Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 628, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970045

RESUMO

BACKGROUND: Bladder cancer is a common malignancy with high recurrence rate. Early diagnosis and recurrence surveillance are pivotal to patients' outcomes, which require novel minimal-invasive diagnostic tools. The urinary microbiome is associated with bladder cancer and can be used as biomarkers, but the underlying mechanism is to be fully illustrated and diagnostic performance to be improved. METHODS: A total of 23 treatment-naïve bladder cancer patients and 9 non-cancerous subjects were enrolled into the Before group and Control group. After surgery, 10 patients from the Before group were further assigned into After group. Void mid-stream urine samples were collected and sent for 16S rDNA sequencing, targeted metabolomic profiling, and flow cytometry. Next, correlations were analyzed between microbiota, metabolites, and cytokines. Finally, receiver operating characteristic (ROC) curves of the urinary biomarkers were plotted and compared. RESULTS: Comparing to the Control group, levels of IL-6 (p < 0.01), IL-8 (p < 0.05), and IL-10 (p < 0.05) were remarkably elevated in the Before group. The α diversity of urine microbiome was also significantly higher, with the feature microbiota positively correlated to the level of IL-6 (r = 0.58, p < 0.01). Significant differences in metabolic composition were also observed between the Before and Control groups, with fatty acids and fatty acylcarnitines enriched in the Before group. After tumor resection, cytokine levels and the overall microbiome structure in the After group remained similar to that of the Before group, but fatty acylcarnitines were significantly reduced (p < 0.05). Pathway enrichment analysis revealed beta-oxidation of fatty acids was significantly involved (p < 0.001). ROC curves showed that the biomarker panel of Actinomycetaceae + arachidonic acid + IL-6 had superior diagnostic performance, with sensitivity of 0.94 and specificity of 1.00. CONCLUSIONS: Microbiome dysbiosis, proinflammatory environment and altered fatty acids metabolism are involved in the pathogenesis of bladder cancer, which may throw light on novel noninvasive diagnostic tool development.


Assuntos
Disbiose , Ácidos Graxos , Inflamação , Microbiota , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/microbiologia , Neoplasias da Bexiga Urinária/urina , Inflamação/microbiologia , Masculino , Disbiose/microbiologia , Disbiose/urina , Pessoa de Meia-Idade , Feminino , Ácidos Graxos/metabolismo , Ácidos Graxos/urina , Curva ROC , Citocinas/metabolismo , RNA Ribossômico 16S/genética , Idoso , Estudos de Casos e Controles
2.
PLoS One ; 16(12): e0261362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914785

RESUMO

Endometriosis is an estrogen dependent gynecological disease associated with altered microbial phenotypes. The association among endogenous estrogen, estrogen metabolites, and microbial dynamics on disease pathogenesis has not been fully investigated. Here, we identified estrogen metabolites as well as microbial phenotypes in non-diseased patients (n = 9) and those with pathologically confirmed endometriosis (P-EOSIS, n = 20), on day of surgery (DOS) and ~1-3 weeks post-surgical intervention (PSI). Then, we examined the effects of surgical intervention with or without hormonal therapy (OCPs) on estrogen and microbial profiles of both study groups. For estrogen metabolism analysis, liquid chromatography/tandem mass spectrometry was used to quantify urinary estrogens. The microbiome data assessment was performed with Next generation sequencing to V4 region of 16S rRNA. Surgical intervention and hormonal therapy altered gastrointestinal (GI), urogenital (UG) microbiomes, urinary estrogen and estrogen metabolite levels in P-EOSIS. At DOS, 17ß-estradiol was enhanced in P-EOSIS treated with OCPs. At PSI, 16-keto-17ß-estradiol was increased in P-EOSIS not receiving OCPs while 2-hydroxyestradiol and 2-hydroxyestrone were decreased in P-EOSIS receiving OCPs. GI bacterial α-diversity was greater for controls and P-EOSIS that did not receive OCPs. P-EOSIS not utilizing OCPs exhibited a decrease in UG bacterial α-diversity and differences in dominant taxa, while P-EOSIS utilizing OCPs had an increase in UG bacterial α-diversity. P-EOSIS had a strong positive correlation between the GI/UG bacteria species and the concentrations of urinary estrogen and its metabolites. These results indicate an association between microbial dysbiosis and altered urinary estrogens in P-EOSIS, which may impact disease progression.


Assuntos
Endometriose/microbiologia , Estrogênios/urina , Adulto , Cromatografia Líquida/métodos , Disbiose/metabolismo , Disbiose/urina , Endometriose/urina , Estradiol/análogos & derivados , Estrogênios/análise , Estrogênios/metabolismo , Feminino , Humanos , Hidroxiestronas , Microbiota/genética , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem/métodos
3.
J Urol ; 205(1): 86-93, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32856979

RESUMO

PURPOSE: The dogma that urine is sterile has been overturned and dysbiosis of the urinary microbiome has been linked to many urological disorders. We tested the hypothesis that the urinary microbial composition may be different between men with or without bladder cancer in catheter collected urines, bladder washouts and midstream voided urines, and may be dependent on tumor staging. MATERIALS AND METHODS: Liquid samples were collected from male patients with bladder cancer, and sex and age matched nonneoplastic controls. Total DNA was extracted and processed for 16S rRNA gene sequencing. Bioinformatic analysis for microbial classification was performed to assess diversity and variations. RESULTS: The urinary microbiome associated with catheter collected urine samples of patients with bladder cancer was characterized by a significantly increased abundance of Veillonella (p=0.04) and Corynebacterium (p=0.03), and decreased Ruminococcus (p=0.03) compared to controls, with differences exacerbating with disease progression. Compared to catheterized urines, bladder cancer washouts showed the specific increase of some taxa, like Burkholderiaceae (p=0.014), whereas midstream urines were enriched in Streptococcus (p <0.0001), Enterococcus (p <0.0001), Corynebacterium (p=0.038) and Fusobacterium (p <0.0001). CONCLUSIONS: The bladder is colonized by endogenous bacteria and microbial modifications characterize the microbiome of patients with bladder cancer. Different microbial compositions can be characterized by changing sampling strategy. These results pave the way for exploring new diagnostic and therapeutic options based on the manipulation of the bacterial community.


Assuntos
Disbiose/diagnóstico , Microbiota/genética , Neoplasias da Bexiga Urinária/urina , Bexiga Urinária/microbiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , DNA Bacteriano/isolamento & purificação , Disbiose/microbiologia , Disbiose/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Prospectivos , RNA Ribossômico 16S/genética , Urinálise/métodos , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/microbiologia , Neoplasias da Bexiga Urinária/patologia , Cateterismo Urinário/métodos
4.
J Proteome Res ; 17(3): 1120-1128, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29364680

RESUMO

Equine grass sickness (EGS) is a frequently fatal disease of horses, responsible for the death of 1 to 2% of the U.K. horse population annually. The etiology of this disease is currently uncharacterized, although there is evidence it is associated with Clostridium botulinum neurotoxin in the gut. Prevention is currently not possible, and ileal biopsy diagnosis is invasive. The aim of this study was to characterize the fecal microbiota and biofluid metabolic profiles of EGS horses, to further understand the mechanisms underlying this disease, and to identify metabolic biomarkers to aid in diagnosis. Urine, plasma, and feces were collected from horses with EGS, matched controls, and hospital controls. Sequencing the16S rRNA gene of the fecal bacterial population of the study horses found a severe dysbiosis in EGS horses, with an increase in Bacteroidetes and a decrease in Firmicutes bacteria. Metabolic profiling by 1H nuclear magnetic resonance spectroscopy found EGS to be associated with the lower urinary excretion of hippurate and 4-cresyl sulfate and higher excretion of O-acetyl carnitine and trimethylamine-N-oxide. The predictive ability of the complete urinary metabolic signature and using the four discriminatory urinary metabolites to classify horses by disease status was assessed using a second (test) set of horses. The urinary metabolome and a combination of the four candidate biomarkers showed promise in aiding the identification of horses with EGS. Characterization of the metabolic shifts associated with EGS offers the potential of a noninvasive test to aid premortem diagnosis.


Assuntos
Acetilcarnitina/urina , Cresóis/urina , Disbiose/diagnóstico , Hipuratos/urina , Doenças dos Cavalos/diagnóstico , Metilaminas/urina , Ésteres do Ácido Sulfúrico/urina , Acetilcarnitina/sangue , Animais , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Biomarcadores/sangue , Biomarcadores/urina , Clostridium botulinum/metabolismo , Clostridium botulinum/patogenicidade , Cresóis/sangue , Disbiose/sangue , Disbiose/microbiologia , Disbiose/urina , Fezes/microbiologia , Firmicutes/classificação , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal , Hipuratos/sangue , Doenças dos Cavalos/sangue , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/urina , Cavalos , Espectroscopia de Ressonância Magnética , Metilaminas/sangue , RNA Ribossômico 16S/genética , Ésteres do Ácido Sulfúrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA