Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuromuscul Disord ; 29(1): 75-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578100

RESUMO

PIEZO2 mutations have been described in dominant arthrogryposis, but homozygous mutations of PIEZO2 may also be responsible for more complex clinical patterns, associating distal arthrogryposis, neonatal respiratory insufficiency, scoliosis and proprioceptive impairment. We report here two sisters presenting with these clinical and genetic features. They had a similar phenotype, with severe hypotonia and respiratory distress at birth, delayed acquisition of motor milestones and need of scoliosis surgery. Hypotonia and alteration of proprioception were at the forefront of clinical examination for both, along with areflexia, hyperlaxity, cutis laxa, and discrete facial dysmorphy. Electrophysiological studies, including electroneuromyography and sensory evoked potentials, showed a mild sensory axonopathy without any myopathic features, but revealed a peripheral proximal lemniscal defect. Creatine kinase, muscular MRI and biopsy were normal, as well as cerebral MRI and neurometabolic biological explorations. They had a moderate restrictive syndrome on respiratory function tests and cardiac function was normal. Molecular studies performed on a panel of genes involved in distal arthrogryposis disclosed a nonsense homozygous c.3241C > T (p.Arg1051*) mutation in the PIEZO2 gene, which was also present at the heterozygous state in their mother's DNA. This new PIEZO2 mutation was in accordance with the phenotype combining arthrogryposis, scoliosis, hyperlaxity and proprioceptive impairment.


Assuntos
Códon sem Sentido , Canais Iônicos/genética , Escoliose/genética , Distúrbios Somatossensoriais/genética , Artrogripose/genética , Feminino , Humanos , Linhagem , Fenótipo , Irmãos , Adulto Jovem
2.
Brain Struct Funct ; 223(1): 111-130, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28733833

RESUMO

The phenotype of calcium channel subunit (CACN) α2δ3 knockout (KO) mice includes sensory cross-activation and deficient pain perception. Sensory cross-activation defines the activation of a sensory cortical region by input from another modality due to reorganization in the brain such as after sensory loss. To obtain mechanistic insight into both phenomena, we employed a comprehensive battery of neuroanatomical techniques. While CACNα2δ3 was ubiquitously expressed in wild-type mice, it was absent in α2δ3 KO animals. Immunostaining of α1A, α1B, and α1E revealed upregulation of N-type and R-type, but not P/Q-type Cav2 channels in cortical neurons of CACNα2δ3 KO mice. Compared to wild-type mice, axonal processes in somatosensory cortex were enhanced, and dendritic processes reduced, in CACNα2δ3 KO mice. Immunohistochemical and MRI analyses, investigating morphology, thalamocortical and intra-/intercortical trajectories, revealed a disparity between projection and commissural fibers with reduction of the number of spatial specificity of thalamocortical projections. L1cam staining revealed wide-ranging projections of thalamocortical fibers reaching both somatosensory/motor and visual cortical areas. Activation (c-fos+) of excitatory and inhibitory neurons suggested that deficient pain perception in α2δ3 KO mice is unlikely to result from cortical disinhibition. Collectively, our data demonstrate that knock out of CACN α2δ3 results in some structural abnormalities whose functional implications converge to dedifferentiation of sensory activation.


Assuntos
Encéfalo/patologia , Canais de Cálcio Tipo L/deficiência , Regulação da Expressão Gênica/genética , Percepção da Dor/fisiologia , Distúrbios Somatossensoriais/genética , Distúrbios Somatossensoriais/patologia , Vibrissas/inervação , Acetiltransferases/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Mapeamento Encefálico , Canais de Cálcio Tipo L/genética , Glutamato Descarboxilase/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/diagnóstico por imagem , Proteínas de Neurofilamentos/metabolismo , Medição da Dor , Estimulação Física , Proteínas Proto-Oncogênicas c-fos/metabolismo
3.
J Hum Genet ; 62(4): 497-501, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27974811

RESUMO

The genetic work-up of arthrogryposis is challenging due to the diverse clinical and molecular etiologies. We report a-183/12-year-old boy, from a 2nd degree consanguineous family, who presented at 36/12 years with hypotonia, distal laxity, contractures, feeding difficulties at birth. He required surgery for progressive scoliosis at 16 years of age, and walked independently since then with an unstable gait and coordination defects. His latest examination at 18 years of age revealed a proprioceptive defect and loss-of-joint position sense in the upper limbs. Somatosensory evoked potentials supported bilateral involvement of dorsal column-medial lemniscal sensory pathways and nerve conduction studies revealed a mild axonal neuropathy. Muscle biopsy showed myopathic changes with neonatal myosin expression. Mendeliome sequencing led to the discovery of a recessive stop mutation in piezo-type mechanosensitive ion channel component 2 (PIEZO2, NM_022068, c.1384C>T, p.R462*). PIEZO2 is a nonselective cation channel, expressed in sensory endings of proprioceptors innervating muscle spindles and Golgi tendon organs. Dominant PIEZO2 mutations were described in patients with distal arthrogryposis type 5 and Marden-Walker syndrome. Sensory ataxia and proprioception defect with dorsal column involvement together with arthrogryposis, myopathy, scoliosis and progressive respiratory failure may represent a distinct clinical phenotype, and indicate recessive mutations in PIEZO2.


Assuntos
Artrogripose/genética , Canais Iônicos/genética , Escoliose/genética , Distúrbios Somatossensoriais/genética , Adolescente , Artrogripose/fisiopatologia , Potenciais Somatossensoriais Evocados , Humanos , Masculino , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Linhagem , Fenótipo , Escoliose/fisiopatologia , Distúrbios Somatossensoriais/fisiopatologia
4.
FASEB J ; 31(1): 224-237, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702770

RESUMO

Plasma membrane calcium ATPase 2 (PMCA2) is a calcium pump that plays important roles in neuronal function. Although it is expressed in pain-associated regions of the CNS, including in the dorsal horn (DH), its contribution to pain remains undefined. The present study assessed the role of PMCA2 in pain responsiveness and the link between PMCA2 and glutamate receptors, GABA receptors (GABARs), and glutamate transporters that have been implicated in pain processing in the DH of adult female and male PMCA2+/+ and PMCA2+/- mice. Behavioral assays evaluated mechanical and thermal pain responsiveness. Mechanical sensitivity was significantly increased by 52% and heat sensitivity was reduced by 29% in female, but not male, PMCA2+/- mice compared with PMCA2+/+ controls. There were female-specific changes in metabotropic glutamate receptor 1, NMDA receptor 2A, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluR1, GABABR1, and GABABR2 levels, whereas metabotropic glutamate receptor 5, NMDA receptor 2B, GluR2, and GABAARα2 levels were not altered. Glutamate aspartate transporter levels were higher and glial glutamate transporter 1 levels were lower in the DH of female, but not male, PMCA2+/- mice. These findings indicate a novel role for PMCA2 in modality- and sex-dependent pain responsiveness. Female-specific molecular changes potentially account for the altered pain responses.-Khariv, V., Ni, L., Ratnayake, A., Sampath, S., Lutz, B. M., Tao, X.-X., Heary, R. F., Elkabes, S. Impaired sensitivity to pain stimuli in plasma membrane calcium ATPase 2 (PMCA2) heterozygous mice: a possible modality- and sex-specific role for PMCA2 in nociception.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Nociceptividade/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Distúrbios Somatossensoriais/metabolismo , Animais , Membrana Celular/enzimologia , Feminino , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Fatores Sexuais , Distúrbios Somatossensoriais/genética
5.
J Neurogenet ; 26(3-4): 317-27, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22882183

RESUMO

We describe the characterization of m4, an autosomal recessive, temperature-sensitive paralytic mutant in Drosophila that is associated with shortened lifespan and neurodegeneration. Deletion mapping places the mutation in the gene encoding the glycolytic enzyme, Aldolase. The mutant enzyme contains a single amino acid substitution, which results in decreased steady-state levels of Aldolase with a consequent reduction in adenosine triphosphate (ATP) levels. Transgenic-rescue experiments with a genomic construct containing the entire Aldolase gene confirm that paralysis, reduced lifespan, and neurodegeneration all result from the same mutation. Tissue-specific rescue and RNA interference (RNAi) knockdown experiments indicate that Aldolase function (and presumably glycolysis) is important both in neurons and in glia for normal lifespan and neuronal maintenance over time. Impaired glycolysis in neurons can apparently be rescued in part by glycolytically active glia. However, this rescue may depend on the exact physiological state of the neurons and may also vary in different subsets of neurons. Further studies of m4 and related mutants in Drosophila should help elucidate the connections between energy production and utilization in glia and neurons and lead to better understanding of how metabolic defects impair neuronal function and maintenance.


Assuntos
Frutose-Bifosfato Aldolase/genética , Longevidade/genética , Mutação/genética , Degeneração Neural/genética , Paralisia/genética , Distúrbios Somatossensoriais/genética , Trifosfato de Adenosina/metabolismo , Fatores Etários , Animais , Animais Geneticamente Modificados , Clonagem Molecular , Drosophila , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Paralisia/complicações , Fenótipo , RNA Interferente Pequeno/farmacologia , Distúrbios Somatossensoriais/complicações
6.
Hum Mol Genet ; 21(18): 3984-92, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22678064

RESUMO

Restless legs syndrome (RLS), also known as Willis-Ekbom disease, is a sensory-motor neurological disorder with a circadian component. RLS is characterized by uncomfortable sensations in the extremities, generally at night or during sleep, which often leads to an uncontrollable urge to move them for relief. Recently, genomic studies identified single-nucleotide polymorphisms in BTBD9, along with three other genes, as being associated with a higher risk of RLS. Little is known about the function of BTBD9 or its potential role in the pathophysiology of RLS. We therefore examined a line of Btbd9 mutant mice we recently generated for phenotypes similar to symptoms found in RLS patients. We observed that the Btbd9 mutant mice had motor restlessness, sensory alterations likely limited to the rest phase, and decreased sleep and increased wake times during the rest phase. Additionally, the Btbd9 mutant mice had altered serum iron levels and monoamine neurotransmitter systems. Furthermore, the sensory alterations in the Btbd9 mutant mice were relieved using ropinirole, a dopaminergic agonist widely used for RLS treatment. These results, taken together, suggest that the Btbd9 mutant mice model several characteristics similar to RLS and would therefore be the first genotypic mouse model of RLS. Furthermore, our data provide further evidence that BTBD9 is involved in RLS, and future studies of the Btbd9 mutant mice will help shine light on its role in the pathophysiology of RLS. Finally, our data argue for the utility of Btbd9 mutant mice to discover and screen novel therapeutics for RLS.


Assuntos
Proteínas de Transporte/genética , Ferro/sangue , Proteínas do Tecido Nervoso/genética , Síndrome das Pernas Inquietas/genética , Transtornos do Sono-Vigília/genética , Distúrbios Somatossensoriais/genética , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Estudos de Associação Genética , Homozigoto , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Mutação , Fotoperíodo , Polissonografia , Síndrome das Pernas Inquietas/sangue , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Transtornos do Sono-Vigília/sangue , Distúrbios Somatossensoriais/sangue
8.
J Urol ; 183(2): 772-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20022034

RESUMO

PURPOSE: PACAP and receptors are expressed in micturition pathways. Studies show that PACAP has a role in detrusor smooth muscle contraction to facilitate adenosine triphosphate release from urothelium and PACAP antagonism decreases cyclophosphamide induced bladder hyperreflexia. MATERIALS AND METHODS: PACAP contributions to micturition and somatic sensation were studied in PACAP knockout (PACAP(-/-)), litter mate heterozygote (PACAP(+/-)) and WT mice by conscious cystometry with continuous intravesical saline or acetic acid (0.5%) instillation, urination patterns, somatic sensitivity testing of hind paw and pelvic regions with calibrated von Frey filaments, and morphological bladder assessments. RESULTS: PACAP(-/-) mice had an increased bladder mass with fewer but larger urine spots. In PACAP(-/-) mice the lamina propria and detrusor smooth muscle were significantly thicker but the urothelium was unchanged. PACAP(-/-) mice had increased bladder capacity, voided volume and intercontraction interval with significantly increased detrusor contraction duration and large residual volume. WT mice responded to acetic acid (0.5%) with a decrease in voided volume and intercontraction interval but PACAP(+/-) and PACAP(-/-) mice did not respond. PACAP(-/-) mice were less responsive to somatic stimulation. PACAP(+/-) mice also had bladder dysfunction, and somatic and visceral sensory abnormalities but to a lesser degree. CONCLUSIONS: PACAP gene disruption contributes to changes in bladder morphology and function, and somatic and visceral hypoalgesia.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Distúrbios Somatossensoriais/etiologia , Doenças da Bexiga Urinária/etiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Distúrbios Somatossensoriais/genética , Bexiga Urinária/patologia , Bexiga Urinária/fisiopatologia , Doenças da Bexiga Urinária/genética , Doenças da Bexiga Urinária/patologia , Doenças da Bexiga Urinária/fisiopatologia
9.
J Neurosci ; 27(52): 14515-24, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18160659

RESUMO

Mice heterozygous for the radiation-induced Sprawling (Swl) mutation display an early-onset sensory neuropathy with muscle spindle deficiency. The lack of an H reflex despite normal motor nerve function in the hindlimbs of these mutants strongly suggests defective proprioception. Immunohistochemical analyses reveal that proprioceptive sensory neurons are severely compromised in the lumbar dorsal root ganglia of newborn Swl/+ mice, whereas motor neuron numbers remain unaltered even in aged animals. We have used positional cloning to identify a nine base-pair deletion in the cytoplasmic dynein heavy chain 1 gene (Dync1h1) in this mutant. Furthermore, we demonstrate that Loa/+ mice, which have previously been shown to carry a missense point mutation in Dync1h1 that results in late-onset motor neuron loss, also present with a severe, early-onset proprioceptive sensory neuropathy. Interestingly, in contrast to the Loa mutation, the Swl mutation does not delay disease progression in a motor neuron disease mouse model overexpressing a human mutant superoxide dismutase (SOD1(G93A)) transgene. Together, we provide in vivo evidence that distinct mutations in cytoplasmic dynein can either result in a pure sensory neuropathy or in a sensory neuropathy with motor neuron involvement.


Assuntos
Dineínas/genética , Mutação/genética , Distúrbios Somatossensoriais/genética , Distúrbios Somatossensoriais/fisiopatologia , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Contagem de Células/métodos , Colágeno Tipo IV/metabolismo , Dineínas do Citoplasma , Modelos Animais de Doenças , Embrião de Mamíferos , Gânglios Espinais/patologia , Reflexo H/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fusos Musculares/embriologia , Fusos Musculares/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/genética , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Distúrbios Somatossensoriais/patologia
10.
EMBO J ; 21(13): 3454-63, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12093746

RESUMO

The RUNX transcription factors are important regulators of linage-specific gene expression in major developmental pathways. Recently, we demonstrated that Runx3 is highly expressed in developing cranial and dorsal root ganglia (DRGs). Here we report that within the DRGs, Runx3 is specifically expressed in a subset of neurons, the tyrosine kinase receptor C (TrkC) proprioceptive neurons. We show that Runx3-deficient mice develop severe limb ataxia due to disruption of monosynaptic connectivity between intra spinal afferents and motoneurons. We demonstrate that the underlying cause of the defect is a loss of DRG proprioceptive neurons, reflected by a decreased number of TrkC-, parvalbumin- and beta-galactosidase-positive cells. Thus, Runx3 is a neurogenic TrkC neuron-specific transcription factor. In its absence, TrkC neurons in the DRG do not survive long enough to extend their axons toward target cells, resulting in lack of connectivity and ataxia. The data provide new genetic insights into the neurogenesis of DRGs and may help elucidate the molecular mechanisms underlying somatosensory-related ataxia in humans.


Assuntos
Ataxia/genética , Proteínas de Ligação a DNA/fisiologia , Gânglios Espinais/patologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Neurônios Aferentes/citologia , Propriocepção/fisiologia , Receptor trkC/análise , Distúrbios Somatossensoriais/genética , Fatores de Transcrição/fisiologia , Vias Aferentes/fisiopatologia , Animais , Ataxia/patologia , Ataxia/fisiopatologia , Axônios/ultraestrutura , Biomarcadores , Morte Celular , Subunidade alfa 3 de Fator de Ligação ao Core , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Gânglios Espinais/química , Genótipo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Mutantes Neurológicos , Neurônios Motores/fisiologia , Fusos Musculares/patologia , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Parvalbuminas/análise , Propriocepção/genética , Distúrbios Somatossensoriais/patologia , Distúrbios Somatossensoriais/fisiopatologia , Medula Espinal/patologia , Sinapses/patologia , Transmissão Sináptica , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Gânglio Trigeminal/química , Gânglio Trigeminal/patologia , beta-Galactosidase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA