Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0304064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787850

RESUMO

Asymmetric cell division is an important mechanism that generates cellular diversity during development. Not only do asymmetric cell divisions produce daughter cells of different fates, but many can also produce daughters of different sizes, which we refer to as Daughter Cell Size Asymmetry (DCSA). In Caenorhabditis elegans, apoptotic cells are frequently produced by asymmetric divisions that exhibit DCSA, where the smaller daughter dies. We focus here on the divisions of the Q.a and Q.p neuroblasts, which produce larger surviving cells and smaller apoptotic cells and divide with opposite polarity using both distinct and overlapping mechanisms. Several proteins regulate DCSA in these divisions. Previous studies showed that the PIG-1/MELK and TOE-2 proteins regulate DCSA in both the Q.a and Q.p divisions, and the non-muscle myosin NMY-2 regulates DCSA in the Q.a division but not the Q.p division. In this study, we examined endogenously tagged NMY-2, TOE-2, and PIG-1 reporters and characterized their distribution at the cortex during the Q.a and Q.p divisions. In both divisions, TOE-2 localized toward the side of the dividing cell that produced the smaller daughter, whereas PIG-1 localized toward the side that produced the larger daughter. As previously reported, NMY-2 localized to the side of Q.a that produced the smaller daughter and did not localize asymmetrically in Q.p. We used temperature-sensitive nmy-2 mutants to determine the role of nmy-2 in these divisions and were surprised to find that these mutants only displayed DCSA defects in the Q.p division. We generated double mutant combinations between the nmy-2 mutations and mutations in toe-2 and pig-1. Because previous studies indicate that DCSA defects result in the transformation of cells fated to die into their sister cells, the finding that the nmy-2 mutations did not significantly alter the Q.a and Q.p DCSA defects of toe-2 and pig-1 mutants but did alter the number of daughter cells produced by Q.a and Q.p suggests that nmy-2 plays a role in specifying the fates of the Q.a and Q.p that is independent of its role in DCSA.


Assuntos
Divisão Celular Assimétrica , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cadeias Pesadas de Miosina , Animais , Divisão Celular Assimétrica/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Tamanho Celular , Miosinas/metabolismo , Miosinas/genética , Proteínas Serina-Treonina Quinases , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Dev Biol ; 483: 34-38, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942195

RESUMO

Proper function of the body is maintained by an intricate interaction and communication among cells. during the animal development how these cells are formed and maintained is an important yet elusive. Understanding of how cells such as muscle and nerve cells maintain their identities would enable us to control the diseases which include malfunctioning in cellular identities such as cancer. In this article, we describe how the concept of formation and maintenance of cell identities has changed over the last 100 years. We will also briefly describe our current experimental work which includes transcriptional dynamics, and protein-protein interaction and how they are bringing new molecular insights. We also describe liquid-liquid phase separation as a potential new mechanism for the stability of gene expression in the non dvididng specialised cells of Xenopus oocytes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oócitos/citologia , Oócitos/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Divisão Celular Assimétrica/genética , Diferenciação Celular/genética , Feminino , Células Musculares/metabolismo , Neurônios/metabolismo , Ovoviviparidade/genética , Mapas de Interação de Proteínas/genética , Transcrição Gênica/genética , Xenopus laevis/metabolismo
3.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768763

RESUMO

A connection between compromised asymmetric cell division (ACD) and tumorigenesis was proven some years ago using Drosophila larval brain neural stem cells, called neuroblasts (NBs), as a model system. Since then, we have learned that compromised ACD does not always promote tumorigenesis, as ACD is an extremely well-regulated process in which redundancy substantially overcomes potential ACD failures. Considering this, we have performed a pilot RNAi screen in Drosophila larval brain NB lineages using RasV12 scribble (scrib) mutant clones as a sensitized genetic background, in which ACD is affected but does not cause tumoral growth. First, as a proof of concept, we have tested known ACD regulators in this sensitized background, such as lethal (2) giant larvae and warts. Although the downregulation of these ACD modulators in NB clones does not induce tumorigenesis, their downregulation along with RasV12 scrib does cause tumor-like overgrowth. Based on these results, we have randomly screened 79 RNAi lines detecting 15 potential novel ACD regulators/tumor suppressor genes. We conclude that RasV12 scrib is a good sensitized genetic background in which to identify tumor suppressor genes involved in NB ACD, whose function could otherwise be masked by the high redundancy of the ACD process.


Assuntos
Divisão Celular Assimétrica/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Supressores de Tumor/fisiologia , Células-Tronco Neurais/metabolismo , Animais , Regulação para Baixo , Proteínas de Drosophila/genética , Larva/citologia , Larva/genética , Larva/metabolismo , Proteínas de Membrana/genética , Interferência de RNA , Proteínas ras/genética , Proteínas ras/metabolismo
4.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830224

RESUMO

Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.


Assuntos
Divisão Celular Assimétrica/genética , Polaridade Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Transcrição Gênica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas do Olho/metabolismo , Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
5.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153113

RESUMO

Hematopoietic stem cells (HSCs) are responsible for life-long production of all mature blood cells. Under homeostasis, HSCs in their native bone marrow niches are believed to undergo asymmetric cell divisions (ACDs), with one daughter cell maintaining HSC identity and the other committing to differentiate into various mature blood cell types. Due to the lack of key niche signals, in vitro HSCs differentiate rapidly, making it challenging to capture and study ACD. To overcome this bottleneck, in this study, we used interferon alpha (IFNα) treatment to "pre-instruct" HSC fate directly in their native niche, and then systematically studied the fate of dividing HSCs in vitro at the single cell level via time-lapse analysis, as well as multigene and protein expression analysis. Triggering HSCs' exit from dormancy via IFNα was found to significantly increase the frequency of asynchronous divisions in paired daughter cells (PDCs). Using single-cell gene expression analyses, we identified 12 asymmetrically expressed genes in PDCs. Subsequent immunocytochemistry analysis showed that at least three of the candidates, i.e., Glut1, JAM3 and HK2, were asymmetrically distributed in PDCs. Functional validation of these observations by colony formation assays highlighted the implication of asymmetric distribution of these markers as hallmarks of HSCs, for example, to reliably discriminate committed and self-renewing daughter cells in dividing HSCs. Our data provided evidence for the importance of in vivo instructions in guiding HSC fate, especially ACD, and shed light on putative molecular players involved in this process. Understanding the mechanisms of cell fate decision making should enable the development of improved HSC expansion protocols for therapeutic applications.


Assuntos
Divisão Celular Assimétrica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Interferon-alfa/farmacologia , Animais , Divisão Celular Assimétrica/genética , Divisão Celular Assimétrica/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
6.
Curr Opin Cell Biol ; 67: 27-36, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32871437

RESUMO

Asymmetric cell division produces two cells that are genetically identical but each have distinctly different cell fates. During this process, epigenetic mechanisms play an important role in allowing the two daughter cells to have unique gene expression profiles that lead to their specific cell identities. Although the process of duplicating and segregating the genetic information during the cell cycle has been well studied, the question of how epigenetic information is duplicated and partitioned still remains. In this review, we discuss recent advances in understanding how epigenetic states are established and inherited, with emphasis on the asymmetric inheritance patterns of histones, DNA methylation, nonhistone proteins, RNAs, and organelles. We also discuss how misregulation of these processes may lead to diseases such as cancer and tissue degeneration.


Assuntos
Divisão Celular Assimétrica/genética , Epigênese Genética , Padrões de Herança/genética , Células-Tronco/citologia , Animais , Cromatina/metabolismo , Metilação de DNA , Humanos
7.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325951

RESUMO

The Scribble polarity module is composed by Scribble (Scrib), Discs large 1 (Dlg1) and Lethal (2) giant larvae (L(2)gl), a group of highly conserved neoplastic tumor suppressor genes (TSGs) from flies to humans. Even though the Scribble module has been profusely studied in epithelial cell polarity, the number of tissues and processes in which it is involved is increasingly growing. Here we discuss the role of the Scribble module in the asymmetric division of Drosophila neuroblasts (NBs), as well as the underlying mechanisms by which those TSGs act in this process. Finally, we also describe what we know about the consequences of mutating these genes in impairing the process of asymmetric NB division and promoting tumor-like overgrowth.


Assuntos
Divisão Celular Assimétrica/genética , Polaridade Celular/genética , Transformação Celular Neoplásica/genética , Proteínas de Membrana/genética , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Diferenciação Celular/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Proteínas de Membrana/metabolismo , Células-Tronco Neurais/patologia , Neurogênese , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
8.
Trends Cancer ; 6(9): 775-780, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32312682

RESUMO

Tissue regeneration relies on adult stem cells (SCs) that possess the ability to self-renew and produce differentiating progeny. In an analogous manner, the development of certain cancers depends on a subset of tumor cells, called cancer stem cells (CSCs), with SC-like properties. In addition to being responsible for tumorigenesis, CSCs exhibit elevated resistance to therapy and thus drive tumor relapse post-treatment. The epithelial-mesenchymal transition (EMT) programs promote SC and CSC stemness in many epithelial tissues. Here, we provide an overview of the mechanisms underlying the relationship between stemness and EMT programs, which may represent therapeutic vulnerabilities for the treatment of cancers.


Assuntos
Células-Tronco Adultas/patologia , Transição Epitelial-Mesenquimal/genética , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Adultas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Divisão Celular Assimétrica/efeitos dos fármacos , Divisão Celular Assimétrica/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células-Tronco Neoplásicas/efeitos dos fármacos
9.
Elife ; 82019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31566561

RESUMO

It is still unclear what drives progression of childhood tumors. During Drosophila larval development, asymmetrically-dividing neural stem cells, called neuroblasts, progress through an intrinsic temporal patterning program that ensures cessation of divisions before adulthood. We previously showed that temporal patterning also delineates an early developmental window during which neuroblasts are susceptible to tumor initiation (Narbonne-Reveau et al., 2016). Using single-cell transcriptomics, clonal analysis and numerical modeling, we now identify a network of twenty larval temporal patterning genes that are redeployed within neuroblast tumors to trigger a robust hierarchical division scheme that perpetuates growth while inducing predictable cell heterogeneity. Along the hierarchy, temporal patterning genes define a differentiation trajectory that regulates glucose metabolism genes to determine the proliferative properties of tumor cells. Thus, partial redeployment of the temporal patterning program encoded in the cell of origin may govern the hierarchy, heterogeneity and growth properties of neural tumors with a developmental origin.


Assuntos
Divisão Celular Assimétrica/genética , Padronização Corporal/genética , Proliferação de Células/genética , Larva/genética , Animais , Diferenciação Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Larva/crescimento & desenvolvimento , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/metabolismo
10.
Elife ; 82019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31577227

RESUMO

Tissue homeostasis requires a balance between progenitor cell proliferation and loss. Mechanisms that maintain this robust balance are needed to avoid tissue loss or overgrowth. Here we demonstrate that regulation of spindle orientation/asymmetric cell divisions is one mechanism that is used to buffer changes in proliferation and tissue turnover in mammalian skin. Genetic and pharmacologic experiments demonstrate that asymmetric cell divisions were increased in hyperproliferative conditions and decreased under hypoproliferative conditions. Further, active K-Ras also increased the frequency of asymmetric cell divisions. Disruption of spindle orientation in combination with constitutively active K-Ras resulted in massive tissue overgrowth. Together, these data highlight the essential roles of spindle orientation in buffering tissue homeostasis in response to perturbations.


Assuntos
Divisão Celular Assimétrica/genética , Divisão Celular/genética , Proliferação de Células/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Polaridade Celular/genética , Células Epidérmicas/metabolismo , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Homeostase/genética , Camundongos , Pele/crescimento & desenvolvimento , Pele/metabolismo , Fuso Acromático , Células-Tronco/citologia , Células-Tronco/metabolismo
11.
Open Biol ; 9(2): 180243, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30958098

RESUMO

Precise specification of cell fate or identity within stem cell lineages is critical for ensuring correct stem cell lineage progression and tissue homeostasis. Failure to specify cell fate or identity in a timely and robust manner can result in developmental abnormalities and diseases such as cancer. However, the molecular basis of timely cell fate/identity specification is only beginning to be understood. In this review, we discuss key regulatory strategies employed in cell fate specification and highlight recent results revealing how timely and robust cell fate/identity commitment is achieved through transcriptional control.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Proliferação de Células/fisiologia , Modelos Biológicos , Células-Tronco/citologia , Animais , Divisão Celular Assimétrica/genética , Divisão Celular Assimétrica/fisiologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Receptores Notch/genética , Receptores Notch/metabolismo , Células-Tronco/metabolismo
12.
PLoS Biol ; 16(9): e2003389, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30235201

RESUMO

Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase cell division control protein 42 (Cdc42). Here we demonstrate-using a comprehensive set of paired daughter cell analyses that include single-cell 3D confocal imaging, single-cell transplants, single-cell RNA-seq, and single-cell transposase-accessible chromatin sequencing (ATAC-seq)-that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells.


Assuntos
Divisão Celular/genética , Senescência Celular/genética , Epigênese Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Envelhecimento/metabolismo , Animais , Divisão Celular Assimétrica/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Agregação Celular , Linhagem da Célula/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Cromatina , Camundongos Endogâmicos C57BL , Transcriptoma/genética , Proteína Wnt-5a/farmacologia , Proteína cdc42 de Ligação ao GTP/metabolismo
13.
Stem Cells Dev ; 27(22): 1527-1539, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30051749

RESUMO

Adult tissues are thought to harbor two populations of "dormant" and "actively dividing" stem cells. Quiescent stem cells undergo rare asymmetric cell divisions (ACDs) through which they self-renew and give rise to tissue-committed "progenitors" of distinct fate and "progenitors" in turn undergo symmetric cell divisions (SCDs) and clonal expansion. However, quiescent stem cells have not been demonstrated in adult tissues such as skin, testis, liver, and brain. After surgical removal of part of liver and pancreas-adult differentiated cells divide and regenerate and a possible role of stem cells remains doubtful. Long-term repopulating hematopoietic stem cells are quiescent in nature but ACD has not been convincingly demonstrated even among them. Attempts by various groups to identify a common stemness program that ensures self-renewal among different kinds of stem cells have also remained futile. Uncontrolled self-renewal and compromised differentiation of stem cells possibly initiate leukemia/cancer, but the identity of leukemic stem cells and whether cancer stem cells arise by epithelial-mesenchymal transition (EMT) in solid tumors are all open-ended questions that need greater clarity. Acceptance of the presence of very small embryonic-like stem cells (VSELs) in adult tissues could clarify several of these existing dilemmas in the field. Data are compiled showing that VSELs undergo ACD in the hematopoietic system, testis, ovary, uterus, and pancreas, whereas tissue-committed progenitors undergo SCD and clonal expansion. VSELs possess similar overlapping stemness program as in embryonic stem cells, embryonic carcinoma cells, embryonic germ cells, induced pluripotent stem cells, and primordial germ cells. VSELs and leukemic and cancer cells express overlapping embryonic markers. Uncontrolled proliferation of VSELs and compromised differentiation possibly initiate leukemia. Process of EMT and initiation of solid tumor from VSELs (located among the epithelial cells) are indeed two distinct and parallel events. To conclude, VSELs provide explanation to several confounding aspects of adult stem cell biology.


Assuntos
Células-Tronco Adultas/citologia , Divisão Celular Assimétrica/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Neoplásicas/citologia , Regeneração/genética , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Linhagem da Célula/genética , Autorrenovação Celular/genética , Células Clonais/citologia , Células Clonais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fígado/citologia , Fígado/crescimento & desenvolvimento , Masculino , Células-Tronco Neoplásicas/metabolismo , Pâncreas/citologia , Pâncreas/crescimento & desenvolvimento , Pele/citologia , Pele/crescimento & desenvolvimento , Testículo/citologia , Testículo/crescimento & desenvolvimento
14.
Development ; 145(6)2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29490983

RESUMO

In addition to its function as an inhibitor of histone acetyltransferases, Nir (Noc2l) binds to p53 and TAp63 to regulate their activity. Here, we show that epidermis-specific ablation of Nir impairs epidermal stratification and barrier function, resulting in perinatal lethality. Nir-deficient epidermis lacks appendages and remains single layered during embryogenesis. Cell proliferation is inhibited, whereas apoptosis and p53 acetylation are increased, indicating that Nir is controlling cell proliferation by limiting p53 acetylation. Transcriptome analysis revealed that Nir regulates the expression of essential factors in epidermis development, such as keratins, integrins and laminins. Furthermore, Nir binds to and controls the expression of p63 and limits H3K18ac at the p63 promoter. Corroborating the stratification defects, asymmetric cell divisions were virtually absent in Nir-deficient mice, suggesting that Nir is required for correct mitotic spindle orientation. In summary, our data define Nir as a key regulator of skin development.


Assuntos
Epiderme/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose/genética , Divisão Celular Assimétrica/genética , Técnicas de Cultura de Células , Divisão Celular , Proliferação de Células/genética , Imunoprecipitação da Cromatina , Epiderme/crescimento & desenvolvimento , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo
15.
Sci Signal ; 11(511)2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295957

RESUMO

Asymmetric cell division results in two distinctly fated daughter cells. A molecular hallmark of asymmetric division is the unequal partitioning of cell fate determinants. We have previously established that growth factor signaling promotes protein depalmitoylation to foster polarized protein localization, which, in turn, drives migration and metastasis. We report protein palmitoylation as a key mechanism for the asymmetric partitioning of the cell fate determinants Numb and ß-catenin through the activity of the depalmitoylating enzyme APT1. Using point mutations, we showed that specific palmitoylated residues on Numb were required for its asymmetric localization. By live-cell imaging, we showed that reciprocal interactions between APT1 and the Rho family GTPase CDC42 promoted the asymmetric localization of Numb and ß-catenin to the plasma membrane. This, in turn, restricted Notch- or Wnt-responsive transcriptional activity to one daughter cell. Moreover, we showed that altering APT1 abundance changed the transcriptional signatures of MDA-MB-231 triple receptor-negative breast cancer cells, similar to changes in Notch and ß-catenin-mediated Wnt signaling. We also showed that loss of APT1 depleted a specific subpopulation of tumorigenic cells in colony formation assays. Together, our findings suggest that APT1-mediated depalmitoylation is a major mechanism of asymmetric cell division that maintains Notch- and Wnt-associated protein dynamics, gene expression, and cellular functions.


Assuntos
Divisão Celular Assimétrica/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Notch/metabolismo , Tioléster Hidrolases/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Humanos , Lipoilação , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Mutação Puntual , Receptores Notch/genética , Tioléster Hidrolases/genética , Neoplasias de Mama Triplo Negativas/genética , Via de Sinalização Wnt , beta Catenina/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
Genetics ; 208(3): 1147-1164, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29348144

RESUMO

Oriented cell divisions are critical to establish and maintain cell fates and tissue organization. Diverse extracellular and intracellular cues have been shown to provide spatial information for mitotic spindle positioning; however, the molecular mechanisms by which extracellular signals communicate with cells to direct mitotic spindle positioning are largely unknown. In animal cells, oriented cell divisions are often achieved by the localization of force-generating motor protein complexes to discrete cortical domains. Disrupting either these force-generating complexes or proteins that globally affect microtubule stability results in defects in mitotic positioning, irrespective of whether these proteins function as spatial cues for spindle orientation. This poses a challenge to traditional genetic dissection of this process. Therefore, as an alternative strategy to identify key proteins that act downstream of intercellular signaling, we screened the localization of many candidate proteins by inserting fluorescent tags directly into endogenous gene loci, without overexpressing the proteins. We tagged 23 candidate proteins in Caenorhabditis elegans and examined each protein's localization in a well-characterized, oriented cell division in the four-cell-stage embryo. We used cell manipulations and genetic experiments to determine which cells harbor key localized proteins and which signals direct these localizations in vivo We found that Dishevelled and adenomatous polyposis coli homologs are polarized during this oriented cell division in response to a Wnt signal, but two proteins typically associated with mitotic spindle positioning, homologs of NuMA and Dynein, were not detectably polarized. These results suggest an unexpected mechanism for mitotic spindle positioning in this system, they pinpoint key proteins of interest, and they highlight the utility of a screening approach based on analyzing the localization of endogenously tagged proteins.


Assuntos
Divisão Celular Assimétrica/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Wnt/metabolismo , Animais , Biomarcadores , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transporte Proteico , Transdução de Sinais , Fuso Acromático/metabolismo , Células-Tronco/metabolismo
17.
Development ; 144(14): 2570-2583, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619817

RESUMO

Over the past decade an intriguing connection between asymmetric cell division, stem cells and tumorigenesis has emerged. Neuroblasts, which are the neural stem cells of the Drosophila central nervous system, divide asymmetrically and constitute an excellent paradigm for investigating this connection further. Here we show that the simultaneous loss of the asymmetric cell division regulators Canoe (afadin in mammals) and Scribble in neuroblast clones leads to tumor-like overgrowth through both a severe disruption of the asymmetric cell division process and canoe loss-mediated Ras-PI3K-Akt activation. Moreover, canoe loss also interacts synergistically with scribble loss to promote overgrowth in epithelial tissues, here just by activating the Ras-Raf-MAPK pathway. discs large 1 and lethal (2) giant larvae, which are functionally related to scribble, contribute to repress the Ras-MAPK signaling cascade in epithelia. Hence, our work uncovers novel cooperative interactions between all these well-conserved tumor suppressors that ensure tight regulation of the Ras signaling pathway.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , IMP Desidrogenase/metabolismo , Proteínas de Membrana/genética , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose , Divisão Celular Assimétrica/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Proteínas de Drosophila/deficiência , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Técnicas de Inativação de Genes , Genes de Insetos , IMP Desidrogenase/genética , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Modelos Biológicos , Transdução de Sinais
18.
EMBO Rep ; 17(12): 1700-1720, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27872203

RESUMO

Stem cells have the remarkable ability to undergo proliferative symmetric divisions and self-renewing asymmetric divisions. Balancing of the two modes of division sustains tissue morphogenesis and homeostasis. Asymmetric divisions of Drosophila neuroblasts (NBs) and sensory organ precursor (SOP) cells served as prototypes to learn what we consider now principles of asymmetric mitoses. They also provide initial evidence supporting the notion that aberrant symmetric divisions of stem cells could correlate with malignancy. However, transferring the molecular knowledge of circuits underlying asymmetry from flies to mammals has proven more challenging than expected. Several experimental approaches have been used to define asymmetry in mammalian systems, based on daughter cell fate, unequal partitioning of determinants and niche contacts, or proliferative potential. In this review, we aim to provide a critical evaluation of the assays used to establish the stem cell mode of division, with a particular focus on the mammary gland system. In this context, we will discuss the genetic alterations that impinge on the modality of stem cell division and their role in breast cancer development.


Assuntos
Divisão Celular Assimétrica , Glândulas Mamárias Humanas/citologia , Mitose , Células-Tronco/fisiologia , Animais , Divisão Celular Assimétrica/genética , Diferenciação Celular/genética , Linhagem da Célula , Drosophila/genética , Proteínas de Drosophila/genética , Humanos , Glândulas Mamárias Humanas/fisiologia , Camundongos , Mitose/genética , Neoplasias/etiologia , Neurônios/fisiologia , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/fisiologia , Nicho de Células-Tronco
19.
Biosci Rep ; 35(6)2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26487707

RESUMO

Drosophila GoLoco motif-containing protein Pins is unusual in its highly efficient interaction with both GDP- and the GTP-loaded forms of the α-subunit of the heterotrimeric Go protein. We analysed the interactions of Gαo in its two nucleotide forms with GoLoco1-the first of the three GoLoco domains of Pins-and the possible structures of the resulting complexes, through combination of conventional fluorescence and FRET measurements as well as through molecular modelling. Our data suggest that the orientation of the GoLoco1 motif on Gαo significantly differs between the two nucleotide states of the latter. In other words, a rotation of the GoLoco1 peptide in respect with Gαo must accompany the nucleotide exchange in Gαo. The sterical hindrance requiring such a rotation probably contributes to the guanine nucleotide exchange inhibitor activity of GoLoco1 and Pins as a whole. Our data have important implications for the mechanisms of Pins regulation in the process of asymmetric cell divisions.


Assuntos
Proteínas de Drosophila/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Nucleotídeos de Guanina/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Motivos de Aminoácidos/genética , Animais , Divisão Celular Assimétrica/genética , Proteínas de Ciclo Celular , Drosophila/genética , Proteínas de Drosophila/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Inibidores de Dissociação do Nucleotídeo Guanina/química , Proteínas Heterotriméricas de Ligação ao GTP/química , Peptídeos/química , Peptídeos/genética
20.
Dev Cell ; 33(2): 136-49, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25843888

RESUMO

Cell polarization is linked to fate determination during asymmetric division of plant stem cells, but the underlying molecular mechanisms remain unknown. In Arabidopsis, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) is polarized to control stomatal asymmetric division. A mitogen-activated protein kinase (MAPK) cascade determines terminal stomatal fate by promoting the degradation of the lineage determinant SPEECHLESS (SPCH). Here, we demonstrate that a positive-feedback loop between BASL and the MAPK pathway constitutes a polarity module at the cortex. Cortical localization of BASL requires phosphorylation mediated by MPK3/6. Phosphorylated BASL functions as a scaffold and recruits the MAPKKK YODA and MPK3/6 to spatially concentrate signaling at the cortex. Activated MPK3/6 reinforces the feedback loop by phosphorylating BASL and inhibits stomatal fate by phosphorylating SPCH. Polarization of the BASL-MAPK signaling feedback module represents a mechanism connecting cell polarity to fate differentiation during asymmetric stem cell division in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Divisão Celular Assimétrica/genética , Proteínas de Ciclo Celular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Nicotiana/crescimento & desenvolvimento , Estômatos de Plantas/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem da Célula/genética , Polaridade Celular/genética , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Estômatos de Plantas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA