Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.950
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Balkan Med J ; 41(3): 193-205, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700358

RESUMO

Background: Paclitaxel (PAX) is a widely used chemotherapy drug for various cancer types but often induces significant toxicity in multiple organ systems. Silymarin (SIL), a natural flavonoid, has shown therapeutic potential due to its multiple benefits. Aims: To evaluate the therapeutic efficacy of SIL in mitigating liver and kidney damage induced by PAX in rats, focusing on oxidative stress, inflammation, and apoptosis pathways. Study Design: Experimental animal model. Methods: The study included 28 male Wistar rats aged 12-14 weeks weighing 270-300 g. The rats were divided into four groups: control, SIL, PAX, and PAX + SIL, with seven in each group. The rats received intraperitoneal (i.p.) injections at a dose of 2 mg per kilogram of body weight of PAX for 5 successive days, followed by oral gavage with 200 mg/kg body mass of SIL for 10 uninterrupted days. We examined the effect of SIL on specific serum biochemical parameters using an autoanalyzer and rat-specific kits. The spectrophotometric methods was used to investigate oxidative stress indicators in kidney and liver tissues. Aquaporin-2 (AQP-2), B-cell lymphoma-2 (Bcl-2), cysteine aspartate-specific protease-3 (caspase-3), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), and streptavidin-biotin staining were used to assess immunoreactivity in PAX-induced liver and kidney injury models. Results: SIL treatment significantly reduced serum levels of alanine aminotransferase, aspartate aminotransferase, creatinine, urea, and C-reactive protein, indicating its effectiveness in treating PAX-induced liver and kidney injury. SIL treatment significantly reduced oxidative stress by increasing essential antioxidant parameters, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione. It also reduced malondialdehyde levels in liver and kidney tissues of SIL-PAX groups (p < 0.05). SIL administration reduced NF-κB, caspase-3, and IL-6 expression while increasing Bcl-2 and AQP2 levels in liver and kidney tissues of rats treated with SIL and PAX (p < 0.05). Conclusion: Our findings indicate the potential of SIL to alleviate PAX-induced liver and kidney damage in rats by reducing oxidative stress, inflammation, and apoptotic processes.


Assuntos
Apoptose , Inflamação , Estresse Oxidativo , Paclitaxel , Ratos Wistar , Silimarina , Animais , Estresse Oxidativo/efeitos dos fármacos , Ratos , Masculino , Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Silimarina/farmacologia , Silimarina/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fígado/efeitos dos fármacos , Rim/efeitos dos fármacos , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia
2.
BMC Complement Med Ther ; 24(1): 153, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581023

RESUMO

BACKGROUND: Vortioxetine (VORTX) is a potent and selective type of selective serotonin reuptake inhibitor (SSRI) that is mainly prescribed for treating major depression along with mood disorders as the first drug of choice. Limited previous findings have indicated evidence of liver injury and hepatotoxicity associated with daily VORTX treatment. Rutin (RUT), which is known for its antioxidant properties, has demonstrated several beneficial health actions, including hepatoprotection. Therefore the current study aimed to evaluate and assess the ameliorative effect of RUT against the hepatotoxic actions of daily low and high-dose VORTX administration. METHODS: The experimental design included six groups of rats, each divided equally. Control, rats exposed to RUT (25 mg/kg), rats exposed to VORTX (28 mg/kg), rats exposed to VORTX (28 mg/kg) + RUT (25 mg/kg), rats exposed to VORTX (80 mg/kg), and rats exposed to VORTX (80 mg/kg) + RUT (25 mg/kg). After 30 days from the daily exposure period, assessments were conducted for serum liver enzyme activities, hepatotoxicity biomarkers, liver antioxidant endogenous enzymes, DNA fragmentation, and histopathological studies of liver tissue. RESULTS: Interestingly, the risk of liver damage and hepatotoxicity related to VORTX was attenuated by the daily co-administration of RUT. Significant improvements were observed among all detected liver functions, oxidative stress, and inflammatory biomarkers including aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), albumin, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione S-transferase (GST), total protein, acid phosphatase, N-Acetyl-/ß-glucosaminidase (ß-NAG), ß-Galactosidase (ß-Gal), alpha-fetoprotein (AFP), caspase 3, and cytochrom-C along with histopathological studies, compared to the control and sole RUT group. CONCLUSION: Thus, RUT can be considered a potential and effective complementary therapy in preventing hepatotoxicity and liver injury induced by the daily or prolonged administration of VORTX.


Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Antioxidantes/farmacologia , Rutina/farmacologia , Vortioxetina , Inflamação/tratamento farmacológico , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Biomarcadores
3.
Biochem Biophys Res Commun ; 710: 149880, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581952

RESUMO

Drug-induced liver injury (DILI) occurs frequently and can be life-threatening. Increasing researches suggest that acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury. Indole-3-carboxaldehyde (I3A) alleviates hepatic inflammation, fibrosis and atherosclerosis, suggesting a potential role in different disease development. However, the question of whether and how I3A protects against acetaminophen-induced liver injury remains unanswered. In this study, we demonstrated that I3A treatment effectively mitigates acetaminophen-induced liver injury. Serum alanine/aspartate aminotransferases (ALT/AST), liver malondialdehyde (MDA) activity, liver glutathione (GSH), and superoxide dismutase (SOD) levels confirmed the protective effect of I3A against APAP-induced liver injury. Liver histological examination provided further evidence of I3A-induced protection. Mechanistically, I3A reduced the expression of apoptosis-related factors and oxidative stress, alleviating disease symptoms. Finally, I3A treatment improved survival in mice receiving a lethal dose of APAP. In conclusion, our study demonstrates that I3A modulates hepatotoxicity and can be used as a potential therapeutic agent for DILI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Indóis , Animais , Camundongos , Acetaminofen/efeitos adversos , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo , Fígado/metabolismo , Apoptose , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Aspartato Aminotransferases , Alanina Transaminase
4.
J Ethnopharmacol ; 330: 118196, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631488

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosmarinic acid (RA), a natural polyphenol abundant in numerous herbal remedies, has been attracting growing interest owing to its exceptional ability to protect the liver. Toosendanin (TSN), a prominent bioactive compound derived from Melia toosendan Siebold & Zucc., boasts diverse pharmacological properties. Nevertheless, TSN possesses remarkable hepatotoxicity. Intriguingly, the potential of RA to counteract TSN-induced liver damage and its probable mechanisms remain unexplored. AIM OF THE STUDY: This study is aimed at exploring whether RA can alleviate TSN-induced liver injury and the potential mechanisms involved autophagy. MATERIALS AND METHODS: CCK-8 and LDH leakage rate assay were used to evaluate cytotoxicity. Balb/c mice were intraperitoneally administered TSN (20 mg/kg) for 24 h after pretreatment with RA (0, 40, 80 mg/kg) by gavage for 5 days. The autophagic proteins P62 and LC3B expressions were detected using western blot and immunohistochemistry. RFP-GFP-LC3B and transmission electron microscopy were applied to observe the accumulation levels of autophagosomes and autolysosomes. LysoTracker Red and DQ-BSA staining were used to evaluate the lysosomal acidity and degradation ability respectively. Western blot, immunohistochemistry and immunofluorescence staining were employed to measure the expressions of JAK2/STAT3/CTSC pathway proteins. Dual-luciferase reporter gene was used to measure the transcriptional activity of CTSC and RT-PCR was used to detect its mRNA level. H&E staining and serum biochemical assay were employed to determine the degree of damage to the liver. RESULTS: TSN-induced damage to hepatocytes and livers was significantly alleviated by RA. RA markedly diminished the autophagic flux blockade and lysosomal dysfunction caused by TSN. Mechanically, RA alleviated TSN-induced down-regulation of CTSC by activating JAK2/STAT3 signaling pathway. CONCLUSION: RA could protect against TSN-induced liver injury by activating the JAK2/STAT3/CTSC pathway-mediated autophagy and lysosomal function.


Assuntos
Autofagia , Doença Hepática Induzida por Substâncias e Drogas , Cinamatos , Depsídeos , Janus Quinase 2 , Lisossomos , Camundongos Endogâmicos BALB C , Ácido Rosmarínico , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Depsídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Cinamatos/farmacologia , Autofagia/efeitos dos fármacos , Camundongos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Medicamentos de Ervas Chinesas/farmacologia , Humanos
5.
J Hazard Mater ; 471: 134319, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657511

RESUMO

Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18ß-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18ß-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.


Assuntos
Autofagia , Doença Hepática Induzida por Substâncias e Drogas , Ácido Glicirretínico , Tricotecenos , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/análogos & derivados , Animais , Tricotecenos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Humanos , Autofagia/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Ferritinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Substâncias Protetoras/farmacologia , Coativadores de Receptor Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Camundongos Endogâmicos C57BL , Células Hep G2
6.
Ecotoxicol Environ Saf ; 277: 116350, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653026

RESUMO

Inorganic arsenic is a well-established environmental toxicant linked to acute liver injury, fibrosis, and cancer. While oxidative stress, pyroptosis, and ferroptosis are known contributors, the role of PTEN-induced kinase 1 (PINK1)-mediated mitophagy in arsenic-induced hepatic immunotoxicity remains underexplored. Our study revealed that acute arsenic exposure prompts differentiation of hepatic dendritic cells (DCs) and T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cells, alongside increased transcription factors and cytokines. Inorganic arsenic triggered liver redox imbalance, leading to elevated alanine transaminase (ALT), hydrogen peroxide (H2O2), malondialdehyde (MDA), and activation of nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1) pathway. PINK1-mediated mitophagy was initiated, and its inhibition exacerbates H2O2 accumulation while promoting DCs/Th1/Th2/Treg differentiation in the liver of arsenic-exposed mice. Mitoquinone (MitoQ) pretreatment relieved arsenic-induced acute liver injury and immune imbalance by activating Nrf2/HO-1 and PINK1-mediated mitophagy. To our knowledge, this is the first report identifying PINK1-mediated mitophagy as a protective factor against inorganic arsenic-induced hepatic DCs/Th1/Th2 differentiation. This study has provided new insights on the immunotoxicity of inorganic arsenic and established a foundation for exploring preventive and therapeutic strategies targeting PINK1-mediated mitophagy in acute liver injury. Consequently, the application of mitochondrial antioxidant MitoQ may offer a promising treatment for the metalloid-induced acute liver injury.


Assuntos
Antioxidantes , Arsênio , Diferenciação Celular , Fígado , Mitofagia , Compostos Organofosforados , Proteínas Quinases , Animais , Mitofagia/efeitos dos fármacos , Camundongos , Fígado/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas Quinases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Compostos Organofosforados/farmacologia , Arsênio/toxicidade , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Células Dendríticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Masculino , Linfócitos T Reguladores/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos
7.
Ecotoxicol Environ Saf ; 276: 116344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636259

RESUMO

Aflatoxin B1 (AFB1) is one of the common dietary contaminants worldwide, which can harm the liver of humans and animals. Salvia miltiorrhiza polysaccharide (SMP) is a natural plant-derived polysaccharide with numerous pharmacological activities, including hepatoprotective properties. The purpose of this study is to explore the intervention effect of SMP on AFB1-induced liver injury and its underlying mechanisms in rabbits. The rabbits were administered AFB1 (25 µg/kg/feed) and or treatment with SMP (300, 600, 900 mg/kg/feed) for 42 days. The results showed that SMP effectively alleviated the negative impact of AFB1 on rabbits' productivity by increasing average daily weight gain (ADG) and feed conversion rate (FCR). SMP reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in serum, ameliorating AFB1-induced hepatic pathological changes. Additionally, SMP enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activity, and inhibited reactive oxygen species (ROS), malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, thus mitigating AFB1-induced oxidative stress and inflammatory responses. Moreover, SMP upregulated the expression of nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and B-cell lymphoma 2 (Bcl2) while downregulating kelch like ECH associated protein 1 (Keap1), cytochrome c (cyt.c), caspase9, caspase3, and Bcl-2-associated X protein (Bax) expression, thereby inhibiting AFB1-induced hepatocyte apoptosis. Consequently, our findings conclude that SMP can mitigate AFB1-induced liver damage by activating the Nrf2/HO-1 pathway and inhibiting mitochondria-dependent apoptotic pathway in rabbits.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Polissacarídeos , Salvia miltiorrhiza , Animais , Coelhos , Polissacarídeos/farmacologia , Aflatoxina B1/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Salvia miltiorrhiza/química , Fígado/efeitos dos fármacos , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Alanina Transaminase/sangue , Espécies Reativas de Oxigênio/metabolismo
8.
Pharm Dev Technol ; 29(4): 371-382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613468

RESUMO

Baicalin (BG), a natural product, has been used in the prevention and treatment of drug-induced liver injury (DILI); however, its poor solubility and extensive liver metabolism limit its pharmacological use. The aim of the present study was the formulation of fast-dissolving freeze-dried sublingual tablets (FFSTs) to increase BG dissolution, avoid first-pass metabolism, and overcome swallowing difficulties. FFSTs were prepared following a 23 factorial design. The effect of three independent variables namely matrix former, Maltodextrin, concentration (4%, and 6%), binder concentration (2%, and 3%), and binder type (Methocel E5, and Methocel E15) on the FFSTs' in-vitro disintegration time and percentage dissolution was studied along with other tablet characteristics. Differential scanning calorimetry, scanning electron microscopy, in-vitro HepG2 cell viability assay, and in-vivo characterization were also performed. F8 (6% Maltodextrin, 2% Mannitol, 2% Methocel E5), with desirability of 0.852, has been furtherly enhanced using 1%PEG (F10). F10 has achieved an in-vitro disintegration time of 41 secs, and 60.83% in-vitro dissolution after 2 min. Cell viability assay, in-vivo study in rats, and histopathological studies confirmed that pretreatment with F10 has achieved a significant hepatoprotective effect against acetaminophen-induced hepatotoxicity. The outcome of this study demonstrated that FFSTs may present a patient-friendly dosage form against DILI.


Assuntos
Sobrevivência Celular , Doença Hepática Induzida por Substâncias e Drogas , Flavonoides , Liofilização , Solubilidade , Comprimidos , Animais , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Flavonoides/química , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ratos , Células Hep G2 , Liofilização/métodos , Masculino , Administração Sublingual , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos Wistar
9.
Toxicon ; 243: 107722, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38653393

RESUMO

Flutamide is frequently used in the management of prostate cancer, hirsutism, and acne. It is a non-steroidal anti-androgenic drug and causes hepatotoxicity. The current study's objective is to evaluate sophorin's hepatoprotective effectiveness against flutamide-induced hepatotoxicity in Wistar rats. Sophorin is a citrus flavonoid glycoside, also known as rutin, which is a low molecular weight polyphenolic compound with natural antioxidant properties and reported to have promising hepatoprotective efficacy. In this study, sophorin was used at a dose of 100 mg/kg body weight in purified water via oral route for 4 week daily whereas, flutamide was used at a dose of 100 mg kg/b.wt for 4 weeks daily in 0.5% carboxy methyl cellulose (CMC) through the oral route for the induction of hepatotoxicity. Flutamide administration leads to enhanced reactive oxygen species (ROS) generation, an imbalance in redox homeostasis and peroxidation of lipid resulted in reduced natural antioxidant level in liver tissue. Our result demonstrated that sophorin significantly abrogate flutamide induced lipid peroxidation, protein carbonyl (PC), and also significantly increasesed in enzymatic activity/level of tissue natural antioxidant such as reduced glutathione(GSH), glutathione reductase(GR), catalase, and superoxide dismutase(SOD). Additionally, sophorin reduced the activity of cytochrome P450 3A1 in liver tissue which was elevated due to flutamide treatment. Furthermore, sophorin treatment significantly decreased the pro-inflammatory cytokines (TNF-α and IL-6) level. Immunohistochemical analysis for the expression of inflammatory proteins (iNOS and COX-2) in hepatic tissue was decreased after sophorin treatment against flutamide-induced hepatotoxicity. Moreover, sophorin suppressed the infiltration of mast cells in liver tissue which further showed anti-inflammatory potential of sophorin. Our histological investigation further demonstrated sophorin's hepatoprotective function by restoring the typical histology of the liver. Based on the aforementioned information, we are able to come to the conclusion that sophorin supplementation might benefit wistar rats with flutamide-induced hepatic damage by reducing oxidative stress and hepatocellular inflammation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Flutamida , Fígado , Ratos Wistar , Animais , Flutamida/farmacologia , Ratos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antagonistas de Androgênios/farmacologia
10.
J Cancer Res Clin Oncol ; 150(4): 212, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662247

RESUMO

BACKGROUND AND AIM: Morinda citrifolia fruit juice (noni) is an herbal remedy documented to have antioxidant properties. It has been suggested that prevention of carcinogen-DNA adduct formation and the antioxidant activity of NJ may contribute to the cancer preventive effect. In the present study, the antitumor activity of noni was investigated in the presence of cyclophosphamide (CYL) in vitro and in vivo. METHODS: In vitro breast cancer cells (MDA-MB-468) were used to measure the percentage of inhibition and the IC50. The in vivo antitumor activity of noni was studied by monitoring the mean survival time (MST), percentage increase in life span (%ILS), viable and non-viable cell count, tumor volume, body weight, and hematological and serum biochemical parameters in mice. Treatment with noni and CYL exhibited dose- and time-dependent cytotoxicity toward breast cancer cells. RESULTS: Individual treatment of noni and CYL exhibited dose- and time-dependent cytotoxicity on breast cancer cell lines, while in combination therapy of noni and CYL, noni enhances cytotoxic effect of CYL at 48 h than that at 24 h. Similar result was found in in vivo studies, the results of which revealed that alone treatment of CYL and noni suppressed tumor growth. However, combination treatment with CYL and noni presented better tumor inhibition than that of alone treatment of CYL and noni. On the contrary, CYL alone drastically attenuated hematological parameters, i.e., RBC, WBC, and Hb compared to normal and control groups, and this change was reversed and normalized by noni when given as combination therapy with CYL. Moreover, the levels of serum biochemical markers, i.e., AST, ALP, and ALT, were significantly increased in the control and CYL-treated groups than those in the normal group. In the combination treatment of noni and CYL, the above biochemical marker levels significantly decreased compared to CYL alone-treated group. CONCLUSIONS: The present study suggested that CYL treatment can cause serious myelotoxicity and hepatic injury in cancer patients. In conclusion, the combined use of noni with CYL potentially enhances the antitumor activity of CYL and suppresses myelotoxicity and hepatotoxicity induced by CYL in tumor-bearing mice.


Assuntos
Neoplasias da Mama , Ciclofosfamida , Morinda , Animais , Ciclofosfamida/farmacologia , Ciclofosfamida/efeitos adversos , Camundongos , Humanos , Feminino , Morinda/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sucos de Frutas e Vegetais , Ensaios Antitumorais Modelo de Xenoenxerto , Sinergismo Farmacológico , Extratos Vegetais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/efeitos adversos , Camundongos Endogâmicos BALB C , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/etiologia
11.
Toxicol Appl Pharmacol ; 486: 116914, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522585

RESUMO

Ferroptosis has been shown to be involved in carbon tetrachloride (CCl4)-induced acute liver injury (ALI). The mitochondrion-targeted antioxidant MitoQ can eliminate the production of mitochondrial reactive oxygen species (mtROS). This study investigated the role of MitoQ in CCl4-induced hepatocytic ferroptosis and ALI. MDA and 4HNE were elevated in CCl4-induced mice. In vitro, CCl4 exposure elevated the levels of oxidized lipids in HepG2 cells. Alterations in the mitochondrial ultrastructure of hepatocytes were observed in the livers of CCl4-evoked mice. Ferrostatin-1 (Fer-1) attenuated CCl4-induced hepatic lipid peroxidation, mitochondrial ultrastructure alterations and ALI. Mechanistically, acyl-CoA synthetase long-chain family member 4 (ACSL4) was upregulated in CCl4-exposed human hepatocytes and mouse livers. The ACSL4 inhibitor rosiglitazone alleviated CCl4-induced hepatic lipid peroxidation and ALI. ACSL4 knockdown inhibited oxidized lipids in CCl4-exposed human hepatocytes. Moreover, CCl4 exposure decreased the mitochondrial membrane potential and OXPHOS subunit levels and increased the mtROS level in HepG2 cells. Correspondingly, MitoQ pretreatment inhibited the upregulation of ACSL4 in CCl4-evoked mouse livers and HepG2 cells. MitoQ attenuated lipid peroxidation in vivo and in vitro after CCl4 exposure. Finally, MitoQ pretreatment alleviated CCl4-induced hepatocytic ferroptosis and ALI. These findings suggest that MitoQ protects against hepatocyte ferroptosis in CCl4-induced ALI via the mtROS-ACSL4 pathway.


Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Coenzima A Ligases , Ferroptose , Hepatócitos , Camundongos Endogâmicos C57BL , Compostos Organofosforados , Espécies Reativas de Oxigênio , Regulação para Cima , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Regulação para Cima/efeitos dos fármacos , Células Hep G2 , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ferroptose/efeitos dos fármacos , Tetracloreto de Carbono/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Masculino , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos
12.
Phytomedicine ; 128: 155550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522313

RESUMO

BACKGROUND: The pathogenesis of acute liver injury (ALI) has been a pressing issue in the medical scientific community. We previously found that 5-O-methylvisammioside (MeV) from Saposhnikovia divaricata (Turcz.) Schischk has excellent anti-inflammatory properties. However, the mechanism by which MeV protects against ALI still needs to be deeply investigated. PURPOSE: In the present study, we established an acetaminophen (APAP) -induced ALI mouse model and pre-protected the mice with MeV. METHODS & RESULTS: Our findings indicate that MeV (5 and 10 mg/kg) lowered the blood levels of alanine aminotransferase and aspartate aminotransferase and reduced the infiltration of inflammatory cells in the liver. MeV initially showed an inhibitory effect on ALI. We then analyzed the molecular mechanisms underlying the effects of MeV by transcriptomic and metabolomic analyzes. Through transcriptomic analysis, we identified 4675 differentially expressed genes between the APAP+MeV group and the APAP-induced ALI group, which were mainly enriched in the MAPK pathway, the TNF pathway, and the NF-κB pathway. Through metabolomic analysis, we found that 249 metabolites in the liver were differentially regulated between the APAP+MeV group and the APAP- induced ALI group, which were mainly enriched in the arachidonic acid pathway. The mRNA expression levels of key genes (encoding TNF-α, p38, AP-1, RelB, IL-1ß, and Ptges), as determined by RT-PCR analysis, were consistent with the RNA-seq data. The ELISA results indicate that MeV markedly decreased the serum levels of TNF-α and IL-1ß in mice. Finally, the key proteins in the NF-κB and MAPK pathways were examined using immunoblotting. The results showed that MeV decreased IκB-α phosphorylation and inhibited the nuclear translocation of NF-κB. In addition, MeV reduced the hepatic inflammatory burst mainly by inhibiting the phosphorylation of p38 and JNK in the MAPK pathway. CONCLUSION: The present study demonstrated (i) that MeV could ameliorate APAP-induced ALI by inhibiting arachidonic acid metabolism and the TNF, MAPK, and NF-κB pathways, and (ii) that MeV is a promising drug candidate for the prevention of ALI.


Assuntos
Ácido Araquidônico , Doença Hepática Induzida por Substâncias e Drogas , NF-kappa B , Fator de Necrose Tumoral alfa , Animais , NF-kappa B/metabolismo , Masculino , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Ácido Araquidônico/metabolismo , Acetaminofen , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/metabolismo , Anti-Inflamatórios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Multiômica
13.
Basic Clin Pharmacol Toxicol ; 134(5): 737-749, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477401

RESUMO

Cantharidin (CTD) is a widely used anticancer compound, but its clinical use is mainly limited due to hepatotoxicity. Ginsenoside Rb1 (GRb1) shows potential hepatoprotective effects. Nonetheless, the protective effect and underlying mechanism of GRb1 against CTD-induced hepatotoxicity in mice have not been investigated. This study aims to elucidate the effect and mechanism of GRb1 on CTD-induced hepatotoxicity using network pharmacology and in vivo experiments. Network pharmacology studies have shown that 263 targets were the main mechanisms by which GRb1 alleviates CTD-induced hepatotoxicity. KEGG enrichment analysis revealed that 75 hub genes were mainly enriched in TNF, IL-17 and apoptosis signalling pathways. Molecular docking analysis showed that GRb1 exhibited high affinity with Akt1, Tnf, Il6, Bcl2 and Caspase3. In addition, results from animal studies demonstrated that GRb1 could ameliorate CTD-induced hepatotoxicity by inhibiting protein expression of Caspase-3, Caspase-8, Bcl-2/Bax, GRP78, ATF6, ATF4, CHOP, IRE1α and PERK. This research revealed the mechanism of GRb1 against CTD-induced hepatotoxicity by inhibiting apoptosis and endoplasmic reticulum stress (ERS) and it may provide a scientific rationale for the potential use of GRb1 in the treatment of hepatotoxicity induced by CTD.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ginsenosídeos , Camundongos , Animais , Cantaridina/toxicidade , Endorribonucleases , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Serina-Treonina Quinases , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
14.
Arch Toxicol ; 98(6): 1843-1858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551724

RESUMO

Acetaminophen (APAP)-induced hepatotoxicity is comprised of an injury and recovery phase. While pharmacological interventions, such as N-acetylcysteine (NAC) and 4-methylpyrazole (4-MP), prevent injury there are no therapeutics that promote recovery. JNJ-26366821 (TPOm) is a novel thrombopoietin mimetic peptide with no sequence homology to endogenous thrombopoietin (TPO). Endogenous thrombopoietin is produced by hepatocytes and the TPO receptor is present on liver sinusoidal endothelial cells in addition to megakaryocytes and platelets, and we hypothesize that TPOm activity at the TPO receptor in the liver provides a beneficial effect following liver injury. Therefore, we evaluated the extent to which TPOm, NAC or 4-MP can provide a protective and regenerative effect in the liver when administered 2 h after an APAP overdose of 300 mg/kg in fasted male C57BL/6J mice. TPOm did not affect protein adducts, oxidant stress, DNA fragmentation and hepatic necrosis up to 12 h after APAP. In contrast, TPOm treatment was beneficial at 24 h, i.e., all injury parameters were reduced by 42-48%. Importantly, TPOm enhanced proliferation by 100% as indicated by PCNA-positive hepatocytes around the area of necrosis. When TPOm treatment was delayed by 6 h, there was no effect on the injury, but a proliferative effect was still evident. In contrast, 4MP and NAC treated at 2 h after APAP significantly attenuated all injury parameters at 24 h but failed to enhance hepatocyte proliferation. Thus, TPOm arrests the progression of liver injury by 24 h after APAP and accelerates the onset of the proliferative response which is essential for liver recovery.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Regeneração Hepática , Fígado , Camundongos Endogâmicos C57BL , Trombopoetina , Animais , Acetaminofen/toxicidade , Masculino , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Trombopoetina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/efeitos dos fármacos , Camundongos , Acetilcisteína/farmacologia , Pirazóis/farmacologia , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de Trombopoetina/metabolismo , Proliferação de Células/efeitos dos fármacos
15.
Toxicology ; 504: 153766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432408

RESUMO

Blood transfusion-requiring diseases such as sickle cell anemia and thalassemia are characterized by an imbalance between iron intake and excretion, resulting in an iron overload (IOL) disorder. Hepatotoxicity is prevalent under the IOL disorder because of the associated hepatocellular redox and inflammatory perturbation. The current work was devoted to investigate the potential protection against the IOL-associated hepatotoxicity using chrysin, a naturally-occurring flavone. IOL model was created in male Wistar rats by intraperitoneal injection of 100 mg/kg elemental iron subdivided on five equal injections; one injection was applied every other day over ten days. Chrysin was administered in a daily dose of 50 mg/kg over the ten-day iron treatment period. On day eleven, blood and liver samples were collected and subjected to histopathological, biochemical, and molecular investigations. Chrysin suppressed the IOL-induced hepatocellular damage as revealed by decreased serum activity of the intracellular liver enzymes and improved liver histological picture. Oxidative damage biomarkers, and pro-inflammatory cytokines were significantly suppressed. Mechanistically, the levels of the redox and inflammation-controlling proteins SIRT1 and PPARγ were efficiently up-regulated. The liver iron load, NLRP3 inflammasome activation, and NF-κB acetylation and nuclear shift were significantly suppressed in the iron-intoxicated rats. Equally important, the level of the antioxidant protein Nrf2 and its target HO-1 were up-regulated. In addition, chrysin significantly ameliorated the IOL-induced apoptosis as indicated by reduction in caspase-3 activity and modulation of BAX and Bcl2 protein abundance. Together, these findings highlight the alleviating activity of chrysin against the IOL-associated hepatotoxicity and shed light on the role of SIRT1, NLRP3 inflammasome, and Nrf2 signaling as potential contributing molecular mechanisms.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Flavonoides , Inflamassomos , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Wistar , Transdução de Sinais , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Masculino , Flavonoides/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Transdução de Sinais/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Ratos , Ferro/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/complicações
16.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338766

RESUMO

Stachydrine, a prominent bioactive alkaloid derived from Leonurus heterophyllus, is a significant herb in traditional medicine. It has been noted for its anti-inflammatory and antioxidant characteristics. Consequently, we conducted a study of its hepatoprotective effect and the fundamental mechanisms involved in acetaminophen (APAP)-induced liver injury, utilizing a mouse model. Mice were intraperitoneally administered a hepatotoxic dose of APAP (300 mg/kg). Thirty minutes after APAP administration, mice were treated with different concentrations of stachydrine (0, 2.5, 5, and 10 mg/kg). Animals were sacrificed 16 h after APAP injection for serum and liver tissue assays. APAP overdose significantly elevated the serum alanine transferase levels, hepatic pro-inflammatory cytokines, malondialdehyde activity, phospho-extracellular signal-regulated kinase (ERK), phospho-protein kinase B (AKT), and macrophage-stimulating protein expression. Stachydrine treatment significantly decreased these parameters in mice with APAP-induced liver damage. Our results suggest that stachydrine may be a promising beneficial target in the prevention of APAP-induced liver damage through attenuation of the inflammatory response, inhibition of the ERK and AKT pathways, and expression of macrophage-stimulating proteins.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Prolina , Animais , Camundongos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo , Prolina/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator Estimulador de Colônias de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/metabolismo
18.
Aquat Toxicol ; 268: 106859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342007

RESUMO

Flavonoid quercetin (QUE) has biological activities of anti-oxidation, anti-inflammation and anti-apoptosis, however, its protective effects against avermectin (AVM) induced liver toxicity in carp remains unclear. The objective of this research is to explore the biologically potent effects of QUE in AVM-induced hepatotoxicity in carp and its underlying mechanism. Therefore, we established a liver injury model in carp induced by AVM to evaluate QUE against AVM induced liver toxicity in carp. In this investigation, AVM dosage was determined as 2.404 µg/L for both groups, and an experimentation of 30 days duration was carried out. Various methods including hematoxylin and eosin (H&E) staining, biochemical kits, real-time quantitative PCR (qRT-PCR), western blotting, TUNEL, reactive oxygen species (ROS) staining, immunofluorescence (Hoseinifar, et al.,), and oil red O staining were used in this study. Results showed that the growth inhibition of carp was relieved in the QUE treatment group comparing to the AVM group. In the QUE treatment group, there was a significant decrease in the levels of ALT and AST in carp liver tissue. Additionally, the histopathological damage and lipid accumulation were alleviated compared to the AVM group. Moreover, QUE prevented AVM induced decrease in the activities of antioxidant enzymes of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), glutathione (GSH), catalase (CAT) and the accumulation of reactive oxygen species (ROS), but reduced accumulation of malondialdehyde (MDA). In addition, the mRNA levels of liver pro-inflammatory factors of tumor necrosis factor-α (TNF-α), interleukin-1ß (iL-1ß), interleukin-6 (iL-6), interleukin-10 (iL-10) and the protein levels of NOD-like receptor protein 3 (NLRP3) inflammasome were significantly down-regulated in the QUE treatment group in comparison to the AVM group. We also found that QUE could affect the expression of Bcl2-associated x (Bax), B-cell lymphoma-2 (Bcl-2), cleaved-cysteinyl aspartate specific proteinase (CCaspase3) key apoptotic proteins and TUNEL-labeled apoptotic hepatocytes by regulating SIRT1/FOXO3a signal pathway. In summary, QUE alleviated the growth inhibition, liver oxidative damage, lipid accumulation, inflammatory response, and apoptosis of carp induced by AVM. QUE is a potential protective agent against liver injury induced by AVM in carp.


Assuntos
Carpas , Doença Hepática Induzida por Substâncias e Drogas , Ivermectina/análogos & derivados , Poluentes Químicos da Água , Animais , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Carpas/metabolismo , Poluentes Químicos da Água/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Lipídeos
19.
J Ethnopharmacol ; 325: 117866, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350504

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana kurroo Royle is a medicinal plant mentioned as Traymana in Ayurveda. In the folklore, it is used to cure fever, stomach ache, skin diseases and liver disorders. However, limited reports are available on the therapeutic potential of Gentiana kurroo Royle against alcohol-induced liver damage. AIM OF THE STUDY: To assess the effectiveness of the hydroethanolic extract of Gentiana kurroo Royle rhizome (GKRE) against alcohol-induced liver injury and explore the mechanism of action. MATERIALS AND METHODS: GKRE was characterized using UHPLC-QTOF-MS/MS. The binding affinity of the identified compound was studied in silico. In vitro studies were performed in the Huh-7 cell line. An acute oral toxicity study (2 g/kg BW) of GKRE was done in rats following OECD 420 guidelines. In the efficacy study, rats were treated with 50% ethanol (5 mL/kg BW, orally) for 4 weeks, followed by a single intraperitoneal dose of CCl4 (30%; 1 mL/kg BW) to induce liver injury. After 4th week, the rats were treated with GKRE at 100, 200 and 400 mg/kg BW doses for the next fifteen days. The biochemical and antioxidant parameters were analyzed using commercial kits and a biochemistry analyzer. Histopathology, gene and protein expressions were studied using qRT PCR and western blotting. RESULTS: Thirteen compounds were detected in GKRE. Few compounds showed a strong interaction with the fibrotic and inflammatory proteins in silico. GKRE reduced (p < 0.05) the ethanol-induced ROS production and inflammation in Huh-7 cells. The acute oral toxicity study revealed no adverse effect of GKRE in rats at 2 g/kg BW. GKRE improved (p < 0.05) the body and liver weights in ethanol-treated rats. GKRE improved (p < 0.05) the mRNA levels of ADH, SREBP1c and mitochondrial biogenesis genes in the liver tissues. GKRE also improved (p < 0.05) the liver damage markers, lipid peroxidation and levels of antioxidant enzymes in the liver. A reduced severity (p < 0.05) of pathological changes, fibrotic tissue deposition and caspase 3/7 activity were observed in the liver tissues of GKRE-treated rats. Further, GKRE downregulated (p < 0.05) the expression of fibrotic (TGFß, αSMA and SMADs) and inflammatory markers (TNFα, IL6, IL1ß and NFκB) in the liver. CONCLUSION: GKRE showed efficacy against alcohol-induced liver damage by inhibiting oxidative stress, apoptosis, inflammation and fibrogenesis in the liver.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Gentiana , Hepatopatias Alcoólicas , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Etanol/toxicidade , Gentiana/química , Rizoma/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado , Hepatopatias Alcoólicas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
20.
Poult Sci ; 103(5): 103567, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417302

RESUMO

Improving productive performance is a daily challenge in the poultry industry. Developing cost-effective additives and strategies that improve performance in antibiotic-free poultry production is critical to maintaining productivity and efficiency. This study evaluates the influence of a commercially available phytogenic feed additive (CA-PFA, that comprises silymarin, betaine and curcumin extracts as main ingredients) and silymarin on commercial broilers' productive performance and liver function with and without carbon tetrachloride (CCl4)-induced liver damage. The experiment was conducted in a completely randomized design, with six treatments, eight replicates, and eight birds per replicate in 18 one-day-old male broilers (Cobb Vantress 500) each; under a 3 × 2 factorial arrangement (3 diets x 2 levels of CCl4, 0 and 1 mL/kg body weight orally). The experimental treatments included 3 diets, commercially recommended doses of CA-PFA (500 mg/kg of feed; this dose provides 70 mg/kg of silymarin, besides the other active ingredients included in the formulation), silymarin (250 mg/kg of feed, containing 28% of active ingredient; this dose provides 70 mg/kg of silymarin as active ingredient) and an additive-free basal diet as a control. A standard commercial silymarin was used as a reference due to its well-known and extensively studied hepatoprotective properties that can mitigate the negative effects of CCl4 in the liver. The data were analyzed as a 2-way ANOVA, and the means showing significant (P ≤ 0.05) differences were then compared using the Post-Hoc Tukey HSD test. No interaction was detected between factors. Exposure to CCl4 had a noticeable detrimental effect on alertness, productive performance, and liver function of broilers without a significant increase in mortality. Including CA-PFA in the diet improved productive performance compared to the basal diet from day 21 to the end of the trial, on day 42. While no influence in feed intake was detected for any treatment, CA-PFA improved body weight gain (BWG) and feed conversion ratio (FCR) significantly (P < 0.05) from day 21 to the end of the trial in healthy and CCl4-exposed birds. The results show that CA-PFA supplementation improves performance parameters in broilers with and without CCl4-induced liver damage, when compared to a basal diet and the addition of a standard commercial silymarin product.


Assuntos
Ração Animal , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Galinhas , Dieta , Suplementos Nutricionais , Doenças das Aves Domésticas , Silimarina , Animais , Silimarina/administração & dosagem , Silimarina/farmacologia , Ração Animal/análise , Masculino , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/veterinária , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Betaína/administração & dosagem , Betaína/farmacologia , Distribuição Aleatória , Curcumina/administração & dosagem , Curcumina/farmacologia , Fígado/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA