunologia , Microbioma Gastrointestinal/imunologia , Infecções por HIV/microbiologia , Homossexualidade Masculina , Mucosa Intestinal/imunologia , Receptores CCR5/metabolismo , Citocinas/metabolismo , Disbiose/imunologia , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Genoma Bacteriano/genética , Infecções por HIV/imunologia , Infecções por HIV/transmissão , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Minorias Sexuais e de Gênero
10.
Front Immunol ; 12: 750841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721422

RESUMO

The balance between gut microbiota and host is critical for maintaining host health. Although dysregulation of the gut microbiota triggers the development of various inflammatory diseases, including colitis, the molecular mechanism of microbiota-driven colitis development is largely unknown. Here, we found that gasdermin D (GSDMD) was activated during acute colitis. In the dextran sulfate sodium (DSS)-induced colitis model, compared to wild-type mice, Gsdmd-deficient mice had less colitis severity. Mechanistically, GSDMD expression in intestinal epithelial cells (IECs), but not infiltrating immune cells, was critical for GSDMD-mediated colitis progression. Moreover, commensal Escherichia coli (E. coli) largely overgrew during colitis, and then the dysregulated commensal E. coli mediated GSDMD activation. Furthermore, the activated GSDMD promoted the release of interleukin-18 (IL-18), but not the transcript or maturation level of IL-18, which in turn mediated goblet cell loss to induce colitis development. Thus, GSDMD promotes colitis development by mediating IL-18 release, and the microbiota can mediate colitis pathogenesis through regulation of GSDMD activation. Our results provide a potential molecular mechanism by which the microbiota-driven GSDMD activation contributes to colitis pathogenesis.


Assuntos
Colite/imunologia , Disbiose/imunologia , Interleucina-18/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas de Ligação a Fosfato/imunologia , Animais , Colite/microbiologia , Colite/patologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Progressão da Doença , Disbiose/microbiologia , Disbiose/patologia , Células Epiteliais/imunologia , Microbioma Gastrointestinal , Células HT29 , Humanos , Interleucina-1beta/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética
11.
J Immunol Res ; 2021: 4973589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722779

RESUMO

METHOD: This study included 74 Chinese male patients with HCC. They were divided into early (n = 19), intermediate (n = 37), and terminal (n = 18) groups, referred to as Barcelona Clinic Liver Cancer stage 0+A, B, and C+D, respectively. Paired fecal and plasma samples were collected. Microbial composition and profiles were analyzed by 16S rRNA gene sequencing. The levels of gut damage marker (regenerating islet-derived protein 3α (REG3α)) and microbial translocation markers (soluble CD14 (sCD14), lipopolysaccharide-binding protein (LBP), peptidoglycan recognition proteins (PGRPs)) were determined in plasma samples of patients by ELISA. Twenty plasma cytokine and chemokines were determined by Luminex. RESULTS: In early, intermediate, and terminal groups, the abundance of the Bifidobacteriaceae family decreased significantly (3.52%, 1.55%, and 0.56%, respectively, P = 0.003), while the abundance of the Enterococcaceae family increased significantly (1.6%, 2.9%, and 13.4%, respectively, P = 0.022). Levels of REG3α and sCD14 were markedly elevated only in the terminal group compared with the early (P = 0.025 and P = 0.048) and intermediate groups (P = 0.023 and P = 0.046). The level of LBP significantly increased in the intermediate (P = 0.035) and terminal (P = 0.025) groups compared with the early group. The PGRP levels were elevated only in the terminal group compared with the early group (P = 0.018). The ratio of Enterococcaceae to Bifidobacteriaceae was significantly associated with the levels of REG3α, LBP, sCD14, and PGRPs. With HCC progression, increased levels of inflammatory cytokines accompanied by a T cell-immunosuppressive response and microbial translocation were observed. CONCLUSION: Gut microbiota compositional and functional shift, together with elevated gut damage and microbial translocation, may promote HCC development by stimulating inflammatory response and suppressing T cell response.


Assuntos
Translocação Bacteriana/imunologia , Carcinoma Hepatocelular/imunologia , Disbiose/complicações , Microbioma Gastrointestinal/imunologia , Neoplasias Hepáticas/imunologia , Actinobacteria/genética , Actinobacteria/imunologia , Actinobacteria/isolamento & purificação , Idoso , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/microbiologia , Carcinoma Hepatocelular/patologia , DNA Bacteriano/isolamento & purificação , Progressão da Doença , Disbiose/diagnóstico , Disbiose/imunologia , Disbiose/microbiologia , Enterococcaceae/genética , Enterococcaceae/imunologia , Enterococcaceae/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/microbiologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S
12.
Nat Microbiol ; 6(12): 1505-1515, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34764444

RESUMO

Allogeneic haematopoietic cell transplantation (allo-HCT) induces profound shifts in the intestinal bacterial microbiota. The dynamics of intestinal fungi and their impact on clinical outcomes during allo-HCT are not fully understood. Here we combined parallel high-throughput fungal ITS1 amplicon sequencing, bacterial 16S amplicon sequencing and fungal cultures of 1,279 faecal samples from a cohort of 156 patients undergoing allo-HCT to reveal potential trans-kingdom dynamics and their association with patient outcomes. We saw that the overall density and the biodiversity of intestinal fungi were stable during allo-HCT but the species composition changed drastically from day to day. We identified a subset of patients with fungal dysbiosis defined by culture positivity (n = 53) and stable expansion of Candida parapsilosis complex species (n = 19). They presented with distinct trans-kingdom microbiota profiles, characterized by a decreased intestinal bacterial biomass. These patients had worse overall survival and higher transplant-related mortality independent of candidaemia. This expands our understanding of the clinical significance of the mycobiota and suggests that targeting fungal dysbiosis may help to improve long-term patient survival.


Assuntos
Candida parapsilosis/crescimento & desenvolvimento , Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Candida parapsilosis/genética , Candida parapsilosis/fisiologia , Disbiose/imunologia , Disbiose/microbiologia , Fezes/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Estudos Prospectivos , Transplante Homólogo , Resultado do Tratamento
13.
Front Immunol ; 12: 747914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745119

RESUMO

The human body and its microbiome constitute a highly delicate system. The gut microbiome participates in the absorption of the host's nutrients and metabolism, maintains the microcirculation, and modulates the immune response. Increasing evidence shows that gut microbiome dysbiosis in the body not only affects the occurrence and development of tumors but also tumor prognosis and treatment. Microbiome have been implicated in tumor control in patients undergoing anti- angiogenesis therapy and immunotherapy. In cases with unsatisfactory responses to chemotherapy, radiotherapy, and targeted therapy, appropriate adjustment of microbes abundance is considered to enhance the treatment response. Here, we review the current research progress in cancer immunotherapy and anti- angiogenesis therapy, as well as the unlimited potential of their combination, especially focusing on how the interaction between intestinal microbiota and the immune system affects cancer pathogenesis and treatment. In addition, we discuss the effects of microbiota on anti-cancer immune response and anti- angiogenesis therapy, and the potential value of these interactions in promoting further research in this field.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Imunoterapia , Microbiota , Neoplasias/terapia , Inibidores da Angiogênese/farmacologia , Carcinogênese/imunologia , Ensaios Clínicos Fase III como Assunto , Terapia Combinada , Dieta , Medicamentos de Ervas Chinesas/farmacologia , Disbiose/imunologia , Disbiose/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Microbiota/efeitos dos fármacos , Microbiota/imunologia , Microbiota/fisiologia , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/microbiologia , Probióticos , Simbiose , Evasão Tumoral
14.
Front Immunol ; 12: 766296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745141

RESUMO

Cyclophosphamide (CTX), a common anticancer drug, can cause a variety of side effects such as immunosuppression and intestinal mucosal injury. Polysaccharides are the major bioactive components of the roots of Millettia Speciosa Champ and have gained attention for their immunomodulatory activity. This study was designed to evaluate the immunomodulatory effect of Millettia Speciosa Champ polysaccharide (MSCP) on CTX-induced mice and the possible mechanism. The results showed that MSCP attenuated the CTX-induced decrease in body weight and immune organ indices in mice and promoted the secretion of immune-related cytokines (IL-2, IL-4, IL-10, TNF-α, and IgG). Meanwhile, MSCP restored intestinal morphology, increased the ratio of villus height/crypt depth (V/C), and improved the number of goblet cells and mucins expression. At the mRNA level, MSCP activated the TLRs/MyD88/NF-κB p65 pathway and enhanced the expression of genes related to intestinal mucosal integrity (Occludin1, Claudin1, and MUC-2). In addition, MSCP as a prebiotic improved microbial community diversity, regulated the relative abundance of dominant microbiota from the phylum level to the genus level, restored CTX-induced gut microbial dysbiosis, and promoted short-chain fatty acid production in mice. Based on the present findings, MSCP may modulate the immune response depending on enhancing intestinal health, suggesting that MSCP holds promise as a promising immunostimulant in functional foods and drugs.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Ciclofosfamida/efeitos adversos , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Imunossupressores/efeitos adversos , Millettia , Polissacarídeos/uso terapêutico , Prebióticos , Adjuvantes Imunológicos/farmacologia , Animais , Citocinas/sangue , Disbiose/induzido quimicamente , Disbiose/imunologia , Disbiose/microbiologia , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Imunoglobulina G/sangue , Terapia de Imunossupressão , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/patologia , Masculino , Camundongos , Raízes de Plantas , Polissacarídeos/farmacologia , Baço/efeitos dos fármacos , Baço/patologia , Timo/efeitos dos fármacos
15.
Front Immunol ; 12: 748397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737748

RESUMO

Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate the age associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 geriatric (age 19-24 years) and 4 young adult (age 3-4 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in peripheral blood mononuclear cells (PBMC) by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate, and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the gut microbiome in geriatric animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young adults. Highly abundant microbes in the geriatric animals showed a direct association with plasma biomarkers of inflammation and immune activation such as neopterin, CRP, TNF, IL-2, IL-6, IL-8 and IFN-γ. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of geriatric animals compared to the young adults. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile. Aging NHP can serve as a model for investigating the relationship of the gut microbiome to particular age-associated comorbidities and for strategies aimed at modulating the microbiome.


Assuntos
Envelhecimento/imunologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Inflamação/microbiologia , Animais , Bactérias/metabolismo , Proteína C-Reativa/análise , Citocinas/sangue , Modelos Animais de Doenças , Disbiose/imunologia , Disbiose/metabolismo , Fezes/química , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Inflamação/imunologia , Inflamação/metabolismo , Macaca mulatta , Masculino , Simbiose , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/sangue
16.
Sci Immunol ; 6(65): eabf7235, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739338

RESUMO

Deficiency in X-linked inhibitor of apoptosis protein (XIAP) is the cause for X-linked lymphoproliferative syndrome 2 (XLP2). About one-third of these patients suffer from severe and therapy-refractory inflammatory bowel disease (IBD), but the exact cause of this pathogenesis remains undefined. Here, we used XIAP-deficient mice to characterize the mechanisms underlying intestinal inflammation. In Xiap−/− mice, we observed spontaneous terminal ileitis and microbial dysbiosis characterized by a reduction of Clostridia species. We showed that in inflamed mice, both TNF receptor 1 and 2 (TNFR1/2) cooperated in promoting ileitis by targeting TLR5-expressing Paneth cells (PCs) or dendritic cells (DCs). Using intestinal organoids and in vivo modeling, we demonstrated that TLR5 signaling triggered TNF production, which induced PC dysfunction mediated by TNFR1. TNFR2 acted upon lamina propria immune cells. scRNA-seq identified a DC population expressing TLR5, in which Tnfr2 expression was also elevated. Thus, the combined activity of TLR5 and TNFR2 signaling may be responsible for DC loss in lamina propria of Xiap−/− mice. Consequently, both Tnfr1−/−Xiap−/− and Tnfr2−/−Xiap−/− mice were rescued from dysbiosis and intestinal inflammation. Furthermore, RNA-seq of ileal crypts revealed that in inflamed Xiap−/− mice, TLR5 signaling was abrogated, linking aberrant TNF responses with the development of a dysbiosis. Evidence for TNFR2 signaling driving intestinal inflammation was detected in XLP2 patient samples. Together, these data point toward a key role of XIAP in mediating resilience of TLR5-expressing PCs and intestinal DCs, allowing them to maintain tissue integrity and microbiota homeostasis.


Assuntos
Inflamação/imunologia , Intestinos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Receptor 5 Toll-Like/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/imunologia , Animais , Células Dendríticas/imunologia , Disbiose/imunologia , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Knockout , Celulas de Paneth/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/deficiência
17.
BMC Cancer ; 21(1): 1190, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749705

RESUMO

BACKGROUND: Children with acute lymphoblastic leukemia (ALL) undergoing chemotherapy experience a relatively high risk of infection. And the disturbance of gut microbiota is generally believed to impair intestinal barrier function and may induce bacterial infections and inflammation. The study aimed to investigate the alterations in the gut microbiota and assess its relationship with chemotherapy-induced pneumonia in pediatric ALL patients. METHODS: We conducted a case-control study with 14 cases affected by pneumonia and 44 unaffected subjects and characterized the physiological parameters and gut microbiota by microarray-based technique. RESULTS: There were significant differences in α- and ß-diversity in the affected group compared with the control group. At species level, the LEfSe analysis revealed that Enterococcus malodoratus, Ochrobactrum anthropi and Actinomyces cardiffensis were significantly abundant in the affected subjects. A receiver operating characteristic (ROC) curve yielded the area under the curve (AUC) of 0.773 for classification between the two groups. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the bacterial secretion system were more enriched in the affected group than in the control group. CONCLUSIONS: Gut microbiota alteration was associated with chemotherapy-induced pneumonia in pediatric ALL patients, which provided a new perspective on the personalized clinical care of pediatric ALL.


Assuntos
Antineoplásicos/efeitos adversos , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Pneumonia/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Estudos de Casos e Controles , Criança , Disbiose/diagnóstico , Disbiose/imunologia , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/imunologia , Humanos , Quimioterapia de Indução/efeitos adversos , Quimioterapia de Indução/métodos , Masculino , Pneumonia/induzido quimicamente
18.
Front Immunol ; 12: 757836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712243

RESUMO

The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract. Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways to mediate GVHD that can be distinct from the pathways used by regulatory T cells for their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- γ/IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients refractory to the first line standard regimens for GVHD treatment have a poor prognosis indicating an urgent need for new therapies to restore the balance between effector and regulatory immune cells while preserving the beneficial graft-versus-tumor effect. Emerging data points toward a role for metabolism in regulating these allo- and auto-immune responses. Here, we will discuss the preclinical and clinical data available on the distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying therapeutic targets using metabolomics. Another dimension of this review will examine the changing microbiome after allo-HSCT and the role of microbial metabolites such as short chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will examine the metabolic implications of coinhibitory pathway blockade and cellular therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel therapies to prevent and treat GVHD.


Assuntos
Doença Enxerto-Hospedeiro/terapia , Metabolômica/tendências , Doença Aguda , Aminoácidos/metabolismo , Doença Crônica , Disbiose/complicações , Disbiose/imunologia , Metabolismo Energético , Ácidos Graxos/fisiologia , Microbioma Gastrointestinal/imunologia , Glutamina/metabolismo , Glicólise , Doença Enxerto-Hospedeiro/metabolismo , Efeito Enxerto vs Tumor , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Proteínas de Checkpoint Imunológico/fisiologia , Imunomodulação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Metabolômica/métodos , Espécies Reativas de Oxigênio , Subpopulações de Linfócitos T/imunologia , Condicionamento Pré-Transplante/efeitos adversos , Transplante Homólogo/efeitos adversos , Vitaminas/metabolismo
19.
Hum Immunol ; 82(11): 883-901, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34364710

RESUMO

The human gastrointestinal tract, skin and mucosal surfaces are inhabited by a complex system of bacteria, viruses, fungi, archaea, protists, and eukaryotic parasites with predominance of bacteria and bacterial viruses (bacteriophages). Collectively these microbes form the microbiota of the microecosystem of humans. Recent advancement in technologies for nucleic acid isolation from various environmental samples, feces and body secretions and advancements in shotgun throughput massive parallel DNA and RNA sequencing along with 16S ribosomal gene sequencing have unraveled the identity of otherwise unknown microbial entities constituting the human microecosystem. The improved transcriptome analysis, technological developments in biochemical analytical methods and availability of complex bioinformatics tools have allowed us to begin to understand the metabolome of the microbiome and the biochemical pathways and potential signal transduction pathways in human cells in response to microbial infections and their products. Also, developments in human whole genome sequencing, targeted gene sequencing of histocompatibility genes and other immune response associated genes by Next Generation Sequencing (NGS) have allowed us to have a better conceptualization of immune responses, and alloimmune responses. These modern technologies have enabled us to dive into the intricate relationship between commensal symbiotic and pathogenic microbiome and immune system. For the most part, the commensal symbiotic microbiota helps to maintain normal immune homeostasis besides providing healthy nutrients, facilitating digestion, and protecting the skin, mucosal and intestinal barriers. However, changes in diets, administration of therapeutic agents like antibiotics, chemotherapeutic agents, immunosuppressants etc. along with certain host factors including human histocompatibility antigens may alter the microbial ecosystem balance by causing changes in microbial constituents, hierarchy of microbial species and even dysbiosis. Such alterations may cause immune dysregulation, breach of barrier protection and lead to immunopathogenesis rather than immune homeostasis. The effects of human microbiome on immunity, health and disease are currently under intense research with cutting edge technologies in molecular biology, biochemistry, and bioinformatics along with tremendous ability to characterize immune response at single cell level. This review will discuss the contemporary status on human microbiome immune system interactions and their potential effects on health, immune homeostasis and allograft transplantation.


Assuntos
Disbiose/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Interações entre Hospedeiro e Microrganismos/imunologia , Microbiota/genética , Biologia Computacional , Disbiose/imunologia , Disbiose/microbiologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Antígenos HLA/genética , Teste de Histocompatibilidade/métodos , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Microbiota/imunologia , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Transplante Homólogo/efeitos adversos
20.
Elife ; 102021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34378531

RESUMO

Maintenance of immune homeostasis involves a synergistic relationship between the host and the microbiome. Canonical interferon (IFN) signaling controls responses to acute microbial infection, through engagement of the STAT1 transcription factor. However, the contribution of tonic levels of IFN to immune homeostasis in the absence of acute infection remains largely unexplored. We report that STAT1 KO mice spontaneously developed an inflammatory disease marked by myeloid hyperplasia and splenic accumulation of hematopoietic stem cells. Moreover, these animals developed inflammatory bowel disease. Profiling gut bacteria revealed a profound dysbiosis in the absence of tonic IFN signaling, which triggered expansion of TH17 cells and loss of splenic Treg cells. Reduction of bacterial load by antibiotic treatment averted the TH17 bias and blocking IL17 signaling prevented myeloid expansion and splenic stem cell accumulation. Thus, tonic IFNs regulate gut microbial ecology, which is crucial for maintaining physiologic immune homeostasis and preventing inflammation.


Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal , Inflamação/genética , Interferons/administração & dosagem , Interleucina-17/genética , Fator de Transcrição STAT1/genética , Animais , Feminino , Interleucina-17/metabolismo , Camundongos , Camundongos Knockout , Fator de Transcrição STAT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA