Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Ethnopharmacol ; 313: 116559, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116730

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Exocarpium Citri grandis (ECG, Huajuhong in Chinese), the epicarp of C. grandis 'Tomentosa', has been used for hundreds of years as an anti-inflammatory, expectorant, hypoglycemic, and lipid-lowering medication in China. Nevertheless, there have been few papers that have explored the mechanism behind ECG's hypolipidemic characteristics from the perspective of treating nonalcoholic fatty liver disease (NAFLD). AIM OF STUDY: The purpose of our study was to confirm the therapeutic and preventative effects of ECG in NAFLD by regulating lipid accumulation and iron metabolism, and to explore the specific mechanism of ECG in enhancing hepatic iron transport and excretion capabilities. STUDY DESIGN: We constructed a NAFLD model by feeding male C57BL/6 J mice with a high-fat diet for 12 weeks. Mice were gavaged with ECG beginning in the seventh week of modeling, and three dosage gradients were established: low dose group (2.5 g/kg/d), medium dose group (5 g/kg/d) y, and high dose group (10 g/kg/d) until the end of model construction in week 12. MATERIALS AND METHODS: We used network pharmacology to analyze the relationship between ECG and NAFLD. In addition, we constructed a nonalcoholic fatty liver disease model by feeding male C57BL/6 J mice a high-fat diet for 12 weeks. Finally, lipid accumulation, iron accumulation, inflammation and oxidative stress were evaluated by serological index detection, histological detection, immunofluorescent and immunohistochemical staining, and western blotting. RESULTS: Network pharmacology confirmed the treatment effect of ECG in NAFLD. Three active components of ECG, including Naringenin, Naringin and Neohesperidin, were detected by UHPLC-HRMS analysis. The results of serum TC, TG, LDL concentration, HE staining, Oil red staining and Nile red staining demonstrated that ECG could improve lipid metabolism disorders. The results of serum iron concentration, liver tissue iron concentration, iron metabolism-related proteins Ferritin light chain, Ferroportin1, Transferrin receptor, and Transferrin demonstrated that ECG improved the iron transport and storage capacities of hepatic cells. CONCLUSIONS: Our results demonstrated that ECG relieved liver injury by inhibiting lipid accumulation and iron accumulation in NAFLD.


Assuntos
Distúrbios do Metabolismo do Ferro , Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Ferro/metabolismo , Lipídeos/farmacologia , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos
2.
Biomolecules ; 12(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625641

RESUMO

Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson's disease, Friedreich's disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood-brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.


Assuntos
Distúrbios do Metabolismo do Ferro , Distrofias Neuroaxonais , Doenças Neurodegenerativas , Encéfalo/patologia , Humanos , Ferro/farmacologia , Distúrbios do Metabolismo do Ferro/patologia , Distrofias Neuroaxonais/patologia , Doenças Neurodegenerativas/patologia
3.
EBioMedicine ; 77: 103869, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35180557

RESUMO

BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) are a group of clinically and genetically heterogeneous diseases characterized by iron overload in basal ganglia and progressive neurodegeneration. Little is known about the epidemiology of NBIA disorders. In the absence of large-scale population-based studies, obtaining reliable epidemiological data requires innovative approaches. METHODS: All pathogenic variants were collected from the 13 genes associated with autosomal recessive NBIA (PLA2G6, PANK2, COASY, ATP13A2, CP, AP4M1, FA2H, CRAT, SCP2, C19orf12, DCAF17, GTPBP2, REPS1). The allele frequencies of these disease-causing variants were assessed in exome/genome collections: the Genome Aggregation Database (gnomAD) and our in-house database. Lifetime risks were calculated from the sum of allele frequencies in the respective genes under assumption of Hardy-Weinberg equilibrium. FINDINGS: The combined estimated lifetime risk of all 13 investigated NBIA disorders is 0.88 (95% confidence interval 0.70-1.10) per 100,000 based on the global gnomAD dataset (n = 282,912 alleles), 0.92 (0.65-1.29) per 100,000 in the European gnomAD dataset (n = 129,206), and 0.90 (0.48-1.62) per 100,000 in our in-house database (n = 44,324). Individually, the highest lifetime risks (>0.15 per 100,000) are found for disorders caused by variants in PLA2G6, PANK2 and COASY. INTERPRETATION: This population-genetic estimation on lifetime risks of recessive NBIA disorders reveals frequencies far exceeding previous population-based numbers. Importantly, our approach represents lifetime risks from conception, thus including prenatal deaths. Understanding the true lifetime risk of NBIA disorders is important in estimating disease burden, allocating resources and targeting specific interventions. FUNDING: This work was carried out in the framework of TIRCON ("Treat Iron-Related Childhood-Onset Neurodegeneration").


Assuntos
Distúrbios do Metabolismo do Ferro , Distrofias Neuroaxonais , Doenças Neurodegenerativas , Encéfalo/patologia , Proteínas de Ligação ao Cálcio , Criança , Bases de Dados Genéticas , Humanos , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/patologia , Proteínas Mitocondriais/genética , Distrofias Neuroaxonais/epidemiologia , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Nucleares , Complexos Ubiquitina-Proteína Ligase
4.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360586

RESUMO

Copper, manganese, and iron are vital elements required for the appropriate development and the general preservation of good health. Additionally, these essential metals play key roles in ensuring proper brain development and function. They also play vital roles in the central nervous system as significant cofactors for several enzymes, including the antioxidant enzyme superoxide dismutase (SOD) and other enzymes that take part in the creation and breakdown of neurotransmitters in the brain. An imbalance in the levels of these metals weakens the structural, regulatory, and catalytic roles of different enzymes, proteins, receptors, and transporters and is known to provoke the development of various neurological conditions through different mechanisms, such as via induction of oxidative stress, increased α-synuclein aggregation and fibril formation, and stimulation of microglial cells, thus resulting in inflammation and reduced production of metalloproteins. In the present review, the authors focus on neurological disorders with psychiatric signs associated with copper, iron, and manganese excess and the diagnosis and potential treatment of such disorders. In our review, we described diseases related to these metals, such as aceruloplasminaemia, neuroferritinopathy, pantothenate kinase-associated neurodegeneration (PKAN) and other very rare classical NBIA forms, manganism, attention-deficit/hyperactivity disorder (ADHD), ephedrone encephalopathy, HMNDYT1-SLC30A10 deficiency (HMNDYT1), HMNDYT2-SLC39A14 deficiency, CDG2N-SLC39A8 deficiency, hepatic encephalopathy, prion disease and "prion-like disease", amyotrophic lateral sclerosis, Huntington's disease, Friedreich's ataxia, and depression.


Assuntos
Ceruloplasmina/deficiência , Cobre/efeitos adversos , Distúrbios do Metabolismo do Ferro/patologia , Ferro/efeitos adversos , Manganês/efeitos adversos , Doenças Metabólicas/patologia , Distrofias Neuroaxonais/patologia , Doenças Neurodegenerativas/patologia , Humanos , Distúrbios do Metabolismo do Ferro/induzido quimicamente , Distúrbios do Metabolismo do Ferro/etiologia , Intoxicação por Manganês/complicações , Doenças Metabólicas/induzido quimicamente , Metaloproteínas/metabolismo , Distrofias Neuroaxonais/induzido quimicamente , Doenças Neurodegenerativas/etiologia , Estresse Oxidativo
5.
Acta Neuropathol ; 142(4): 729-759, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34292399

RESUMO

Neuronal dysfunction due to iron accumulation in conjunction with reactive oxygen species (ROS) could represent an important, yet underappreciated, component of the epileptogenic process. However, to date, alterations in iron metabolism in the epileptogenic brain have not been addressed in detail. Iron-related neuropathology and antioxidant metabolic processes were investigated in resected brain tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), post-mortem brain tissue from patients who died after status epilepticus (SE) as well as brain tissue from the electrically induced SE rat model of TLE. Magnetic susceptibility of the presumed seizure-onset zone from three patients with focal epilepsy was compared during and after seizure activity. Finally, the cellular effects of iron overload were studied in vitro using an acute mouse hippocampal slice preparation and cultured human fetal astrocytes. While iron-accumulating neurons had a pyknotic morphology, astrocytes appeared to acquire iron-sequestrating capacity as indicated by prominent ferritin expression and iron retention in the hippocampus of patients with SE or TLE. Interictal to postictal comparison revealed increased magnetic susceptibility in the seizure-onset zone of epilepsy patients. Post-SE rats had consistently higher hippocampal iron levels during the acute and chronic phase (when spontaneous recurrent seizures are evident). In vitro, in acute slices that were exposed to iron, neurons readily took up iron, which was exacerbated by induced epileptiform activity. Human astrocyte cultures challenged with iron and ROS increased their antioxidant and iron-binding capacity, but simultaneously developed a pro-inflammatory phenotype upon chronic exposure. These data suggest that seizure-mediated, chronic neuronal iron uptake might play a role in neuronal dysfunction/loss in TLE-HS. On the other hand, astrocytes sequester iron, specifically in chronic epilepsy. This function might transform astrocytes into a highly resistant, pro-inflammatory phenotype potentially contributing to pro-epileptogenic inflammatory processes.


Assuntos
Epilepsia do Lobo Temporal/complicações , Hipocampo/metabolismo , Distúrbios do Metabolismo do Ferro/etiologia , Ferro/metabolismo , Estado Epiléptico/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/patologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Ratos , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia
6.
Ann Clin Transl Neurol ; 7(8): 1436-1442, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32767480

RESUMO

FBXO7 is implicated in the ubiquitin-proteasome system and parkin-mediated mitophagy. FBXO7defects cause a levodopa-responsive parkinsonian-pyramidal syndrome(PPS). METHODS: We investigated the disease molecular bases in a child with PPS and brain iron accumulation. RESULTS: A novel homozygous c.368C>G (p.S123*) FBXO7 mutation was identified in a child with spastic paraplegia, epilepsy, cerebellar degeneration, levodopa nonresponsive parkinsonism, and brain iron deposition. Patient's fibroblasts assays demonstrated an absence of FBXO7 RNA expression leading to impaired proteasome degradation and accumulation of poly-ubiquitinated proteins. CONCLUSION: This novel FBXO7 phenotype associated with impaired proteasome activity overlaps with neurodegeneration with brain iron accumulation disorders.


Assuntos
Proteínas F-Box/genética , Distúrbios do Metabolismo do Ferro , Distrofias Neuroaxonais , Transtornos Parkinsonianos , Complexo de Endopeptidases do Proteassoma/metabolismo , Adulto , Consanguinidade , Epilepsia/enzimologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/enzimologia , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/patologia , Distúrbios do Metabolismo do Ferro/fisiopatologia , Distrofias Neuroaxonais/enzimologia , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Distrofias Neuroaxonais/fisiopatologia , Paraplegia/enzimologia , Paraplegia/genética , Paraplegia/patologia , Paraplegia/fisiopatologia , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Degenerações Espinocerebelares/enzimologia , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Degenerações Espinocerebelares/fisiopatologia , Síndrome , Adulto Jovem
7.
Pediatr Blood Cancer ; 67(10): e28614, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32729200

RESUMO

OBJECTIVE: The objective of this single-center observational study was to determine the clinical and hematologic responses to intravenous ferric carboxymaltose (FCM) in a cohort of pediatric patients with poor response to oral iron therapy. The occurrence of adverse events was systematically recorded for up to 96 hours after infusion. STUDY DESIGN: A retrospective cohort of 144 consecutive patients aged 18 months to < 18 years with iron deficiency anemia (IDA) or iron deficiency (ID) without anemia was investigated. All patients had failed oral iron therapy. The assessments before and after FCM treatment followed a predefined protocol. RESULTS: One hundred of 117 (85 %) of patients with complete data achieved the target ferritin level ≥ 30 µg/L after a single FCM dose. Of 77 patients with IDA and complete data, 38 (49%) showed a complete hematological response within 6-12 weeks; a complete or partial response was achieved by 83%. Clinical symptoms improved in 85% of all patients. In 92% of patients (n = 133 /144), FCM infusion was uneventful. During the 96-hour follow-up, five patients reported potentially related symptoms. No serious adverse events occurred. CONCLUSION: The study confirms the safety and efficacy of FCM in children (aged 18 months and older) and adolescents unresponsive to oral therapy, in real-world experience. Single-dose FCM treatment was followed by clinical improvement with advantages of safety, compliance, and lower cost compared with previous generation parenteral iron preparations that had to be administered in fractionated sessions.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Compostos Férricos/administração & dosagem , Distúrbios do Metabolismo do Ferro/tratamento farmacológico , Maltose/análogos & derivados , Administração Intravenosa , Adolescente , Anemia Ferropriva/patologia , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Distúrbios do Metabolismo do Ferro/patologia , Masculino , Maltose/administração & dosagem , Prognóstico , Estudos Retrospectivos
8.
Stem Cell Reports ; 13(5): 832-846, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31587993

RESUMO

Neuroferritinopathy (NF) is a movement disorder caused by alterations in the L-ferritin gene that generate cytosolic free iron. NF is a unique pathophysiological model for determining the direct consequences of cell iron dysregulation. We established lines of induced pluripotent stem cells from fibroblasts from two NF patients and one isogenic control obtained by CRISPR/Cas9 technology. NF fibroblasts, neural progenitors, and neurons exhibited the presence of increased cytosolic iron, which was also detectable as: ferritin aggregates, alterations in the iron parameters, oxidative damage, and the onset of a senescence phenotype, particularly severe in the neurons. In this spontaneous senescence model, NF cells had impaired survival and died by ferroptosis. Thus, non-ferritin-bound iron is sufficient per se to cause both cell senescence and ferroptotic cell death in human fibroblasts and neurons. These results provide strong evidence supporting the primary role of iron in neuronal aging and degeneration.


Assuntos
Ferroptose , Distúrbios do Metabolismo do Ferro/patologia , Ferro/metabolismo , Distrofias Neuroaxonais/patologia , Neurônios/patologia , Células Cultivadas , Senescência Celular , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Distúrbios do Metabolismo do Ferro/metabolismo , Pessoa de Meia-Idade , Distrofias Neuroaxonais/metabolismo , Neurônios/metabolismo
9.
FASEB J ; 33(12): 13492-13502, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560858

RESUMO

Hereditary aceruloplasminemia (HA), related to mutations in the ceruloplasmin (Cp) gene, leads to iron accumulation. Ceruloplasmin ferroxidase activity being considered essential for macrophage iron release, macrophage iron overload is expected, but it is not found in hepatic and splenic macrophages in humans. Our objective was to get a better understanding of the mechanisms leading to iron excess in HA. A clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 (Cas9) knockout of the Cp gene was performed on Sprague-Dawley rats. We evaluated the iron status in plasma, the expression of iron metabolism genes, and the status of other metals whose interactions with iron are increasingly recognized. In Cp-/- rats, plasma ceruloplasmin and ferroxidase activity were absent, together with decreased iron concentration and transferrin saturation. Similarly as in humans, the hepatocytes were iron overloaded conversely to hepatic and splenic macrophages. Despite a relative hepcidin deficiency in Cp-/- rats and the loss of ferroxidase activity, potentially expected to limit the interaction of iron with transferrin, no increase of plasma non-transferrin-bound iron level was found. Copper was decreased in the spleen, whereas manganese was increased in the plasma. These data suggest that the reported role of ceruloplasmin cannot fully explain the iron hepatosplenic phenotype in HA, encouraging the search for additional mechanisms.-Kenawi, M., Rouger, E., Island, M.-L., Leroyer, P., Robin, F., Remy, S., Tesson, L., Anegon, I., Nay, K., Derbré, F., Brissot, P., Ropert, M., Cavey, T., Loréal, O. Ceruloplasmin deficiency does not induce macrophagic iron overload: lessons from a new rat model of hereditary aceruloplasminemia.


Assuntos
Ceruloplasmina/deficiência , Modelos Animais de Doenças , Distúrbios do Metabolismo do Ferro/complicações , Sobrecarga de Ferro/patologia , Ferro/metabolismo , Macrófagos/patologia , Doenças Neurodegenerativas/complicações , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Ceruloplasmina/antagonistas & inibidores , Ceruloplasmina/genética , Feminino , Ferro/análise , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/patologia , Sobrecarga de Ferro/etiologia , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Masculino , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Ratos , Ratos Sprague-Dawley , Homologia de Sequência , Baço/metabolismo , Baço/patologia
10.
Biomed Pharmacother ; 118: 109068, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31404774

RESUMO

NBIA (Neurodegeneration with brain iron accumulation) is a group of inherited neurologic disorders characterized by marked genetic heterogeneity, in which iron atypical accumulates in basal ganglia resulting in brain magnetic resonance imaging changes, histopathological abnormalities, and neuropsychiatric clinical symptoms. With the rapid development of high-throughput sequencing technologies, ten candidate genes have been identified, including PANK2, PLA2G6, C19orf12, WDR45, FA2H, ATP13A2, FTL, CP, C2orf37, and COASY. They are involved in seemingly unrelated cellular pathways, such as iron homeostasis (FTL, CP), lipid metabolism (PLA2G6, C19orf12, FA2H), Coenzyme A synthesis (PANK2, COASY), and autophagy (WDR45, ATP13A2). In particular, PANK2, COASY, PLA2G6, and C19orf12 are located on mitochondria, which associate with certain subtypes of NBIA showing mitochondria dysregulation. However, the relationships among those four genes are still unclear. Therefore, this review is specifically focused on dysregulation of mitochondria in NBIA and afore-mentioned four genes, with summaries of both pathological and clinical findings.


Assuntos
Fosfolipases A2 do Grupo VI/genética , Distúrbios do Metabolismo do Ferro/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Distrofias Neuroaxonais/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transferases/genética , Humanos , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Metabolismo dos Lipídeos/genética , Potencial da Membrana Mitocondrial/genética , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia
11.
Glia ; 67(9): 1760-1774, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162719

RESUMO

Developmental iron deficiency (dID) models facilitate the study of specific oligodendrocyte (OL) requirements for their progression to a mature state and subsequent contribution to myelination. In the current work, we used the dID model in transgenic mice expressing green fluorescence protein under the CNPase promoter allowing the identification of cells belonging to the oligodendroglial lineage, and the visualization of the entire myelin structure and single OL morphology. The present work evaluates dID effects on OL complexity in different brain areas. Control animals showed an increase in OL complexity both during development and along the anterior-posterior axis. In contrast, dID animals exhibited an initial increase in CNPase+ cells with prevalence of immature-OL (i-OL), an effect later compensated during development by selective death of those i-OL. As a consequence, developmental behavior was impaired in terms of body balance, muscle response, and sensorimotor functions. To explore why i-OL fail to mature in dID, expression levels of transcriptional factors involved in the maturation of the OL lineage were studied. In nuclear fractions, dID animals showed an increase in Hes5, which prevents the maturation of i-OL, and a decrease in Sox10, a positive regulator of OL maturation. The cytoplasmic fractions showed a decrease in Olig1, which is critical for precursor cell differentiation into premyelinating OL. Overall, the expression levels of Hes5, Sox10, and Olig1 in dID conditions correlated with an unfavorable OL maturation profile. In sum, the current results provide further evidence of dID impact on myelination, keeping OL away from the maturational path.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Deficiências de Ferro , Distúrbios do Metabolismo do Ferro/metabolismo , Oligodendroglia/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodendroglia/patologia , Gravidez
12.
Blood ; 133(1): 51-58, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30401707

RESUMO

ß-Thalassemia (BT) is an inherited genetic disorder that is characterized by ineffective erythropoiesis (IE), leading to anemia and abnormal iron metabolism. IE is an abnormal expansion of the number of erythroid progenitor cells with unproductive synthesis of enucleated erythrocytes, leading to anemia and hypoxia. Anemic patients affected by BT suffer from iron overload, even in the absence of chronic blood transfusion, suggesting the presence of ≥1 erythroid factor with the ability to modulate iron metabolism and dietary iron absorption. Recent studies suggest that decreased erythroid cell differentiation and survival also contribute to IE, aggravating the anemia in BT. Furthermore, hypoxia can also affect and increase iron absorption. Understanding the relationship between iron metabolism and IE could provide important insights into the BT condition and help to develop novel treatments. In fact, genetic or pharmacological manipulations of iron metabolism or erythroid cell differentiation and survival have been shown to improve IE, iron overload, and anemia in animal models of BT. Based on those findings, new therapeutic approaches and drugs have been proposed; clinical trials are underway that have the potential to improve erythrocyte production, as well as to reduce the iron overload and organ toxicity in BT and in other disorders characterized by IE.


Assuntos
Eritropoese , Distúrbios do Metabolismo do Ferro/etiologia , Distúrbios do Metabolismo do Ferro/patologia , Ferro/metabolismo , Talassemia beta/complicações , Animais , Humanos , Talassemia beta/patologia
13.
Biol Trace Elem Res ; 189(1): 241-250, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30022428

RESUMO

Iron serves as a critical cofactor for proteins involved in a host of biological processes. In most animals, dietary iron is absorbed in enterocytes and then disseminated for use in other tissues in the body. The brain is particularly dependent on iron. Altered iron status correlates with disorders ranging from cognitive dysfunction to disruptions in circadian activity. The exact role iron plays in producing these neurological defects, however, remains unclear. Invertebrates provide an attractive model to study the effects of iron on neuronal development since many of the genes involved in iron metabolism are conserved, and the organisms are amenable to genetic and cytological techniques. We have examined synapse growth specifically under conditions of iron deficiency in the Drosophila circadian clock circuit. We show that projections of the small ventrolateral clock neurons to the protocerebrum of the adult Drosophila brain are significantly reduced upon chelation of iron from the diet. This growth defect persists even when iron is restored to the diet. Genetic neuronal knockdown of ferritin 1 or ferritin 2, critical components of iron storage and transport, does not affect synapse growth in these cells. Together, these data indicate that dietary iron is necessary for central brain synapse formation in the fly and further validate the use of this model to study the function of iron homeostasis on brain development.


Assuntos
Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Drosophila , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ferritinas/metabolismo , Imuno-Histoquímica , Sinapses/metabolismo , Sinapses/patologia
14.
J Cell Physiol ; 233(12): 9179-9190, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076709

RESUMO

Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson's disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron-based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer's disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections.


Assuntos
Ferritinas/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Neoplasias/metabolismo , Distrofias Neuroaxonais/metabolismo , Autofagia/genética , Eritropoese/genética , Ferritinas/efeitos adversos , Humanos , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/patologia , Neoplasias/classificação , Neoplasias/etiologia , Neoplasias/patologia , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Coativadores de Receptor Nuclear/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções Urinárias/genética , Infecções Urinárias/metabolismo
15.
Handb Clin Neurol ; 145: 157-166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28987166

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) describes a heterogeneous group of inherited rare clinical and genetic entities. Clinical core symptoms comprise a combination of early-onset dystonia, pyramidal and extrapyramidal signs with ataxia, cognitive decline, behavioral abnormalities, and retinal and axonal neuropathy variably accompanying these core features. Increased nonphysiologic, nonaging-associated brain iron, most pronounced in the basal ganglia, is often termed the unifying characteristic of these clinically variable disorders, though occurrence and extent can be fluctuating or even absent. Neuropathologically, NBIA disorders usually are associated with widespread axonal spheroids and local iron accumulation in the basal ganglia. Postmortem, Lewy body, TDP-43, or tau pathology has been observed. Genetics have fostered ongoing progress in elucidating underlying pathophysiologic mechanisms of NBIA disorders. Ten associated genes have been established, with many more being suggested as new technologies and data emerge. Clinically, certain symptom combinations can suggest a specific genetic defect. Genetic tests, combined with postmortem neuropathology, usually make for the final disease confirmation. Despite these advances, treatment to date remains mainly symptomatic. This chapter reviews the established genetic defects leading to different NBIA subtypes, highlights phenotypic presentations to direct genetic testing, and briefly discusses the scarce available treatment options and upcoming challenges and future hopes of the field.


Assuntos
Encéfalo/metabolismo , Distúrbios do Metabolismo do Ferro , Ferro/metabolismo , Mutação/genética , Distrofias Neuroaxonais , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Humanos , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia
16.
IUBMB Life ; 69(6): 423-434, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276141

RESUMO

Ferroptosis is a recently described form of regulated necrotic cell death, which appears to contribute to a number of diseases, such as tissue ischemia/reperfusion injury, acute renal failure, and neurodegeneration. A hallmark of ferroptosis is iron-dependent lipid peroxidation, which can be inhibited by the key ferroptosis regulator glutathione peroxidase 4(Gpx4), radical trapping antioxidants and ferroptosis-specific inhibitors, such as ferrostatins and liproxstatins, as well as iron chelation. Although great strides have been made towards a better understanding of the proximate signals of distinctive lipid peroxides in ferroptosis, still little is known about the mechanistic implication of iron in the ferroptotic process. Hence, this review aims at summarizing recent advances in our understanding to what is known about enzymatic and nonenzymatic routes of lipid peroxidation, the involvement of iron in this process and the identification of novel players in ferroptotic cell death. Additionally, we review early works carried out long time before the term "ferroptosis" was actually introduced but which were instrumental in a better understanding of the role of ferroptosis in physiological and pathophysiological contexts. © 2017 IUBMB Life, 69(6):423-434, 2017.


Assuntos
Antioxidantes/farmacologia , Glutationa Peroxidase/antagonistas & inibidores , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Distrofias Neuroaxonais/metabolismo , Insuficiência Renal/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Cicloexilaminas/farmacologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Quelantes de Ferro/uso terapêutico , Distúrbios do Metabolismo do Ferro/tratamento farmacológico , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Necrose/genética , Necrose/metabolismo , Necrose/patologia , Distrofias Neuroaxonais/tratamento farmacológico , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Fenilenodiaminas/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Quinoxalinas/farmacologia , Insuficiência Renal/tratamento farmacológico , Insuficiência Renal/genética , Insuficiência Renal/patologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Compostos de Espiro/farmacologia
20.
Neuropediatrics ; 47(2): 123-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26859818

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of single gene disorders with distinguished clinical phenotypes and definitive imaging findings. Beta propeller protein-associated neurodegeneration (BPAN) is a subentity of NBIA with X linked dominant inheritance. In this report, we describe a girl with autistic regression, seizures, intracranial calcification, iron accumulation in substantia nigra, and globi pallidi, and diagnosis of BPAN was established based on the identification of previously described disease causing variant in WD repeat domain 45 (WDR45) gene encoding for ß propeller protein. This is the first genetically proven case from India. BPAN is an underrecognized disorder and must be considered as a differential diagnosis in children with atypical Rett features and should be enlisted among the causes for autistic regression and intracranial calcification. Pediatricians must be aware of this rare entity for establishing early diagnosis, prognostication, and genetic counseling. Treatment is usually supportive. More research is needed to explore drugs in the management of BPAN that can facilitate the autophagy and promotes cytoprotection.


Assuntos
Transtorno Autístico/etiologia , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/patologia , Calcinose/etiologia , Proteínas de Transporte/genética , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/patologia , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Doenças dos Gânglios da Base/complicações , Doenças dos Gânglios da Base/metabolismo , Pré-Escolar , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/complicações , Distúrbios do Metabolismo do Ferro/metabolismo , Distrofias Neuroaxonais/complicações , Distrofias Neuroaxonais/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA