Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2300, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863890

RESUMO

The ability of nucleic acids to form double-stranded structures is essential for all living systems on Earth. Current knowledge on functional RNA structures is focused on locally-occurring base pairs. However, crosslinking and proximity ligation experiments demonstrated that long-range RNA structures are highly abundant. Here, we present the most complete to-date catalog of conserved complementary regions (PCCRs) in human protein-coding genes. PCCRs tend to occur within introns, suppress intervening exons, and obstruct cryptic and inactive splice sites. Double-stranded structure of PCCRs is supported by decreased icSHAPE nucleotide accessibility, high abundance of RNA editing sites, and frequent occurrence of forked eCLIP peaks. Introns with PCCRs show a distinct splicing pattern in response to RNAPII slowdown suggesting that splicing is widely affected by co-transcriptional RNA folding. The enrichment of 3'-ends within PCCRs raises the intriguing hypothesis that coupling between RNA folding and splicing could mediate co-transcriptional suppression of premature pre-mRNA cleavage and polyadenylation.


Assuntos
Pareamento de Bases/fisiologia , DNA Complementar/genética , Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Células A549 , Sequência de Bases/genética , Sequência Conservada/fisiologia , Biblioteca Gênica , Células Hep G2 , Humanos , Íntrons/genética , Poliadenilação , Dobramento de RNA/fisiologia , Precursores de RNA/genética , RNA-Seq
2.
J Mol Evol ; 86(9): 598-610, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30456440

RESUMO

Life as we know it requires three basic types of polymers: polypeptide, polynucleotide, and polysaccharide. Here we evaluate both universal and idiosyncratic characteristics of these biopolymers. We incorporate this information into a model that explains much about their origins, selection, and early evolution. We observe that all three biopolymer types are pre-organized, conditionally self-complementary, chemically unstable in aqueous media yet persistent because of kinetic trapping, with chiral monomers and directional chains. All three biopolymers are synthesized by dehydration reactions that are catalyzed by molecular motors driven by hydrolysis of phosphorylated nucleosides. All three biopolymers can access specific states that protect against hydrolysis. These protected states are folded, using self-complementary interactions among recurrent folding elements within a given biopolymer, or assembled, in associations between the same or different biopolymer types. Self-association in a hydrolytic environment achieves self-preservation. Heterogeneous association achieves partner-preservation. These universal properties support a model in which life's polymers emerged simultaneously and co-evolved in a common hydrolytic milieu where molecular persistence depended on folding and assembly. We believe that an understanding of the structure, function, and origins of any given type of biopolymer requires the context of other biopolymers.


Assuntos
Biopolímeros/biossíntese , Biopolímeros/metabolismo , Biopolímeros/fisiologia , Animais , Catálise , Humanos , Peptídeos/metabolismo , Peptídeos/fisiologia , Polímeros , Polinucleotídeos/biossíntese , Polinucleotídeos/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/metabolismo , Polissacarídeos/fisiologia , Dobramento de Proteína , Dobramento de RNA/fisiologia
3.
RNA ; 24(4): 513-528, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29317542

RESUMO

The impact of inherited and somatic mutations on messenger RNA (mRNA) structure remains poorly understood. Recent technological advances that leverage next-generation sequencing to obtain experimental structure data, such as SHAPE-MaP, can reveal structural effects of mutations, especially when these data are incorporated into structure modeling. Here, we analyze the ability of SHAPE-MaP to detect the relatively subtle structural changes caused by single-nucleotide mutations. We find that allele-specific sorting greatly improved our detection ability. Thus, we used SHAPE-MaP with a novel combination of clone-free robotic mutagenesis and allele-specific sorting to perform a rapid, comprehensive survey of noncoding somatic and inherited riboSNitches in two cancer-associated mRNAs, TPT1 and LCP1 Using rigorous thermodynamic modeling of the Boltzmann suboptimal ensemble, we identified a subset of mutations that change TPT1 and LCP1 RNA structure, with approximately 14% of all variants identified as riboSNitches. To confirm that these in vitro structures were biologically relevant, we tested how dependent TPT1 and LCP1 mRNA structures were on their environments. We performed SHAPE-MaP on TPT1 and LCP1 mRNAs in the presence or absence of cellular proteins and found that both mRNAs have similar overall folds in all conditions. RiboSNitches identified within these mRNAs in vitro likely exist under biological conditions. Overall, these data reveal a robust mRNA structural landscape where differences in environmental conditions and most sequence variants do not significantly alter RNA structural ensembles. Finally, predicting riboSNitches in mRNAs from sequence alone remains particularly challenging; these data will provide the community with benchmarks for further algorithmic development.


Assuntos
Biomarcadores Tumorais/genética , Proteínas dos Microfilamentos/genética , Polimorfismo de Nucleotídeo Único/genética , Dobramento de RNA/fisiologia , RNA Mensageiro/genética , Alelos , Sequência de Bases , Linhagem Celular , Bases de Dados Genéticas , Variação Genética/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética , Termodinâmica , Proteína Tumoral 1 Controlada por Tradução
4.
Nat Commun ; 8(1): 1532, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146908

RESUMO

The expression of the compact mammalian mitochondrial genome requires transcription, RNA processing, translation and RNA decay, much like the more complex chromosomal systems, and here we use it as a model system to understand the fundamental aspects of gene expression. Here we combine RNase footprinting with PAR-CLIP at unprecedented depth to reveal the importance of RNA-protein interactions in dictating RNA folding within the mitochondrial transcriptome. We show that LRPPRC, in complex with its protein partner SLIRP, binds throughout the mitochondrial transcriptome, with a preference for mRNAs, and its loss affects the entire secondary structure and stability of the transcriptome. We demonstrate that the LRPPRC-SLIRP complex is a global RNA chaperone that stabilizes RNA structures to expose the required sites for translation, stabilization, and polyadenylation. Our findings reveal a general mechanism where extensive RNA-protein interactions ensure that RNA is accessible for its biological functions.


Assuntos
Mitocôndrias/fisiologia , Proteínas de Neoplasias/fisiologia , Dobramento de RNA/fisiologia , Proteínas de Ligação a RNA/fisiologia , Transcriptoma/fisiologia , Animais , Sítios de Ligação , Fibroblastos , Genoma Mitocondrial/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/fisiologia , Poliadenilação/fisiologia , Ligação Proteica/fisiologia , Biossíntese de Proteínas/fisiologia , Pegadas de Proteínas/métodos , Estabilidade de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de RNA/métodos
5.
Proc Natl Acad Sci U S A ; 113(49): 14013-14018, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872311

RESUMO

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a cancer-promoting long noncoding RNA, accumulates in cells by using a 3'-triple-helical RNA stability element for nuclear expression (ENE). The ENE, a stem-loop structure containing a U-rich internal loop, interacts with a downstream A-rich tract (ENE+A) to form a blunt-ended triple helix composed of nine U•A-U triples interrupted by a C•G-C triple and C-G doublet. This unique structure prompted us to explore the possibility of protein binding. Native gel-shift assays revealed a shift in radiolabeled MALAT1 ENE+A RNA upon addition of HEK293T cell lysate. Competitive gel-shift assays suggested that protein binding depends not only on the triple-helical structure but also its nucleotide composition. Selection from the lysate using a biotinylated-RNA probe followed by mass spectrometry identified methyltransferase-like protein 16 (METTL16), a putative RNA methyltransferase, as an interacting protein of the MALAT1 ENE+A. Gel-shift assays confirmed the METTL16-MALAT1 ENE+A interaction in vitro: Binding was observed with recombinant METTL16, but diminished in lysate depleted of METTL16, and a supershift was detected after adding anti-METTL16 antibody. Importantly, RNA immunoprecipitation after in vivo UV cross-linking and an in situ proximity ligation assay for RNA-protein interactions confirmed an association between METTL16 and MALAT1 in cells. METTL16 is an abundant (∼5 × 105 molecules per cell) nuclear protein in HeLa cells. Its identification as a triple-stranded RNA binding protein supports the formation of RNA triple helices inside cells and suggests the existence of a class of triple-stranded RNA binding proteins, which may enable the discovery of additional cellular RNA triple helices.


Assuntos
Metiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , Células HEK293 , Células HeLa , Humanos , Metiltransferases/genética , Conformação de Ácido Nucleico , Dobramento de RNA/fisiologia , Estabilidade de RNA , RNA Longo não Codificante/genética
6.
RNA Biol ; 10(4): 481-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23422316

RESUMO

Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Levivirus/química , Dobramento de RNA/genética , RNA Viral/química , Espectrometria de Fluorescência/métodos , Vírus Satélite da Necrose do Tabaco/química , Montagem de Vírus/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Cátions/química , Cátions/metabolismo , Genoma Viral , Levivirus/genética , Levivirus/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica/genética , Dobramento de RNA/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Vírus Satélite da Necrose do Tabaco/genética , Vírus Satélite da Necrose do Tabaco/metabolismo , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA