Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.392
Filtrar
1.
BMC Pulm Med ; 24(1): 236, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745304

RESUMO

BACKGROUND: We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/ß-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS: Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/ß-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/ß-catenin agonist) and XAV939 (Wnt/ß-catenin antagonist) to investigate whether Wnt/ß-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, ß-catenin and PPARγ proteins in the lung tissue. RESULTS: Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased ß-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS: Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/ß-catenin-PPARγ pathway.


Assuntos
Camundongos Endogâmicos C57BL , PPAR gama , Condicionamento Físico Animal , Doença Pulmonar Obstrutiva Crônica , Via de Sinalização Wnt , Animais , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Masculino , Via de Sinalização Wnt/fisiologia , Camundongos , Condicionamento Físico Animal/fisiologia , PPAR gama/metabolismo , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/fisiopatologia , Inflamação/metabolismo
2.
COPD ; 21(1): 2342797, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712759

RESUMO

Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.


Assuntos
Proteínas Quinases Ativadas por AMP , Células Epiteliais , Proteínas F-Box , Proteínas Serina-Treonina Quinases , Doença Pulmonar Obstrutiva Crônica , Fumaça , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Camundongos , Fumaça/efeitos adversos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular , Proteólise/efeitos dos fármacos , Leupeptinas/farmacologia , Masculino , Cicloeximida/farmacologia , RNA Interferente Pequeno , Camundongos Endogâmicos C57BL , Mucosa Respiratória/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Fumar Cigarros/efeitos adversos
3.
Mol Biol Rep ; 51(1): 627, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717532

RESUMO

MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Doenças Respiratórias/genética , Doenças Respiratórias/terapia , Doenças Respiratórias/metabolismo , Asma/genética , Asma/terapia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Fibrose Pulmonar Idiopática/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
4.
Clin Transl Med ; 14(5): e1679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706045

RESUMO

Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.


Assuntos
Lipidômica , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Lipidômica/métodos , Fumar/efeitos adversos , Fumar/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Feminino , Metabolômica/métodos , Pessoa de Meia-Idade
5.
Exp Gerontol ; 191: 112441, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685507

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterised by irreversible airflow limitation. The elderly are a vulnerable population for developing COPD. With the growth of age, physiological degenerative changes occur in the thorax, bronchus, lung and vascular wall, which can lead to age-related physiological attenuation of lung function in the elderly, so the prevalence of COPD increases with age. Its pathogenesis has not yet been truly clarified. Mitophagy plays an important role in maintaining the stability of mitochondrial function and intracellular environment by scavenging damaged mitochondria. Currently, studies have shown that trophoblast antigen 2 (TROP2) expression is up-regulated in airway basal cells of patients with COPD, suggesting that TROP2 is involved in the progression of COPD. However, whether it is involved in disease progression by regulating mitochondrial function remains unclear. In this study, compared with non-smoking non-COPD patients, the expression of TROP2 in lung tissues of smoking non-COPD patients and patients with COPD increased, and TROP2 expression in patients with COPD was higher than that in smoking non-COPD patients. To further explore the role of TROP2, we stimulated BEAS-2B with cigarette smoke to construct an in vitro model. We found that TROP2 expression increased, whereas TROP2 silencing reversed the cigarette smoke extract-induced decrease in mitochondrial membrane potential, increased reactive oxygen species content, decreased adenosine triphosphate (ATP) production, increased inflammatory factor secretion and increased apoptosis. In addition, we searched online bioinformatics and screened the gene dynamin-related protein 1 (DRP1) related to mitophagy as the research object. Co-IP assay verified the binding relationship between DRP1 and TROP2. Further study found that TROP2 promoted mitophagy and apoptosis of BEAS-2B cells by up-regulating the expression of DRP1. In addition, PTEN-induced putative kinase 1 (PINK1) is a potential binding protein of DRP1, and DRP1 accelerated mitophagy and apoptosis of BEAS-2B cells by promoting the expression of PINK1. We established a COPD SD rat model by cigarette smoke exposure and LPS instillation and treated it by intraperitoneal injection of si-TROP2. The results showed that TROP2 silencing restored lung function and reduced the secretion of inflammatory factors in bronchoalveolar lavage fluid. In conclusion, TROP2 can be used as a new reference for COPD treatment.


Assuntos
Antígenos de Neoplasias , Apoptose , Moléculas de Adesão Celular , Progressão da Doença , Dinaminas , Mitofagia , Proteínas Quinases , Doença Pulmonar Obstrutiva Crônica , Regulação para Cima , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Masculino , Idoso , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Feminino , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Animais , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Pulmão/metabolismo , Pulmão/patologia , Pessoa de Meia-Idade , Ratos , Mitocôndrias/metabolismo , Linhagem Celular , Ratos Sprague-Dawley
6.
Respir Res ; 25(1): 158, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594707

RESUMO

BACKGROUND: Airway remodelling plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Epithelial-mesenchymal transition (EMT) is a significant process during the occurrence of airway remodelling. Increasing evidence suggests that glucose transporter 3 (GLUT3) is involved in the epithelial mesenchymal transition (EMT) process of various diseases. However, the role of GLUT3 in EMT in the airway epithelial cells of COPD patients remains unclear. METHODS: We detected the levels of GLUT3 in the peripheral lung tissue of COPD patients and cigarette smoke (CS)-exposed mice. Two Gene Expression Omnibus GEO datasets were utilised to analyse GLUT3 gene expression profiles in COPD. Western blot and immunofluorescence were used to detect GLUT3 expression. In addition, we used the AAV9-GLUT3 inhibitor to reduce GLUT3 expression in the mice model. Masson's staining and lung function measurement were used detect the collagen deposition and penh in the mice. A cell study was performed to confirm the regulatory effect of GLUT3. Inhibition of GLUT3 expression with siRNA, Western blot, and immunofluorescence were used to detect the expression of E-cadherin, N-cadherin, vimentin, p65, and ZEB1. RESULTS: Based on the GEO data set analysis, GLUT3 expression in COPD patients was higher than in non-smokers. Moreover, GLUT3 was highly expressed in COPD patients, CS exposed mice, and BEAS-2B cells treated with CS extract (CSE). Further research revealed that down-regulation of GLUT3 significantly alleviated airway remodelling in vivo and in vitro. Lung function measurement showed that GLUT3 reduction reduced airway resistance in experimental COPD mice. Mechanistically, our study showed that reduction of GLUT3 inhibited CSE-induced EMT by down-regulating the NF-κB/ZEB1 pathway. CONCLUSION: We demonstrate that CS enhances the expression of GLUT3 in COPD and further confirm that GLUT3 may regulate airway remodelling in COPD through the NF-κB/ZEB1 pathway; these findings have potential value in the diagnosis and treatment of COPD. The down-regulation of GLUT3 significantly alleviated airway remodelling and reduced airway resistance in vivo. Our observations uncover a key role of GLUT3 in modulating airway remodelling and shed light on the development of GLUT3-targeted therapeutics for COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Remodelação das Vias Aéreas , Fumar Cigarros/efeitos adversos , Transportador de Glucose Tipo 3/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transição Epitelial-Mesenquimal , Células Epiteliais/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
7.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673851

RESUMO

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages. Human blood monocytes were obtained from healthy donors or from subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Monocytes were differentiated into blood monocyte derived macrophages (BMDMs) in vitro. Human BMDMs were exposed to NE or control vehicle, and the abundance of HDACs and Sirtuins was determined by Western blotting of total cell lysates or nuclear extracts or determined by ELISA. HDAC, Sirtuin, and Histone acetyltransferase (HAT) activities were measured. NE degraded most HDACs and Sirtuin (Sirt)1, resulting in decreased HDAC and sirtuin activities, with minimal change in HAT activity. We then evaluated whether the NE-induced loss of Sirt activity or loss of HDAC activities would alter the cellular localization of HMGB1. NE treatment or treatment with Trichostatin A (TSA), a global HDAC inhibitor, both increased HMGB1 translocation from the nucleus to the cytoplasm, consistent with HMGB1 activation. NE significantly degraded Class I and II HDAC family members and Sirt 1, which shifted BMDMs to a pro-inflammatory phenotype.


Assuntos
Proteína HMGB1 , Histona Desacetilases , Ácidos Hidroxâmicos , Elastase de Leucócito , Macrófagos , Humanos , Proteína HMGB1/metabolismo , Histona Desacetilases/metabolismo , Macrófagos/metabolismo , Elastase de Leucócito/metabolismo , Sirtuína 1/metabolismo , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Células Cultivadas , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Cística/metabolismo , Proteólise , Monócitos/metabolismo , Histona Acetiltransferases/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38650680

RESUMO

Introduction: The Lifei Decoction (LD) is a commonly utilized Chinese medicine for the treatment of sepsis and bronchial inflammation. However, its therapeutic potential in chronic obstructive pulmonary disease (COPD) remains unknown. Therefore, the objective of this study was to investigate the therapeutic efficacy and underlying mechanism of LD in a mouse model of COPD induced by cigarette smoke (CS) combined with lipopolysaccharide (LPS). Methods: Hematoxylin-eosin (H&E) staining was employed to observe the pathological alterations in lung tissue, while ELISA was utilized for the detection of levels of inflammatory factors in both lung tissue and bronchoalveolar lavage fluid (BALF). Additionally, Western blot analysis was conducted to assess the expression of p-NF-κB, GDF11, ZO-1, and Occludin-1 proteins. The changes in intestinal flora were evaluated using the viable bacteria count method. Results: The administration of LD demonstrates significant efficacy in mitigating pulmonary tissue damage in a murine model, while concurrently inhibiting the activation of the inflammatory pathway NF-κB to attenuate the levels of pro-inflammatory factors. Moreover, LD exhibits the capacity to enhance the expression of intestinal functional proteins ZO-1 and Occludin-1, thereby rectifying dysbiosis within the gut microbiota. Conclusion: The LD shows great promise as a potential treatment for COPD.


Assuntos
Anti-Inflamatórios , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Mediadores da Inflamação , Lipopolissacarídeos , Pulmão , NF-kappa B , Ocludina , Doença Pulmonar Obstrutiva Crônica , Transdução de Sinais , Proteína da Zônula de Oclusão-1 , Animais , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/microbiologia , Medicamentos de Ervas Chinesas/farmacologia , Proteína da Zônula de Oclusão-1/metabolismo , NF-kappa B/metabolismo , Ocludina/metabolismo , Mediadores da Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fumaça/efeitos adversos , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Camundongos
9.
Respir Res ; 25(1): 186, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678295

RESUMO

BACKGROUND: Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS: COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS: The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1ß attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1ß/STAT1 signaling via MTs. CONCLUSIONS: These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1ß/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.


Assuntos
Apoptose , Vírus da Influenza A Subtipo H3N2 , Melatonina , Doença Pulmonar Obstrutiva Crônica , Animais , Melatonina/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/virologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Camundongos , Apoptose/efeitos dos fármacos , Células RAW 264.7 , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/imunologia , Camundongos Endogâmicos C57BL , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Progressão da Doença , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia
10.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 339-345, 2024 Apr 12.
Artigo em Chinês | MEDLINE | ID: mdl-38599809

RESUMO

Objective: To construct and characterize conditional Src homology region 2 protein tyrosine phosphatase 1 (SHP-1) knockout mice in airway epithelial cells and to observe the effect of defective SHP-1 expression in airway epithelial cells on the emphysema phenotype in chronic obstructive pulmonary disease (COPD). Methods: To detect the expression of SHP-1 in the airway epithelium of COPD patients. CRISPR/Cas9 technology was used to construct SHP-1flox/flox transgenic mice, which were mated with airway epithelial Clara protein 10-cyclase recombinase and estrogen receptor fusion transgenic mice (CC10-CreER+/+), and after intraperitoneal injection of tamoxifen, airway epithelial SHP-1 knockout mice were obtained (SHP-1flox/floxCC10-CreER+/-, SHP-1Δ/Δ). Mouse tail and lung tissue DNA was extracted and PCR amplified to discriminate the genotype of the mice; the knockout effect of SHP-1 gene in airway epithelial cells was verified by qRT-PCR, Western blotting, and immunofluorescence. In addition, an emphysema mouse model was constructed using elastase to assess the severity of emphysema in each group of mice. Results: Airway epithelial SHP-1 was significantly downregulated in COPD patients. Genotyping confirmed that SHP-1Δ/Δ mice expressed CC10-CreER and SHP-1-flox. After tamoxifen induction, we demonstrated the absence of SHP-1 protein expression in airway epithelial cells of SHP-1Δ/Δ mice at the DNA, RNA, and protein levels, indicating that airway epithelial cell-specific SHP-1 knockout mice had been successfully constructed. In the emphysema animal model, SHP-1Δ/Δ mice had a more severe emphysema phenotype compared with the control group, which was manifested by disorganization of alveolar structure in lung tissue and rupture and fusion of alveolar walls to form pulmonary alveoli. Conclusions: The present study successfully established and characterized the SHP-1 knockout mouse model of airway epithelial cells, which provides a new experimental tool for the in-depth elucidation of the role of SHP-1 in the emphysema process of COPD and its mechanism.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Epiteliais/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Fenótipo , DNA , Tamoxifeno
11.
Artigo em Inglês | MEDLINE | ID: mdl-38524397

RESUMO

Purpose: Circular RNAs (circRNAs) are newly identified endogenous non-coding RNAs that function as crucial gene modulators in the development of several diseases. By assessing the expression levels of circRNAs in peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD), this study attempted to find new biomarkers for COPD screening. Patients and Methods: We confirmed altered circRNA expression in PBMCs of COPD (n=41) vs controls (n=29). Further analysis focused on the highest and lowest circRNA expression levels. The T-test is used to assess the statistical variances in circRNAs among COPD patients in the smoking and non-smoking cohorts. Additionally, among smokers, the Spearman correlation test assesses the association between circRNAs and clinical indicators. Results: Two circRNAs, hsa_circ_0042590 and hsa_circ_0049875, that were highly upregulated and downregulated in PBMCs from COPD patients were identified and verified. Smokers with COPD had lower hsa_circ_0042590 and higher hsa_circ_0049875, in comparison to non-smokers. There was a significant correlation (r=0.52, P<0.01) between the number of acute exacerbations (AEs) that smokers with COPD experienced in the previous year and the following year (r=0.67, P<0.001). Moreover, hsa_circ_0049875 was connected to the quantity of AEs in the year prior (r=0.68, P<0.0001) as well as the year after (r=0.72, P<0.0001). AUC: 0.79, 95% CI: 0.1210-0.3209, P<0.0001) for hsa_circ_0049875 showed a strong diagnostic value for COPD, according to ROC curve analysis. Hsa_circ_0042590 showed a close second with an AUC of 0.83 and 95% CI: -0.1972--0.0739 (P <0.0001). Conclusion: This research identified a strong correlation between smoking and hsa_circ_0049875 and hsa_circ_0042590 in COPD PBMCs. The number of AEs in the preceding and succeeding years was substantially linked with the existence of hsa_circ_0042590 and hsa_circ_0049875 in COPD patients who smoke. Additionally, according to our research, hsa_circ_0049875 and hsa_circ_0042590 may be valuable biomarkers for COPD diagnosis.


Assuntos
Doença Pulmonar Obstrutiva Crônica , RNA Circular , Humanos , RNA Circular/genética , Leucócitos Mononucleares/metabolismo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Biomarcadores/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38529479

RESUMO

Purpose: Here, we studied the pharmacological effect of P22077 on airway inflammation induced by lipopolysaccharide and cigarette smoke and explored the therapeutic mechanism of P22077 in COPD model RAT. Patients and Methods: The COPD model was established by lipopolysaccharide combined with fumigation; animals were treated with vehicle or P22077. Serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected for analysis. Results: Our results showed that P22077 treatment significantly improved the airway inflammation of COPD model RAT and reduced the recruitment of leukocytes in BALF, and hypersecretion of interleukin-18 (IL-18), interleukin-1ß (IL-1ß) in BALF and serum. H&E staining showed that P22077 treatment could effectively reduce emphysema, immune cell infiltration and airway wall destruction. PAS staining showed that The proliferation of cup cells in the airway wall and the number of bronchial cup cells were significantly reduced in rats treated with P22077. In addition, we found that P22077 treatment suppressed the generation of the NLRP3/ASC/Caspase 1 inflammasome complex to inhibit the inflammatory response caused by IL-1ß and IL-18. Conclusion: Conclusion: P22077 inhibits expression of NLRP3 pathway-related inflammatory factors and proteins and reduces the airway inflammatory response and inflammatory cell aggregation in COPD rats. The underlying mechanism may be related to the down-regulation of NLRP3 inflammatory vesicle signaling pathway expression.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença Pulmonar Obstrutiva Crônica , Tiofenos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Interleucina-18/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Inflamação/complicações , Líquido da Lavagem Broncoalveolar , Interleucina-1beta/metabolismo
13.
J Ethnopharmacol ; 327: 117983, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38432578

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ding-Chuan-Tang (Abbreviated as DCT) is frequently prescribed for treatment of respiratory diseases, including chronic obstructive pulmonary disease (COPD), which is characterized by coughing, wheezing, and chest tightness in traditional Chinese medicine (TCM). However, the potential mechanism of DCT has not been investigated. AIM OF STUDY: The aim of the study is to explore the efficiency of DCT in the treatment of COPD in vivo and in vitro, and to illustrate the possible mechanism against COPD. METHODS: COPD model was induced by exposure of mice to cigarette smoke (CS) for 16 weeks. Enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay, Western blot, etc., were used to explore the efficiency and mechanisms of DCT. Network pharmacology analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, etc., was performed to explore the potential targets in the treatment of DCT on COPD. RESULTS: DCT significantly alleviated pulmonary pathological changes in mouse COPD model, and inhibited inflammatory response induced by CS and LPS in vivo and in vitro. Network pharmacology analysis suggested that DCT alleviated COPD via inhibiting inflammation by regulating PI3K-AKT pathway. In cell-based models, DCT suppressed the phosphorylation of PI3K and AKT, which further regulated its downstream targets Nrf2 and NF-κB, and inhibited inflammatory response. CONCLUSIONS: DCT effectively attenuated COPD in the mouse model induced by CS. The therapeutic mechanism of DCT against COPD was closely associated with the regulation of PI3K-AKT pathway and its downstream transcription factors, Nrf2 and NF-κB.


Assuntos
NF-kappa B , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo
14.
Respir Res ; 25(1): 148, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555458

RESUMO

BACKGROUND: Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and antifibrotic effects. Small airway remodeling is the main pathology of chronic obstructive pulmonary disease (COPD) and is caused by epithelial-to-mesenchymal transition (EMT) and fibroblast differentiation and proliferation. Effective therapies are still lacking. This study aimed to investigate the role of AXT in small airway remodeling in COPD and its underlying mechanisms. METHODS: First, the model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). The effects of AXT on the morphology of CS combined with CSE -induced emphysema, EMT, and small airway remodeling by using Hematoxylin-eosin (H&E) staining, immunohistochemical staining, and western blot. In addition, in vitro experiments, the effects of AXT on CSE induced-EMT and fibroblast function were further explored. Next, to explore the specific mechanisms underlying the protective effects of AXT in COPD, potential targets of AXT in COPD were analyzed using network pharmacology. Finally, the possible mechanism was verified through molecular docking and in vitro experiments. RESULTS: AXT alleviated pulmonary emphysema, EMT, and small airway remodeling in a CS combined with CSE -induced mouse model. In addition, AXT inhibited the EMT process in airway cells and the differentiation and proliferation of fibroblasts. Mechanistically, AXT inhibited myofibroblast activation by directly binding to and suppressing the phosphorylation of AKT1. Therefore, our results show that AXT protects against small airway remodeling by inhibiting AKT1. CONCLUSIONS: The present study identified and illustrated a new food function of AXT, indicating that AXT could be used in the therapy of COPD-induced small airway remodeling.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Animais , Fumar Cigarros/efeitos adversos , Remodelação das Vias Aéreas , Simulação de Acoplamento Molecular , Transdução de Sinais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Nicotiana/toxicidade , Xantofilas
15.
Front Immunol ; 15: 1320077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533493

RESUMO

Background: The family of Suppressor of Cytokine Signaling (SOCS) acts as a controller of the duration and intensity of cytokine function by negatively regulating the JAK-STAT signaling pathway. SOCS' role in inflammatory diseases in animal models is well demonstrated. However, its role in the development of human disease is still under investigation. SOCS3 plays an important role in tumor development where its downregulation has been implicated in the pathogenesis of various solid tumors such as triple-negative breast cancer. Aim: The aim of this work was to study (1) the expression of SOCS3 in smokers' lungs and its relation to the degree of inflammation and (2) SOCS3 regulation by microRNA (miRNA) in alveolar-macrophage (AM)-derived extracellular vesicles (EVs) in bronchoalveolar lavage (BAL). Methods: Group A: 35 smokers' [19 with COPD (SC) and 16 without COPD (S)] and 9 nonsmokers (NS); SOCS3, TNFα in AM, and CD8+ T cells were quantified by immunohistochemistry, in lung tissue. Group B: additional 9 SC, 11 S, and 5 NS; AM-EVs expressing SOCS3 (CD14+SOCS3+) and SOCS3 suppressors miRNA-19a-3p and 221-3p in EVs were quantified by flow cytometry and PCR, in BAL. Results: The percentage of SOCS3+ AM was higher in SC [68 (6.6-99)%] and S [48 (8-100)%] than in NS [9.6 (1.9-61)%; p = 0.002; p = 0.03] and correlated with % of TNFα+AM (r = 0.48; p = 0.0009) and CD8+ T cells (r = 0.44; p = 0.0029). In BAL, the CD14+SOCS3+ EVs/µL were increased in SC [33 (21-74)] compared to S [16 (8-37); p = 0.03] and NS [9 (7-21); p = 0.003]. Conversely, miRNA-19a-3p and miRNA-221-3p expression were increased in S when compared to SC [19 (2-53) vs. 3 (0.6-8); p = 0.03 and 3 (0.005-9.6) vs. 0.2 (0.08-0.7); p = 0.05]. Conclusions: The suppressor function of SOCS3 in COPD seems to be overridden by other factors and does not follow the animal-model paradigm. Expression of SOCS3 in BAL macrophage-derived EVs might be useful to assess the degree of inflammation and possible progression of COPD. Downregulation of SOCS3, by miRNA, in smokers without COPD might contribute to the risk of developing cancer in these patients.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Líquido da Lavagem Broncoalveolar , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Inflamação , Doença Pulmonar Obstrutiva Crônica/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-38544929

RESUMO

Background: The incidence of chronic obstructive pulmonary disease (COPD) is increasing year by year. Kruppel-like factor 6 (KLF6) plays an important role in inflammatory diseases. However, the regulatory role of KLF6 in COPD has not been reported so far. Methods: The viability of human bronchial epithelial cells BEAS-2B induced by cigarette smoke extract (CSE) was detected by CCK-8 assay. The protein expression of KLF6 and sirtuin 4 (SIRT4) was appraised with Western blot. RT-qPCR and Western blot were applied to examine the transfection efficacy of sh-KLF6 and Oe-KLF6. Cell apoptosis was detected using flow cytometry. The levels of inflammatory factors IL-6, TNF-α and IL-1ß were assessed with ELISA assay. DCFH-DA staining was employed for the detection of ROS activity and the levels of oxidative stress markers SOD, CAT and MDA were estimated with corresponding assay kits. The mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content and Complex I activity were evaluated with JC-1 staining, ATP colorimetric/fluorometric assay kit and Complex I enzyme activity microplate assay kit. With the application of mitochondrial permeability transition pore detection kit, mPTP opening was measured. Luciferase report assay was employed to evaluate the activity of SIRT4 promoter and chromatin immunoprecipitation (ChIP) to verify the binding ability of KLF6 and SIRT4 promoter. Results: KLF6 expression was significantly elevated in CSE-induced cells. KLF6 was confirmed to suppress SIRT4 transcription. Interference with KLF6 expression significantly inhibited cell viability damage, cell apoptosis, inflammatory response, oxidative stress and mitochondrial dysfunction in CSE-induced BEAS-2B cells, which were all reversed by SIRT4 overexpression. Conclusion: Silencing KLF6 alleviated CSE-induced mitochondrial dysfunction in bronchial epithelial cells by SIRT4 upregulation.


Assuntos
Fumar Cigarros , Doenças Mitocondriais , Doença Pulmonar Obstrutiva Crônica , Sirtuínas , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Regulação para Cima , Linhagem Celular , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Fumar Cigarros/efeitos adversos , Apoptose , Células Epiteliais/metabolismo , Trifosfato de Adenosina/efeitos adversos , Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/efeitos adversos , Proteínas Mitocondriais/metabolismo , Sirtuínas/genética
17.
EBioMedicine ; 101: 105026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417378

RESUMO

BACKGROUND: An intergenic region at chromosome 4q31 is one of the most significant regions associated with COPD susceptibility and lung function in GWAS. In this region, the implicated causal gene HHIP has a unique epithelial expression pattern in adult human lungs, in contrast to dominant expression in fibroblasts in murine lungs. However, the mechanism underlying the species-dependent cell type-specific regulation of HHIP remains largely unknown. METHODS: We employed snATAC-seq analysis to identify open chromatin regions within the COPD GWAS region in various human lung cell types. ChIP-quantitative PCR, reporter assays, chromatin conformation capture assays and Hi-C assays were conducted to characterize the regulatory element in this region. CRISPR/Cas9-editing was performed in BEAS-2B cells to generate single colonies with stable knockout of the regulatory element. RT-PCR and Western blot assays were used to evaluate expression of HHIP and epithelial-mesenchymal transition (EMT)-related marker genes. FINDINGS: We identified a distal enhancer within the COPD 4q31 GWAS locus that regulates HHIP transcription at baseline and after TGFß treatment in a SMAD3-dependent, but Hedgehog-independent manner in human bronchial epithelial cells. The distal enhancer also maintains chromatin topological domains near 4q31 locus and HHIP gene. Reduced HHIP expression led to increased EMT induced by TGFß in human bronchial epithelial cells. INTERPRETATION: A distal enhancer regulates HHIP expression both under homeostatic condition and upon TGFß treatment in human bronchial epithelial cells. The interaction between HHIP and TGFß signalling possibly contributes to COPD pathogenesis. FUNDING: Supported by NIH grants R01HL127200, R01HL148667 and R01HL162783 (to X. Z).


Assuntos
Proteínas Hedgehog , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Células Epiteliais/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
Nutrients ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337717

RESUMO

Lung inflammation and alveolar enlargement are the major pathological conditions of chronic obstructive pulmonary disease (COPD) patients. Rice bran oil (RBO), a natural anti-inflammatory and antioxidative agent, has been used for therapeutic purposes in several inflammatory diseases. This study aimed to investigate the anti-inflammatory and antioxidative effect of RBO on a cigarette smoke extract (CSE)-induced emphysema model in mice. The results indicated that CSE significantly induced airspace enlargement in mouse lung. Increased inflammatory cells, macrophage, and TNF-alpha levels in bronchoalveolar lavage fluid (BALF) were noticed in CSE-treated mice. RBO (low and high dose)-supplemented mice showed decreased total BALF inflammatory cell, macrophage, and neutrophil numbers and TNF-alpha levels (p < 0.05). Additionally, the administration of RBO decreased the mean linear alveolar intercept (MLI) in the CSE-treated group. Additionally, RBO treatment significantly increased the total antioxidant capacity in both mouse BALF and serum. However, RBO did not have an effect on the malondialdehyde (MDA) level. These findings suggested that RBO treatment ameliorates lung inflammation in a CSE-induced emphysema mice model through anti-inflammatory and antioxidant pathways. Therefore, the supplementation of RBO could be a new potential therapeutic to relieve the severity of COPD.


Assuntos
Fumar Cigarros , Enfisema , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Antioxidantes/metabolismo , Pulmão/patologia , Óleo de Farelo de Arroz/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Anti-Inflamatórios/uso terapêutico , Pneumonia/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Enfisema/induzido quimicamente , Enfisema/tratamento farmacológico , Produtos do Tabaco
19.
Int Immunopharmacol ; 129: 111585, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38325045

RESUMO

Cuproptosis, a novel mode of cell death, is strongly associated with a variety of diseases. However, the contribution of cuproptosis to the onset or progression of chronic obstructive pulmonary disease (COPD), the third most common chronic cause of mortality, is not yet clear. To investigate the potential role of cuproptosis in COPD, raw datasets from multiple public clinical COPD databases (including RNA-seq, phenotype, and lung function data) were used. For further validation, mice exposed to cigarette smoke for three months were used as in vivo models, and iBMDMs (immortalized bone marrow-derived macrophages) and RAW264.7 cells stimulated with cigarette smoke extract were used as in vitro models. For the first time, the expression of the cuproptosis-related gene glutaminase (GLS) was found to be decreased in COPD, and the low expression of GLS was significantly associated with the grade of pulmonary function. In vivo experiments confirmed the decreased expression of GLS in COPD, particularly in alveolar macrophages. Furthermore, in vitro studies revealed that copper ions accumulated in alveolar macrophages, leading to a substantially decreased amount of cell activity of macrophages when stimulated with cigarette extract. In summary, we demonstrate the high potential of GLS as an avenue for diagnosis and therapy in COPD.


Assuntos
Macrófagos Alveolares , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Macrófagos Alveolares/metabolismo , Cobre/metabolismo , Glutaminase/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/metabolismo
20.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357926

RESUMO

Chronic low-grade inflammation is increasingly recognized as a subtle yet potent risk factor for a multitude of age-related disorders, including respiratory diseases, cardiovascular conditions, metabolic syndromes, autoimmunity, and cancer. In this issue of the JCI, Mebratu, Jones, and colleagues shed new light on the mechanisms that promote low-grade airway inflammation and how this contributes to the development of chronic obstructive pulmonary disease (COPD). Their finding that Bik deficiency leads to spontaneous emphysema in female mice, but not in males, marks a notable advancement in our understanding of how inflammatory processes can diverge based on biological sex. This finding is of clinical relevance, given the vulnerability of women to developing COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Masculino , Feminino , Animais , Camundongos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sistema Respiratório , Inflamação/genética , Fatores de Risco , Proteínas Mitocondriais , Proteínas Reguladoras de Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA