Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 701: 108797, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607110

RESUMO

Human telomerase that activates within cancer cells has a telomeric sequence at the 3' end. Each factor that stabilizes the G-quadruplex in guanine-rich telomeric sequences can inhibit the regular telomerase activity. Therefore, the telomeric G-quadruplex is known as a promising target in cancer treatment. In this work, we studied the binding of positively charged distamycin A and its uncharged derivative to the G-quadruplex in a solution environment by Molecular Dynamics (MD) simulation. The binding mechanism and subtle conformational changes were investigated as a result of the ligand attachment. Moreover, binding free energy and clustering analysis describe the stability and flexibility of G-quadruplexes upon ligand binding. Structural analyses displayed that the favorable binding of both ligands imposes significant stability and rigidity in G-quadruplex conformation compared to free G-quadruplex, especially charged distamycin. Hydration pattern and ion distribution were different for free G-quadruplex and both of the ligand complexes. Energy decomposition reveals the electrostatic effect on the stability of G-quadruplex. The radial distribution function displayed the solvent shell and ion moving away from the groove. The hydrogen bond played an essential role in the binding of both ligands, especially for the charged derivative. van der Waals interaction is the only factor that is more important in binding uncharged distamycin into G-quadruplex than the charged one. The calculated ΔGbind showed the stability of both ligands within grooves and good agreement with the experimental binding free energy data. Finally, the results suggest that ligand modification improves the binding mode toward stabilizing G-quadruplexes.


Assuntos
Antineoplásicos/química , Distamicinas/química , Quadruplex G , Simulação de Dinâmica Molecular , Telômero/química , Humanos
2.
Eur J Med Chem ; 195: 112202, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302880

RESUMO

We have designed and synthesized anthraquinone containing compounds which have oligopyrrole side chains of varying lengths. These compounds stabilized the G-quadruplex DNA formed in the promoter regions of c-MYC oncogenes selectively over the duplex DNA. These observations were recorded using UV-vis spectroscopic titrations, fluorescence measurements and circular dichroism (CD) spectral titrations. The potency of the compounds to stabilize the G4 DNA has been shown from the thermal denaturation experiments. The compound interacts with c-MYC G-quadruplex DNA through stacking mode as obtained from ethidium bromide displacement assay, cyclic voltammetric titration, and docking experiments. Molecular modeling studies suggested that the stacking of the anthraquinone moiety over the G-tetrad of the G4 structures are responsible for the stability of such quadruplex secondary structure. Furthermore, polymerase stop assay also supported the formation of stable G4 structures in the presence of the above-mentioned compounds. The compounds have shown selective cancer cell (HeLa and HEK293T) cytotoxicity over normal cells (NIH3T3 and HDFa) under in vitro conditions as determined from MTT based cell viability assay. Apoptosis was found to be the mechanistic pathway underlying the cancer cell cytotoxicity as obtained from Annexin V-FITC and PI dual staining assay which was further substantiated by nuclear morphological changes as observed by AO/EB dual staining assay. Cellular morphological changes, as well as nuclear condensation and fragmentation upon treatment with these compounds, were observed under bright field and confocal microscopy.


Assuntos
Antracenos/química , Dimerização , Distamicinas/química , Distamicinas/farmacologia , Quadruplex G/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , DNA/química , DNA/genética , Desenho de Fármacos , Modelos Moleculares
3.
Eur J Med Chem ; 189: 112043, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978782

RESUMO

Polyamides-based compounds related to the Streptomycetal distamycin and netropsin are potent cytostatic molecules that bind to AT-rich regions of the minor groove of the DNA, hence interfering with DNA replication and transcription. Recently, derivatives belonging to this scaffold have been reported to halt the proliferation of deadly African trypanosomes by different and unrelated mechanisms. Here we describe the synthesis and preliminary characterization of the anti-trypanosomal mode of action of new potent and selective distamycin analogues. Two tri-heterocyclic derivatives containing a central N-methyl pyrrole ring (16 and 17) displayed high activity (EC50 < 20 nM) and selectivity (selectivity index >5000 with respect to mammalian macrophages) against the infective form of T. brucei. Both compounds caused cell cycle arrest by blocking the replication of the mitochondrial DNA but without affecting its integrity. This mode of action clearly differs from that reported for classical minor groove binder (MGB) drugs, which induce the degradation of the mitochondrial DNA. In line with this, in vitro assays suggest that 16 and 17 have a comparatively lower affinity for different template DNAs than the MGB drug diminazene. Therapeutic efficacy studies and stability assays suggest that the pharmacological properties of the hits should be optimized. The compounds can be rated as excellent scaffolds for the design of highly potent and selective anti-T. brucei agents.


Assuntos
Ciclo Celular/efeitos dos fármacos , Distamicinas/química , Macrófagos/efeitos dos fármacos , Tiazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Animais , Feminino , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Tiazóis/química , Tripanossomicidas/química , Trypanosoma/parasitologia , Tripanossomíase Africana/parasitologia
4.
Mini Rev Med Chem ; 19(2): 98-113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30626311

RESUMO

The DNA as the depository of genetic information is a natural target for chemotherapy. A lot of anticancer and antimicrobial agents derive their biological activity from their selective interaction with DNA in the minor groove and from their ability to interfere with biological processes such as enzyme catalysis, replication and transcription. The discovery of the details of minor groove binding drugs, such as netropsin and distamycin A, oligoamides built of 4-amino-1-methylpyrrole-2-carboxylic acid residues, allowed to develop various DNA sequence-reading molecules, named lexitropsins, capable of interacting with DNA precisely, strongly and with a high specificity, and at the same time exhibiting significant cytotoxic potential. Among such compounds, lexitropsins built of carbocyclic sixmembered aromatic rings occupy a quite prominent place in drug research. This work is an attempt to present current findings in the study of carbocyclic lexitropins, their structures, syntheses and biological investigations such as DNA-binding and antiproliferative activity.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Distamicinas/química , Distamicinas/farmacologia , Desenho de Fármacos , Netropsina/análogos & derivados , Netropsina/farmacologia , Ácidos Carbocíclicos/síntese química , Ácidos Carbocíclicos/química , Ácidos Carbocíclicos/farmacologia , Animais , Antibacterianos/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA/metabolismo , Distamicinas/síntese química , Humanos , Neoplasias/tratamento farmacológico , Netropsina/síntese química
5.
Nucleic Acids Res ; 46(11): 5355-5365, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29762718

RESUMO

The structural differences among different G-quadruplexes provide an opportunity for site-specific targeting of a particular G-quadruplex structure. However, majority of G-quadruplex ligands described thus far show little selectivity among different G-quadruplexes. In this work, we delineate the design and synthesis of a crescent-shaped thiazole peptide that preferentially stabilizes c-MYC quadruplex over other promoter G-quadruplexes and inhibits c-MYC oncogene expression. Biophysical analysis such as Förster resonance energy transfer (FRET) melting and fluorescence spectroscopy show that the thiazole peptide TH3 can selectively interact with the c-MYC G-quadruplex over other investigated G-quadruplexes and duplex DNA. NMR spectroscopy reveals that peptide TH3 binds to the terminal G-quartets and capping regions present in the 5'- and 3'-ends of c-MYC G-quadruplex with a 2:1 stoichiometry; whereas structurally related distamycin A is reported to interact with quadruplex structures via groove binding and end stacking modes with 4:1 stoichiometry. Importantly, qRT-PCR, western blot and dual luciferase reporter assay show that TH3 downregulates c-MYC expression by stabilizing the c-MYC G-quadruplex in cancer cells. Moreover, TH3 localizes within the nucleus of cancer cells and exhibits antiproliferative activities by inducing S phase cell cycle arrest and apoptosis.


Assuntos
Quadruplex G/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Neoplasias/patologia , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Tiazóis/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Distamicinas/química , Regulação para Baixo , Células HeLa , Humanos , Modelos Moleculares , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Acta Chim Slov ; 63(4): 689-704, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28004090

RESUMO

The synthesis and biological activity of a variety of analogues to the naturally occurring antibacterial and antifungal Distamycin A were explored by a number of authors. These compounds were subject to a large array of assays. Some of these compounds showed high activity against a range of Gram-positive, Gram-negative bacteria as well as fungi. To explore the anti-parasitic activity of this class of compounds, specific modifications had to be made. A number of these compounds proved to be active against Trypanosoma brucei. The binding of a number of these compounds to short sequences of DNA were also examined using footprinting assays as well as NMR spectroscopy. Computer modelling was employed on selected compounds to understand the way these compounds bind to specific DNA sequences. A large number of variations were made to the standard structure of Distamycin. These changes involved the replacement of the pyrrole moieties as well as the head and tail groups with a number of heterocyclic compounds. Some of these minor groove binders (MGBs) were also investigated for their capability for the treatment of cancer and in particular lung cancer.


Assuntos
DNA/metabolismo , Distamicinas/metabolismo , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Simulação por Computador , DNA/química , Pegada de DNA , Distamicinas/química , Distamicinas/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia
7.
Bioorg Med Chem Lett ; 26(15): 3478-86, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27349332

RESUMO

A series of 47 structurally diverse MGBs, derived from the natural product distamycin, was evaluated for anti-lung cancer activity by screening against the melanoma cancer cell line B16-F10. Five compounds have been found to possess significant activity, more so than a standard therapy, Gemcitabine. Moreover, one compound has been found to have an activity around 70-fold that of Gemcitabine and has a favourable selectivity index of greater than 125. Furthermore, initial studies have revealed this compound to be metabolically stable and thus it represents a lead for further optimisation towards a novel treatment for lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Desoxicitidina/análogos & derivados , Distamicinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/isolamento & purificação , Desoxicitidina/farmacologia , Distamicinas/química , Distamicinas/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/patologia , Estrutura Molecular , Relação Estrutura-Atividade , Gencitabina
8.
J Mol Recognit ; 28(6): 376-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25694263

RESUMO

DNA-minor-groove-binding ligands are potent antineoplastic molecules. The antibiotic distamycin A is the prototype of one class of these DNA-interfering molecules that have been largely used in vitro. The affinity of distamycin A for DNA is well known, and the structural details of the complexes with some B-DNA and G-quadruplex-forming DNA sequences have been already elucidated. Here, we show that distamycin A binds S100ß, a protein involved in the regulation of several cellular processes. The reported affinity of distamycin A for the calcium(II)-loaded S100ß reinforces the idea that some biological activities of the DNA-minor-groove-binding ligands arise from the binding to cellular proteins.


Assuntos
Distamicinas/química , Subunidade beta da Proteína Ligante de Cálcio S100/química , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
9.
PLoS One ; 9(6): e99077, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901640

RESUMO

In biosynthesis of natural products, potential intermediates or analogs of a particular compound in the crude extracts are commonly overlooked in routine assays due to their low concentration, limited structural information, or because of their insignificant bio-activities. This may lead into an incomplete and even an incorrect biosynthetic pathway for the target molecule. Here we applied multiple compound mining approaches, including genome scanning and precursor ion scan-directed mass spectrometry, to identify potential pyrrolamide compounds in the fermentation culture of Streptomyces netropsis. Several novel congocidine and distamycin analogs were thus detected and characterized. A more reasonable route for the biosynthesis of pyrrolamides was proposed based on the structures of these newly discovered compounds, as well as the functional characterization of several key biosynthetic genes of pyrrolamides. Collectively, our results implied an unusual "iterative strategy" underlying the pyrrole polymerization in the biosynthesis of pyrrolamide antibiotics.


Assuntos
Amidas/metabolismo , Amidoidrolases/metabolismo , Antibacterianos/metabolismo , Polímeros/metabolismo , Pirróis/metabolismo , Streptomyces/metabolismo , Amidas/química , Antibacterianos/química , Biocatálise , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Distamicinas/biossíntese , Distamicinas/química , Família Multigênica , Netropsina/biossíntese , Netropsina/química , Polímeros/química , Pirróis/química , Streptomyces/genética , Espectrometria de Massas em Tandem
10.
Top Curr Chem ; 330: 211-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22851158

RESUMO

G-quadruplex ligands are potential anticancer agents as telomerase inhibitors and potential transcriptional regulators of oncogenes. The search for best-in-class drugs is addressed to identify small molecules able to promote and stabilize G-quadruplex structures. What features should the G-quadruplex ligands possess? They should have selective antiproliferative effects on cancer cells and induce telomerase inhibition or oncogene suppression. One of the main challenges in their design and synthesis is to make the ligands selective for G-quadruplex DNA. These features should be amplified by careful analyses of physico-chemical aspects of G-quadruplex-drug interactions. In particular, the study of the energetics of G-quadruplex-drug interactions can enhance drug design by providing thermodynamic parameters that give quantitative information on the biomolecular interactions important for binding. The main methodologies used to gain information on energetics of binding are based on spectroscopic or calorimetric principles. Spectroscopic techniques such as fluorescence and circular dichroism are rapid and cheap methods, but are not sufficient to characterize completely the thermodynamics of interaction. Calorimetric techniques such as isothermal titration calorimetry offer a direct measure of binding enthalpy, in addition to the stoichiometry and affinity constants. With the complete thermodynamic signature of drug-target interaction, dissecting the enthalpic and entropic components of binding is possible, which can be a useful aid to decision-making during drug optimization.


Assuntos
Desenho de Fármacos , Quadruplex G/efeitos dos fármacos , Ácidos Nucleicos/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Termodinâmica , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Carbazóis/química , Carbazóis/farmacologia , Dicroísmo Circular , Distamicinas/química , Distamicinas/farmacologia , Humanos , Ligantes , Modelos Moleculares , Ácidos Nucleicos/metabolismo , Piperidinas/química , Piperidinas/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Espectrometria de Fluorescência
11.
J Inorg Biochem ; 105(12): 1692-703, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22099472

RESUMO

Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential antitumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria. Herein, we better characterize the interactions between some of these copper(II) complexes and DNA. Investigations on its binding ability to DNA were carried out by fluorescence measurements in competitive experiments with ethidium bromide, using plasmidial or calf-thymus DNA. These results indicated an efficient binding process similar to that observed with copper(II)-phenanthroline species, [Cu(o-phen)(2)](2+), with binding constants in the range 3 to 9×10(2) M(-1). DNA cleavage experiments in the presence and absence of distamycin, a recognized binder of DNA, indicated that this binding probably occurs at major or minor groove, leading to double-strand DNA cleavage, and being modulated by the imine ligand. Corroborating these data, discrete changes in EPR spectra of the studied complexes were observed in the presence of DNA, while more remarkable changes were observed in the presence of nucleotides (AMP, GMP, CMP or UMP). Additional evidence for preferential coordination of the copper centers to the bases guanine or cytosine was obtained from titrations of these complexes with each nucleotide, monitored by absorption spectral changes. Therefore, the obtained data point out to their action as groove binders to DNA bases, rather than as intercalators or covalent cross-linkers. Further investigations by SDS PAGE using (32)P-ATP or (32)P-oligonucleotides attested that no hydrolysis of phosphate linkage in DNA or RNA occurs, in the presence of such complexes, confirming their main oxidative mechanism of action.


Assuntos
Complexos de Coordenação/química , Cobre , DNA Circular/química , DNA/química , Indóis/química , Algoritmos , Ligação Competitiva , Dicroísmo Circular , Clivagem do DNA , Distamicinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Etídio/química , Substâncias Intercalantes/química , Oxindóis , Bases de Schiff/química , Espectrometria de Fluorescência
12.
Biochemistry ; 50(38): 8107-16, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21854010

RESUMO

The molecular mechanism for the displacement of HMGA1 proteins from DNA is integral to disrupting their cellular function, which is linked to many metastatic cancers. Chemical shift and NOESY NMR experiments provide structural evidence for the displacement of an AT hook peptide (DNA binding motif of HMGA1 proteins) by both monomeric and dimeric distamycin. However, the displaced AT hook alters distamycin binding by weakening the distamycin:DNA complex, while slowing monomeric distamycin dissociation when AT hook is in excess. The central role of the AT hook was evaluated by monitoring full-length HMGA1a protein binding using fluorescence anisotropy. HMGA1a was effectively displaced by distamycin, but the cooperative binding exhibited by distamycin was eliminated by displaced HMGA1a. Additionally, these studies indicate that HMGA1a is displaced from the DNA by 1 equiv of distamycin, suggesting the ability to develop therapeutics that take advantage of the positively cooperative nature of HMGA1a binding.


Assuntos
Distamicinas/farmacologia , Proteína HMGA1a/antagonistas & inibidores , Proteína HMGA1a/química , Motivos AT-Hook , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , DNA/química , DNA/genética , DNA/metabolismo , Dimerização , Distamicinas/química , Distamicinas/metabolismo , Polarização de Fluorescência , Proteína HMGA1a/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Estrutura Quaternária de Proteína , Eletricidade Estática
13.
PLoS One ; 6(7): e22409, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799846

RESUMO

BACKGROUND: Human papillomavirus (HPV) is the main causative agent of cervical cancer, particularly high risk strains such us HPV-16, -18 and -31. The viral encoded E2 protein acts as a transcriptional modulator and exerts a key role in viral DNA replication. Thus, E2 constitutes an attractive target for developing antiviral agents. E2 is a homodimeric protein that interacts with the DNA target through an α-helix of each monomer. However, a peptide corresponding to the DNA recognition helix of HPV-16 E2 binds DNA with lower affinity than its full-length DNA binding domain. Therefore, in an attempt to promote the DNA binding of the isolated peptide, we have designed a conjugate compound of the E2 α-helix peptide and a derivative of the antibiotic distamycin, which involves simultaneous minor- and major-groove interactions. METHODOLOGY/PRINCIPAL FINDINGS: An E2 α-helix peptide-distamycin conjugate was designed and synthesized. It was characterized by NMR and CD spectroscopy, and its DNA binding properties were investigated by CD, DNA melting and gel shift experiments. The coupling of E2 peptide with distamycin does not affect its structural properties. The conjugate improves significantly the affinity of the peptide for specific DNA. In addition, stoichiometric amounts of specific DNA increase meaningfully the helical population of the peptide. The conjugate enhances the DNA binding constant 50-fold, maintaining its specificity. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that peptide-distamycin conjugates are a promising tool to obtain compounds that bind the E2 target DNA-sequences with remarkable affinity and suggest that a bipartite major/minor groove binding scaffold can be a useful approach for therapeutic treatment of HPV infection.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Papillomavirus Humano 16 , Proteínas Oncogênicas Virais/química , Fragmentos de Peptídeos/química , Pirróis/química , Sequência de Aminoácidos , Antivirais/síntese química , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Sequência de Bases , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/uso terapêutico , DNA Viral/genética , Distamicinas/química , Papillomavirus Humano 16/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Infecções por Papillomavirus/tratamento farmacológico , Estrutura Secundária de Proteína , Especificidade por Substrato
14.
Biochimie ; 93(8): 1280-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21658428

RESUMO

The growing amount of literature about G-quadruplex DNA clearly demonstrates that such a structure is no longer viewed as just a biophysical strangeness but it is instead being considered as an important target for the treatment of various human disorders such as cancers or venous thrombosis. In this scenario, with the aim of finding brand new molecular scaffolds able to interact with the groove of the DNA quadruplex [d(TGGGGT)](4), we recently performed a successful structure-based virtual screening (VS) campaign. As a result, six molecules were found to be somehow groove binders. Herein, we report the results of novel NMR titration experiments of these VS-derived ligands with modified quadruplexes, namely [d(TGG(Br)GGT)](4) and [d(TGGGG(Br)T)](4). The novel NMR spectroscopy experiments combined with molecular modelling studies, allow for a more detailed picture of the interaction between each binder and the quadruplex DNA. Noteworthy, isothermal titration calorimetry (ITC) measurements on the above-mentioned compounds revealed that 2, 4, and 6 besides their relatively small dimensions bind the DNA quadruplex [d(TGGGGT)](4) with higher affinity than distamycin A, to the best of our knowledge, the most potent groove binder identified thus far.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Quadruplex G , Modelos Moleculares , Sítios de Ligação , Calorimetria , Distamicinas/química , Distamicinas/metabolismo , Espectroscopia de Ressonância Magnética
16.
J Am Chem Soc ; 132(18): 6425-33, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20394365

RESUMO

The study of DNA G-quadruplex stabilizers has enjoyed a great momentum in the late years due to their application as anticancer agents. The recognition of the grooves of these structural motifs is expected to result in a higher degree of selectivity over other DNA structures. Therefore, to achieve an enhanced knowledge on the structural and conformational requisites for quadruplex groove recognition, distamycin A, the only compound for which a pure groove binding has been proven, has been chemically modified. Surprisingly, structural and thermodynamic studies revealed that the absence of Coulombic interactions results in an unprecedented binding position in which both the groove and the 3' end of the DNA are occupied. This further contribution adds another piece to the so far elusive puzzle of the recognition between ligands and DNA quadruplexes and will serve as a platform for a rational design of new groove binders.


Assuntos
DNA/química , DNA/metabolismo , Quadruplex G , Sequência de Bases , Bromo/química , DNA/genética , Distamicinas/química , Distamicinas/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Termodinâmica
17.
Mini Rev Med Chem ; 9(1): 81-94, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19149662

RESUMO

In this review article we have reported a series of hybrid compounds characterized by the presence of a alpha-halogenocryloyl alkylating moiety of low chemical reactivity, linked to known antitumor agents or their active moieties. Among them, brostallicin (PNU-166196), was selected for clinical development and is now undergoing Phase II studies in patients with advanced or metastatic soft tissue sarcoma.


Assuntos
Antineoplásicos Alquilantes/química , Pirroliminoquinonas/química , Animais , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Distamicinas/química , Distamicinas/farmacologia , Guanidinas/química , Guanidinas/uso terapêutico , Humanos , Camundongos , Pirróis/química , Pirróis/uso terapêutico , Pirroliminoquinonas/farmacologia
18.
Arch Pharm (Weinheim) ; 342(2): 87-93, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19173336

RESUMO

Eight of analogues of distamycin, potential minor-groove binders, were synthesized and tested for in-vitro cytotoxicity towards human breast cancer cells MCF-7 and MDA-MB-231. The method of synthesis is simple and convenient. All of the compounds 1-8 showed antiproliferative and cytotoxic effects against both cell lines in the range 3.47 to 12.53 microM for MDA-MB-231 and 4.35 to 12.66 microM for MCF-7. All compounds demonstrated activity against DNA topoisomerases I and II at a concentration of 50 microM. The ethidium bromide assay showed that these compounds bind to plasmid pBR322, yet weaker than distamycin. Further investigations concerning the mechanism of cytotoxicity are now in progress, but the IC(50) values suggest that synthetic distamycin analogues with a free amino group, 3-4 and 7-8, can serve as potential carriers of strong acting elements, e. g. alkylating groups.


Assuntos
Antineoplásicos/síntese química , Distamicinas/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Distamicinas/química , Distamicinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase I , Inibidores da Topoisomerase II
19.
Int J Mol Med ; 23(1): 105-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19082513

RESUMO

Derivatives of distamycin A modified at the C-terminal amidine moiety and tethered to bis-epoxyethyl moieties at the N-terminal position were tested for their ability to induce erythroid differentiation in the human erythroleukemic cell line K562. None of the compounds without bis-epoxyethyl moiety were active. A comparison of the biological activity of diepoxy compounds containing different non-basic amidine-modified moieties, showed low activity of amidoxime, carbamoyl and N-methyl carbamoyl derivatives as differentiation agents. In contrast, a cyanamidine derivative, compound 3, was able to induce erythroid differentiation of K562 cells. In addition, the cyanamidine derivative 3 was able to induce HbF accumulation following treatment of cultures of erythroid precursor cells isolated from the peripheral blood of normal subjects.


Assuntos
Distamicinas/química , Distamicinas/farmacologia , Células Precursoras Eritroides/efeitos dos fármacos , Hemoglobina Fetal/metabolismo , Fármacos Hematológicos/química , Fármacos Hematológicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Distamicinas/síntese química , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Fármacos Hematológicos/síntese química , Humanos , Células K562 , RNA Mensageiro/genética , Relação Estrutura-Atividade , Talassemia beta/tratamento farmacológico , gama-Globinas/genética , gama-Globinas/metabolismo
20.
Chembiochem ; 9(17): 2822-9, 2008 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-18942688

RESUMO

Efficient targeting of DNA by designed molecules requires not only careful fine-tuning of their DNA-recognition properties, but also appropriate cell internalization of the compounds so that they can reach the cell nucleus in a short period of time. Previous observations in our group on the relatively high affinity displayed by conjugates between distamycin derivatives and bZIP basic regions for A-rich DNA sites, led us to investigate whether the covalent attachment of a positively charged cell-penetrating peptide to a distamycin-like tripyrrole might yield high affinity DNA binders with improved cell internalization properties. Our work has led to the discovery of synthetic tripyrrole-octa-arginine conjugates that are capable of targeting specific DNA sites that contain A-rich tracts with low nanomolar affinity; they simultaneously exhibit excellent membrane and nuclear translocation properties in living HeLa cells.


Assuntos
Antineoplásicos/química , Núcleo Celular/metabolismo , DNA , Distamicinas/química , Oligopeptídeos/química , Pirróis/química , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , DNA/química , DNA/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA