Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Neuroanat ; 127: 102191, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403747

RESUMO

In Parkinson's disease (PD), a decrease in dopamine levels in the striatum causes abnormal circuit activity in the basal ganglia, resulting in increased output via the substantia nigra pars reticulata (SNr). A characteristic feature of glutamatergic synaptic transmission in the basal ganglia circuitry under conditions of dopamine depletion is enhanced synaptic activity of NMDA receptors. However, the cause of this NMDA receptor hyperactivity is not fully understood. We focused on Asc-1 (SLC7A10), an alanine-serine-cysteine transporter, as one of the factors that regulate NMDA receptor activity by modulating D-serine and glycine concentration in synaptic clefts. We generated PD model mice by injection of 6-hydroxydopamine into the unilateral medial forebrain bundle and analyzed the expression level of Asc-1 mRNA in the nuclei of basal ganglia (the external segment of the globus pallidus (GPe), subthalamic nucleus (STN), and SNr) compared to control mice. Each nucleus was dissected using laser microdissection, and RNA was extracted and quantified by quantitative PCR. Asc-1 mRNA expression was significantly higher in the GPe and lower in the SNr under the PD state than that in control naïve mice. The STN showed no change in Asc-1 mRNA expression. We further modeled L-dopa-induced dyskinesia by administering L-dopa continuously for 14 days to the PD model mice and found that Asc-1 mRNA expression in the GPe and SNr became close to that of control mice, regardless of the presence of abnormal involuntary movements. The present study revealed that Asc-1 mRNA expression is differentially regulated in the basal ganglionic nuclei in response to striatal dopamine concentration (depleted or replenished) and suggests that Asc-1 can be a therapeutic target for the amelioration of motor symptoms of PD.


Assuntos
Discinesias , Doença de Parkinson , Transtornos Parkinsonianos , Camundongos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Dopamina/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Gânglios da Base/metabolismo , Transtornos Parkinsonianos/metabolismo , Doença de Parkinson/metabolismo , Discinesias/etiologia , Discinesias/metabolismo , RNA Mensageiro/metabolismo , Serina/uso terapêutico , Sistema y+ de Transporte de Aminoácidos/metabolismo
2.
Cell Death Dis ; 13(6): 559, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729109

RESUMO

Primary cilia dyskinesia (PCD) is a rare genetic disease caused by ciliary structural or functional defects. It causes severe outcomes in patients, including recurrent upper and lower airway infections, progressive lung failure, and randomization of heterotaxy. To date, although 50 genes have been shown to be responsible for PCD, the etiology remains elusive. Meanwhile, owing to the lack of a model mimicking the pathogenesis that can be used as a drug screening platform, thereby slowing the development of related therapies. In the current study, we identified compound mutation of DNAH9 in a patient with PCD with the following clinical features: recurrent respiratory tract infections, low lung function, and ultrastructural defects of the outer dynein arms (ODAs). Bioinformatic analysis, structure simulation assay, and western blot analysis showed that the mutations affected the structure and expression of DNAH9 protein. Dnah9 knock-down (KD) mice recapitulated the patient phenotypes, including low lung function, mucin accumulation, and increased immune cell infiltration. Immunostaining, western blot, and co-immunoprecipitation analyses were performed to clarify that DNAH9 interacted with CCDC114/GAS8 and diminished their protein levels. Furthermore, we constructed an airway organoid of Dnah9 KD mice and discovered that it could mimic the key features of the PCD phenotypes. We then used organoid as a drug screening model to identify mitochondrial-targeting drugs that can partially elevate cilia beating in Dnah9 KD organoid. Collectively, our results demonstrated that Dnah9 KD mice and an organoid model can recapture the clinical features of patients with PCD and provide an excellent drug screening platform for human ciliopathies.


Assuntos
Dineínas do Axonema , Discinesias , Síndrome de Kartagener , Animais , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Cílios/metabolismo , Avaliação Pré-Clínica de Medicamentos , Dineínas/metabolismo , Discinesias/metabolismo , Discinesias/patologia , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Camundongos , Mutação/genética , Organoides/metabolismo
3.
Neurobiol Dis ; 166: 105650, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35139431

RESUMO

This review provides an overview of the synaptic dysfunctions of neuronal circuits and underlying neurochemical alterations observed in the hyperkinetic movement disorders, dystonia and dyskinesia. These disorders exhibit similar changes in expression of synaptic plasticity and neuromodulation. This includes alterations in physical attributes of synapses, synaptic protein expression, and neurotransmitter systems, such as glutamate and gamma-aminobutyric acid (GABA), and neuromodulators, such as dopamine, acetylcholine, serotonin, adenosine, and endocannabinoids. A full understanding of the mechanisms and consequences of disruptions in synaptic function and plasticity will lend insight into the development of these disorders and new ways to combat maladaptive changes.


Assuntos
Discinesias , Distonia , Distúrbios Distônicos , Antiparkinsonianos , Corpo Estriado/metabolismo , Discinesias/metabolismo , Distonia/induzido quimicamente , Distonia/metabolismo , Distúrbios Distônicos/induzido quimicamente , Distúrbios Distônicos/metabolismo , Humanos , Levodopa/efeitos adversos
4.
Front Immunol ; 12: 683577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248967

RESUMO

Dyskinesia is a serious complication of Parkinson's disease during levodopa (L-DOPA) treatment. The pathophysiology of L-DOPA-induced dyskinesia (LID) is complex and not fully illuminated. At present, treatment of dyskinesia is quite limited. Recent studies demonstrated neuroinflammation plays an important role in development of LID. Thus, inhibition of neuroinflammation might open a new avenue for LID treatment. Resveratrol (RES) is the most well-known polyphenolic stilbenoid and verified to possess a large variety of biological activities. DA neurotoxicity was assessed via behavior test and DA neuronal quantification. The movement disorders of dyskinesia were detected by the abnormal involuntary movements scores analysis. Effects of RES on glial cells-elicited neuroinflammation were also explored. Data showed that RES attenuated dyskinesia induced by L-DOPA without affecting L-DOPA's anti-parkinsonian effects. Furthermore, RES generated neuroprotection against long term treatment of L-DOPA-induced DA neuronal damage. Meanwhile, RES reduced protein expression of dyskinesia molecular markers, ΔFOS B and ERK, in the striatum. Also, there was a strong negative correlation between DA system damage and ΔFOS B level in the striatum. In addition, RES inhibited microglia and astroglia activation in substantia nigra and subsequent inflammatory responses in the striatum during L-DOPA treatment. RES alleviates dyskinesia induced by L-DOPA and these beneficial effects are closely associated with protection against DA neuronal damage and inhibition of glial cells-mediated neuroinflammatory reactions.


Assuntos
Discinesias/etiologia , Discinesias/fisiopatologia , Levodopa/efeitos adversos , Resveratrol/farmacologia , Animais , Biomarcadores , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Discinesias/tratamento farmacológico , Discinesias/metabolismo , Masculino , Oxidopamina/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Ratos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/fisiopatologia
5.
Naunyn Schmiedebergs Arch Pharmacol ; 393(12): 2439-2452, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32725283

RESUMO

This study evaluated the effect of (+)-catechin, a polyphenolic compound, on orofacial dyskinesia (OD) induced by reserpine in mice. The potential modulation of monoaminoxidase (MAO) activity, tyrosine hydroxylase (TH) and glutamic acid decarboxylase (GAD67) immunoreactivity by catechin were used as biochemical endpoints. The interaction of catechin with MAO-A and MAO-B was determined in vitro and in silico. The effects of catechin on OD induced by reserpine (1 mg/kg for 4 days, subcutaneously) in male Swiss mice were examined. After, catechin (10, 50 or 100 mg/kg, intraperitoneally) or its vehicle were given for another 20 days. On the 6th, 8th, 15th and 26th day, vacuous chewing movements (VCMs) and locomotor activity were quantified. Biochemical markers (MAO activity, TH and GAD67 immunoreactivity) were evaluated in brain structures. In vitro, catechin inhibited both MAO isoforms at concentrations of 0.34 and 1.03 mM being completely reversible for MAO-A and partially reversible for MAO-B. Molecular docking indicated that the catechin bound in the active site of MAO-A, while in the MAO-B it interacted with the surface of the enzyme in an allosteric site. In vivo, reserpine increased the VCMs and decreased the locomotor activity. Catechin (10 mg/kg), decreased the number of VCMs in the 8th day in mice pre-treated with reserpine without altering other behavioral response. Ex vivo, the MAO activity and TH and GAD67 immunoreactivity were not altered by the treatments. Catechin demonstrated a modest and transitory protective effect in a model of OD in mice.


Assuntos
Catequina/uso terapêutico , Discinesias/tratamento farmacológico , Discinesias/metabolismo , Mastigação/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Reserpina/toxicidade , Animais , Antipsicóticos/toxicidade , Catequina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Mastigação/fisiologia , Camundongos , Simulação de Acoplamento Molecular/métodos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Atividade Motora/fisiologia , Estrutura Secundária de Proteína , Resultado do Tratamento
6.
Biomolecules ; 9(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480516

RESUMO

Extensive damage to nigrostriatal dopaminergic neurons leads to Parkinson's disease (PD). To date, the most effective treatment has been administration of levodopa (L-DOPA) to increase dopaminergic tone. This treatment leads to responses that vary widely among patients, from predominantly beneficial effects to the induction of disabling, abnormal movements (L-DOPA induced dyskinesia (LID)). Similarly, experimental studies have shown animals with widely different degrees of LID severity. In this study, unilateral injections of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle (MFB) produced more than 90% depletion of dopamine in both the striatum and the substantia nigra reticulata (SNr) of rats. Population analysis showed that dopamine depletion levels were clustered in a single population. In contrast, analysis of abnormal involuntary movements (AIMs) induced by L-DOPA treatment of 6-OHDA-lesioned animals yielded two populations: one with mild LID, and the other with severe LID, which are also related to different therapeutic responses. We examined whether the severity of LID correlated with changes in dopamine 3 receptor (D3R) signaling because of the following: (a) D3R expression and the induction of LID are strongly correlated; and (b) dopaminergic denervation induces a qualitative change in D3R signaling in the SNr. We found that the effects of D3R activation on cAMP accumulation and depolarization-induced [3H]-gamma-aminobutyric acid ([3H]-GABA) release were switched. L-DOPA treatment normalized the denervation-induced changes in animals with mild LID. The D3R activation caused depression of both dopamine 1 receptor (D1R)-induced increases in cAMP production and depolarization-induced [3H]-GABA release, which were reversed to their pre-denervation state. In animals with severe LID, none of the denervation-induced changes were reversed. The finding that in the absence of identifiable differences in 6-OHDA and L-DOPA treatment, two populations of animals with different D3R signaling and LIDs severity implies that mechanisms intrinsic to the treated subject determine the segregation.


Assuntos
Discinesias/etiologia , Discinesias/metabolismo , Levodopa/efeitos adversos , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , AMP Cíclico/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Masculino , Feixe Prosencefálico Mediano/efeitos dos fármacos , Feixe Prosencefálico Mediano/metabolismo , Oxidopamina/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
7.
Free Radic Biol Med ; 124: 40-50, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29857139

RESUMO

Impaired motor function, due to the dysfunction of the basal ganglia, is the most common syndrome of hepatic encephalopathy (HE), and its etiology remains poorly understood. Neural oxidative stress is shown to be the major cellular defects contributing to HE pathogenesis. Mitochondrial uncoupling protein 2 (UCP2) has been implicated in neuroprotection in several neurological disorders. We explored the neuroprotective role of UCP2 within the substantia nigra pars reticulate (SNr), the output structure of the basal ganglia, in HE. The toxin thioacetamide (TAA) induced HE mice showed hypolocomotion, which was associated with decreased ATP levels and loss of antioxidant substances SOD and GSH within the SNr. Stable overexpression of UCP2 via AAV-UCP2 under the control of the UCP2 promoter in bilateral SNr preserved local ATP level, increased antioxidant substances, and ameliorated locomotion defects after severe liver failure. Contrary to UCP2 overexpression, targeted knockdown of UCP2 within bilateral SNr via AAV-UCP2 shRNA exacerbated the impaired mitochondrial dysfunction and hypokinesia in HE mice. The modulatory effects of UCP2 was due to mediation of K+-Cl- cotransporter-2 (KCC2) expression on GABAergic neurons of SNr. Taken together, our results demonstrate that UCP2 exerts a neural protective role at the subcortical level by increasing the resistance of neurons to oxidative stress, which may offer a novel therapeutic target for the treatment of motor dysfunction diseases.


Assuntos
Gânglios da Base/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Discinesias/prevenção & controle , Proteína Desacopladora 2/administração & dosagem , Animais , Comportamento Animal , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dependovirus/genética , Discinesias/etiologia , Discinesias/metabolismo , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Tioacetamida/toxicidade , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
8.
Expert Opin Pharmacother ; 18(14): 1457-1465, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28847181

RESUMO

INTRODUCTION: Parkinson's disease is characterized by a heterogeneous combination of motor and non motor symptoms. The nigrostriatal dopamine deficit is one of its essential pathophysiologic features. Areas covered: This invited narrative review provides an overlook over current available and future promising non dopaminergic therapeutics to modulate altered dopaminergic neurotransmission in Parkinson's disease. Current research strategies aim to proof clinical efficacy by amelioration of motor symptoms and preponderant levodopa related movement fluctuations. These so-called motor complications are characterized by involuntary movements as a result of an overstimulation of the nigrostriatal dopaminergic system or by temporary recurrence of motor symptoms, when beneficial effects of dopamine substituting drugs vane. Expert opinion: Non dopaminergic modulation of dopamine replacement is currently mostly investigated in well defined and selected patients with motor complications to get approval. However, the world of daily maintenance of patients with its individually adapted, so-called personalised, therapy will determine the real value of these therapeutics. Here the clinical experience of the treating neurologists and the courage to use unconventional drug combinations are essential preconditions for successful treatments of motor and associated non motor complications in cooperation with the patients and their care giving surroundings.


Assuntos
Antiparkinsonianos/uso terapêutico , Discinesias/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacocinética , Ensaios Clínicos como Assunto , Dopamina/metabolismo , Discinesias/etiologia , Discinesias/metabolismo , Humanos , Levodopa/administração & dosagem , Levodopa/farmacocinética , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/metabolismo , Resultado do Tratamento
9.
Chin Med J (Engl) ; 130(15): 1856-1866, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28748860

RESUMO

OBJECTIVE: The aim of this study was to summarize recent studies on nondopaminergic options for the treatment of motor symptoms in Parkinson's disease (PD). DATA SOURCES: Papers in English published in PubMed, Cochrane, and Ovid Nursing databases between January 1988 and November 2016 were searched using the following keywords: PD, nondopaminergic therapy, adenosine, glutamatergic, adrenergic, serotoninergic, histaminic, and iron chelator. We also reviewed the ongoing clinical trials in the website of clinicaltrials.gov. STUDY SELECTION: Articles related to the nondopaminergic treatment of motor symptoms in PD were selected for this review. RESULTS: PD is conventionally treated with dopamine replacement strategies, which are effective in the early stages of PD. Long-term use of levodopa could result in motor complications. Recent studies revealed that nondopaminergic systems such as adenosine, glutamatergic, adrenergic, serotoninergic, histaminic, and iron chelator pathways could include potential therapeutic targets for motor symptoms, including motor fluctuations, levodopa-induced dyskinesia, and gait disorders. Some nondopaminergic drugs, such as istradefylline and amantadine, are currently used clinically, while most such drugs are in preclinical testing stages. Transitioning of these agents into clinically beneficial strategies requires reliable evaluation since several agents have failed to show consistent results despite positive findings at the preclinical level. CONCLUSIONS: Targeting nondopaminergic transmission could improve some motor symptoms in PD, especially the discomfort of dyskinesia. Although nondopaminergic treatments show great potential in PD treatment as an adjunct therapy to levodopa, further investigation is required to ensure their success.


Assuntos
Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ensaios Clínicos como Assunto , Discinesias/metabolismo , Discinesias/patologia , Humanos , Levodopa/metabolismo
10.
Hum Gene Ther ; 28(6): 510-522, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132521

RESUMO

GM2 gangliosidoses, including Tay-Sachs disease and Sandhoff disease, are lysosomal storage disorders caused by deficiencies in ß-N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system (CNS) dysfunction. Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex α- or ß-subunits at a 1:1 ratio. Here, a safety study was conducted in cynomolgus macaques (cm), modeling previous animal studies, with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex α- and ß-subunits. Three doses (3.2 × 1012 vg [n = 3]; 3.2 × 1011 vg [n = 2]; or 1.1 × 1011 vg [n = 2]) were tested, with controls infused with vehicle (n = 1) or transgene empty AAVrh8 vector at the highest dose (n = 2). Most monkeys receiving AAVrh8-cmHexα/ß developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose dependent, with the highest-dose cohort producing symptoms within a month of infusion. One monkey in the lowest-dose cohort was behaviorally asymptomatic but had magnetic resonance imaging abnormalities in the thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHexα/ß, showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus, and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome, and this study demonstrates the variations in safety profiles of AAVrh8-Hexα/ß intracranial injection among different species, despite encoding for self-proteins.


Assuntos
Dependovirus/genética , Discinesias/etiologia , Gangliosidoses GM2/terapia , Vetores Genéticos/efeitos adversos , Necrose/etiologia , Neurônios/metabolismo , beta-N-Acetil-Hexosaminidases/genética , Animais , Apatia , Dependovirus/metabolismo , Modelos Animais de Doenças , Discinesias/genética , Discinesias/metabolismo , Discinesias/patologia , Feminino , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/patologia , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Injeções Intraventriculares , Macaca fascicularis , Masculino , Necrose/genética , Necrose/metabolismo , Necrose/patologia , Neurônios/patologia , Subunidades Proteicas/efeitos adversos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Tálamo/metabolismo , Tálamo/patologia , Transgenes , Substância Branca/metabolismo , Substância Branca/patologia , beta-N-Acetil-Hexosaminidases/efeitos adversos , beta-N-Acetil-Hexosaminidases/metabolismo
11.
Behav Brain Res ; 312: 64-76, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27306571

RESUMO

Dyskinesia consists in a series of trunk, limbs and orofacial involuntary movements that can be observed following long-term pharmacological treatment in some psychotic and neurological disorders such as schizophrenia and Parkinson's disease, respectively. Agmatine is an endogenous arginine metabolite that emerges as neuromodulator and a promising agent to manage diverse central nervous system disorders by modulating nitric oxide (NO) pathway, glutamate NMDA receptors and oxidative stress. Herein, we investigated the effects of a single intraperitoneal (i.p.) administration of different agmatine doses (10, 30 or 100mg/kg) against the orofacial dyskinesia induced by reserpine (1mg/kg,s.c.) in mice by measuring the vacuous chewing movements and tongue protusion frequencies, and the duration of facial twitching. The results showed an orofacial antidyskinetic effect of agmatine (30mg/kg, i.p.) or the combined administration of sub-effective doses of agmatine (10mg/kg, i.p.) with the NMDA receptor antagonists amantadine (1mg/kg, i.p.) and MK801 (0.01mg/kg, i.p.) or the neuronal nitric oxide synthase (NOS) inhibitor 7-nitroindazole (7-NI; 0.1mg/kg, i.p.). Reserpine-treated mice displayed locomotor activity deficits in the open field and agmatine had no effect on this response. Reserpine increased nitrite and nitrate levels in cerebral cortex, but agmatine did not reverse it. Remarkably, agmatine reversed the decrease of dopamine and non-protein thiols (NPSH) levels caused by reserpine in the striatum. However, no changes were observed in striatal immunocontent of proteins related to the dopaminergic system including tyrosine hydroxylase, dopamine transporter, vesicular monoamine transporter type 2, pDARPP-32[Thr75], dopamine D1 and D2 receptors. These results indicate that the blockade of NO pathway, NMDAR and oxidative stress are possible mechanisms associated with the protective effects of agmatine against the orofacial dyskinesia induced by reserpine in mice.


Assuntos
Agmatina/administração & dosagem , Discinesias/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Reserpina/toxicidade , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Discinesias/prevenção & controle , Antagonistas de Aminoácidos Excitatórios/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Óxido Nítrico Sintase/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Psychiatry Res ; 233(3): 293-8, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26319293

RESUMO

Schizophrenia is a devastating disorder thought to result mainly from cerebral pathology. Neuroimaging studies have provided a wealth of findings of brain dysfunction in schizophrenia. However, we are still far from understanding how particular symptoms can result from aberrant brain function. In this context, the high prevalence of motor symptoms in schizophrenia such as catatonia, neurological soft signs, parkinsonism, and abnormal involuntary movements is of particular interest. Here, the neuroimaging correlates of these motor symptoms are reviewed. For all investigated motor symptoms, neural correlates were found within the cerebral motor system. However, only a limited set of results exists for hypokinesia and neurological soft signs, while catatonia, abnormal involuntary movements and parkinsonian signs still remain understudied with neuroimaging methods. Soft signs have been associated with altered brain structure and function in cortical premotor and motor areas as well as cerebellum and thalamus. Hypokinesia is suggested to result from insufficient interaction of thalamocortical loops within the motor system. Future studies are needed to address the neural correlates of motor abnormalities in prodromal states, changes during the course of the illness, and the specific pathophysiology of catatonia, dyskinesia and parkinsonism in schizophrenia.


Assuntos
Mapeamento Encefálico/métodos , Córtex Motor/metabolismo , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo , Catatonia/fisiopatologia , Cerebelo/metabolismo , Cerebelo/patologia , Imagem de Tensor de Difusão/métodos , Discinesias/diagnóstico , Discinesias/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Motor/patologia , Transtornos Parkinsonianos/diagnóstico , Transtornos Parkinsonianos/metabolismo , Tálamo/metabolismo , Tálamo/patologia
13.
Biochem Pharmacol ; 86(8): 1153-62, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23831952

RESUMO

Accumulating evidence supports the idea that drugs acting at nicotinic acetylcholine receptors (nAChRs) may be beneficial for Parkinson's disease, a neurodegenerative movement disorder characterized by a loss of nigrostriatal dopaminergic neurons. Nicotine administration to parkinsonian animals protects against nigrostriatal damage. In addition, nicotine and nAChR drugs improve L-dopa-induced dyskinesias, a debilitating side effect of L-dopa therapy which remains the gold-standard treatment for Parkinson's disease. Nicotine exerts its antidyskinetic effect by interacting with multiple nAChRs. One approach to identify the subtypes specifically involved in L-dopa-induced dyskinesias is through the use of nAChR subunit null mutant mice. Previous work with ß2 and α6 nAChR knockout mice has shown that α6ß2* nAChRs were necessary for the development/maintenance of L-dopa-induced abnormal involuntary movements (AIMs). The present results in parkinsonian α4 nAChR knockout mice indicate that α4ß2* nAChRs also play an essential role since nicotine did not reduce L-dopa-induced AIMs in such mice. Combined analyses of the data from α4 and α6 knockout mice suggest that the α6α4ß2ß3 subtype may be critical. In contrast to the studies with α4 and α6 knockout mice, nicotine treatment did reduce L-dopa-induced AIMs in parkinsonian α7 nAChR knockout mice. However, α7 nAChR subunit deletion alone increased baseline AIMs, suggesting that α7 receptors exert an inhibitory influence on L-dopa-induced AIMs. In conclusion, α6ß2*, α4ß2* and α7 nAChRs all modulate L-dopa-induced AIMs, although their mode of regulation varies. Thus drugs targeting one or multiple nAChRs may be optimal for reducing L-dopa-induced dyskinesias in Parkinson's disease.


Assuntos
Sistema Nervoso Central/fisiologia , Dopamina/toxicidade , Discinesias/metabolismo , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Cotinina/sangue , Discinesias/genética , Camundongos , Camundongos Knockout , Nicotina/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Receptores Nicotínicos/genética , Sacarina , Receptor Nicotínico de Acetilcolina alfa7/genética
15.
PLoS One ; 7(11): e50178, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209667

RESUMO

Evidence from carefully conducted open label clinical trials suggested that therapeutic benefit can be achieved by grafting fetal dopaminergic (DAergic) neurons derived from ventral mesencephalon (VM) into the denervated striatum of Parkinson's disease (PD) patients. However, two double-blind trials generated negative results reporting deleterious side effects such as prominent dyskinesias. Heterogeneous composition of VM grafts is likely to account for suboptimal clinical efficacy.We consider that gene expression patterns of the VM tissue needs to be better understood by comparing the genetic signature of the surviving and functioning grafts with the cell suspensions used for transplantation. In addition, it is crucial to assess whether the grafted cells exhibit the DAergic phenotype of adult substantia nigra pars compacta (SNpc). To investigate this further, we used a GFP reporter mouse as source of VM tissue that enabled the detection and dissection of the grafts 6 weeks post implantation. A comparative gene expression analysis of the VM cell suspension and grafts revealed that VM grafts continue to differentiate post-implantation. In addition, implanted grafts showed a mature SNpc-like molecular DAergic phenotype with similar expression levels of TH, Vmat2 and Dat. However, by comparing gene expression of the adult SNpc with dissected grafts we detected a higher expression of progenitor markers in the grafts. Finally, when compared to the VM cell suspension, post-grafting there was a higher expression of markers inherent to glia and other neuronal populations.In summary, our data highlight the dynamic development of distinctive DAergic and non-DAergic gene expression markers associated with the maturation of VM grafts in vivo. The molecular signature of VM grafts and its functional relevance should be further explored in future studies aimed at the optimization of DAergic cell therapy approaches in PD.


Assuntos
Mesencéfalo/efeitos dos fármacos , Mesencéfalo/embriologia , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Adrenérgicos/farmacologia , Anfetaminas/farmacologia , Animais , Transplante de Células/métodos , Galinhas , Discinesias/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Marcadores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neurônios/metabolismo , Fenótipo , Ratos , Ratos Wistar , Células-Tronco/citologia , Substância Negra/embriologia , Substância Negra/metabolismo , Fatores de Tempo
16.
J Pharm Pharmacol ; 64(5): 637-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22471359

RESUMO

OBJECTIVES: To determine whether the glucagon-like 1 peptide analogue exendin-4 (EX-4) augments the neurochemical effects of a single L-DOPA treatment and whether EX-4 can decrease L-DOPA induced dyskinesias (LIDS). METHODS: Rats were lesioned with 6-hydroxydopamine (6-OHDA) and 7 days later given EX-4 for 7 days. The following day, rats were given L-DOPA and extracellular dopamine was measured. The animals were then killed to determine tissue dopamine. To study LIDS, EX-4 and/or L-DOPA were co-administered daily, 7 days after 6-OHDA. LIDS were determined on Days 2, 4, 8, 12 and 16 prior to neurochemical assessment. KEY FINDINGS: EX-4 reduced 6-OHDA induced damage. Acute effects of L-DOPA were potentiated by EX-4 in lesioned rats. Treatments with EX-4 caused a progressive reduction in LIDS. CONCLUSIONS: EX-4 treatment potentiates the effects of a single dose of L-DOPA. This augmentation indicates that lower L-DOPA doses might be used to the same effect in patients. The reduction in LIDS suggests that co-treatment with EX-4 could allow the use of L-DOPA with fewer side-effects and possibly therefore allow earlier introduction of L-DOPA in the clinic.


Assuntos
Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Discinesias/prevenção & controle , Levodopa/administração & dosagem , Transtornos Parkinsonianos/tratamento farmacológico , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Sinergismo Farmacológico , Discinesias/etiologia , Discinesias/metabolismo , Exenatida , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Levodopa/efeitos adversos , Levodopa/uso terapêutico , Lagartos , Masculino , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Peptídeos/farmacologia , Ratos , Ratos Wistar , Peçonhas/farmacologia
17.
Expert Opin Investig Drugs ; 21(2): 153-68, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22233485

RESUMO

INTRODUCTION: Parkinson's disease (PD) therapy is still centered on the use of L-3,4-dihydroxyphenylalanine (L-DOPA), which is hampered by numerous side effects, including abnormal involuntary movements known as L-DOPA-induced dyskinesias (LIDs). LIDs are the result of pre- and postsynaptic changes at the corticostriatal level, induced by chronic and pulsatile stimulation of striatal dopaminergic receptors. These changes impact on synaptic plasticity and involve also selected, nondopaminergic receptors expressed by striatal projection neurons. AREAS COVERED: Among nondopaminergic receptors, glutamate receptors - NMDA and mGluR5 subtypes in particular - and adenosine A(2A) receptors are those most likely involved in LIDs. The aim of the present review is to summarize results of studies undertaken with specific antagonists of these receptors, first conducted in animal models of LIDs, which in selected cases have been translated into clinical trials. EXPERT OPINION: Selected antagonists of glutamate and adenosine receptors have been proposed as anti-dyskinetic agents. Promising results have been obtained in preclinical investigations and in initial clinical trials, but long-term safety, tolerability and efficacy studies in patients are still required. The current development of novel antagonists, including tools able to act on receptor mosaics, may provide innovative tools for LIDs management in the next future.


Assuntos
Discinesias/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Receptores de Glutamato/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Antiparkinsonianos/efeitos adversos , Discinesias/metabolismo , Discinesias/fisiopatologia , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia
18.
Proc Natl Acad Sci U S A ; 108(2): 840-5, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187382

RESUMO

Treatment of Parkinson disease (PD) with L-3,4-dihydroxyphenylalanine (L-DOPA) dramatically relieves associated motor deficits, but L-DOPA-induced dyskinesias (LID) limit the therapeutic benefit over time. Previous investigations have noted changes in striatal medium spiny neurons, including abnormal activation of extracellular signal-regulated kinase1/2 (ERK). Using two PD models, the traditional 6-hydroxydopamine toxic lesion and a genetic model with nigrostriatal dopaminergic deficits, we found that acute dopamine challenge induces ERK activation in medium spiny neurons in denervated striatum. After repeated L-DOPA treatment, however, ERK activation diminishes in medium spiny neurons and increases in striatal cholinergic interneurons. ERK activation leads to enhanced basal firing rate and stronger excitatory responses to dopamine in striatal cholinergic neurons. Pharmacological blockers of ERK activation inhibit L-DOPA-induced changes in ERK phosphorylation, neuronal excitability, and the behavioral manifestation of LID. In addition, a muscarinic receptor antagonist reduces LID. These data indicate that increased dopamine sensitivity of striatal cholinergic neurons contributes to the expression of LID, which suggests novel therapeutic targets for LID.


Assuntos
Fibras Colinérgicas/metabolismo , Discinesias/metabolismo , Regulação da Expressão Gênica , Levodopa/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Afacia/metabolismo , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Dopamina/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Fatores de Transcrição/genética
19.
PLoS One ; 5(8): e12322, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20808799

RESUMO

BACKGROUND: In rodents, the development of dyskinesia produced by L-DOPA in the dopamine-depleted striatum occurs in response to increased dopamine D1 receptor-mediated activation of the cAMP - protein kinase A and of the Ras-extracellular signal-regulated kinase (ERK) signalling pathways. However, very little is known, in non-human primates, about the regulation of these signalling cascades and their association with the induction, manifestation and/or maintenance of dyskinesia. METHODOLOGY/RESULTS: We here studied, in the gold-standard non-human primate model of Parkinson's disease, the changes in PKA-dependent phosphorylation of DARPP-32 and GluR1 AMPA receptor, as well as in ERK and ribosomal protein S6 (S6) phosphorylation, associated to acute and chronic administration of L-DOPA. Increased phosphorylation of DARPP-32 and GluR1 was observed in both L-DOPA first-ever exposed and chronically-treated dyskinetic parkinsonian monkeys. In contrast, phosphorylation of ERK and S6 was enhanced preferentially after acute L-DOPA administration and decreased during the course of chronic treatment. CONCLUSION: Dysregulation of cAMP signalling is maintained during the course of chronic L-DOPA administration, while abnormal ERK signalling peaks during the initial phase of L-DOPA treatment and decreases following prolonged exposure. While cAMP signalling enhancement is associated with dyskinesia, abnormal ERK signalling is associated with priming.


Assuntos
AMP Cíclico/metabolismo , Discinesias/etiologia , Discinesias/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Levodopa/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Discinesias/patologia , Feminino , Macaca mulatta , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Proteínas ras/metabolismo
20.
J Neurosci ; 30(21): 7335-43, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20505100

RESUMO

Long-term dopamine replacement therapy in Parkinson's disease leads to the development of disabling involuntary movements named dyskinesias that are related to adaptive changes in striatal signaling pathways. The chronic transcription factor DeltaFosB, which is overexpressed in striatal neurons after chronic dopaminergic drug exposure, is suspected to mediate these adaptive changes. Here, we sought to demonstrate the ability of DeltaFosB to lead directly to the abnormal motor responses associated with chronic dopaminergic therapy. Using rAAV (recombinant adenoassociated virus) viral vectors, high levels of DeltaFosB expression were induced in the striatum of dopamine-denervated rats naive of chronic drug administration. Transgenic DeltaFosB overexpression reproduced the entire spectrum of altered motor behaviors in response to acute levodopa tests, including different types of abnormal involuntary movements and hypersensitivity of rotational responses that are typically associated with chronic levodopa treatment. JunD, the usual protein partner of DeltaFosB binding to AP-1 (activator protein-1) sites of genes, remained unchanged in rats with high DeltaFosB expression induced by viral vectors. These findings demonstrate that the increase of striatal DeltaFosB in the evolution of chronically treated Parkinson's disease may be a trigger for the development of abnormal responsiveness to dopamine and the emergence of involuntary movements.


Assuntos
Corpo Estriado/metabolismo , Discinesias/etiologia , Discinesias/metabolismo , Levodopa/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Modelos Animais de Doenças , Esquema de Medicação , Discinesias/classificação , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Mutação/fisiologia , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Simpatolíticos/toxicidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA