Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
1.
Neuromolecular Med ; 26(1): 15, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653878

RESUMO

Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aß deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Proteínas Substratos do Receptor de Insulina , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteínas tau , Animais , Masculino , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Sinapses/efeitos dos fármacos , Proteínas tau/metabolismo
2.
Inflammopharmacology ; 32(2): 1371-1386, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448794

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that impairs mental ability and interrupts cognitive function. Heavy metal exposure like aluminum chloride is associated with neurotoxicity linked to neuro-inflammation, oxidative stress, accumulation of amyloid plaques, phosphorylation of tau proteins associated with AD like symptoms. The objective of the present investigation was to assess the effect 3-acetyl coumarin (3AC) in a rat model of AD. Preliminary screening was performed with SWISS ADME to check for the bioavailability of 3-AC and likeness score which proved favorable. 3-AC docked against Caspase 3, NF-κß and tau protein kinase I exhibited good binding energies. Male rats were divided into six groups (n = 5). AlCl3 (100 mg/kg BW) was administered for 28 days before starting treatment to induce AD. Normal control rats received vehicle. Treatment groups received 10, 20 and 30 mg/kg 3-AC for 28 days. Rivastigmine (2 mg/kg) was the standard. Behavioral tests (EPM, MWM) were performed at 7-day intervals throughout study period. Rats showed improved spatial memory and learning in treatment groups during behavioral tests. Rats were euthanized on day 28. Inflammatory markers (IL-1ß, IL-16 and TNFα) exhibited significant improvement (p < 0.001) in treated rats. Oxidative stress enzymes (SOD, CAT, GSH, MDA) were restored. Caspase3 and NF-κß quantified through qRT-PCR also decreased significantly (p < 0.001) when compared to disease control group. Levels of acetyl cholinesterase, dopamine and noradrenaline were also restored in treated rats significantly (p < 0.001). 3-AC treatment restored neuroprotection probably because of anti-inflammatory, anti-oxidant and anti-cholinesterase potential; hence, this can be considered a promising therapeutic potential alternative.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Cloreto de Alumínio/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Compostos de Alumínio/uso terapêutico , Compostos de Alumínio/toxicidade , Cloretos/toxicidade , Cloretos/uso terapêutico , Ratos Wistar , Estresse Oxidativo , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Inflamação/complicações , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Modelos Animais de Doenças
3.
J Chem Neuroanat ; 137: 102404, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423257

RESUMO

Alzheimer's disease (AD) is a degenerative neurological disorder with unclear pathogenesis. Single-target drugs have very limited efficacy in treating AD, but synthetic multi-target drugs have poor efficacy and safety. Therefore, finding suitable natural multi-target drugs against AD is of great interest for research studies. We chose two flavonols, myricetin and morin, for the relevant study. In this study, we used microinjection of Aß1-42 oligomers into the CA1 region of rat hippocampus, combined with gavage of Aluminum chloride hexahydrate (AlCl3·6H2O) solution to establish AD rat models, and myricetin and morin were selected as intervening drugs to explore the protective effects against neurological impairment. Experimental results showed that myricetin or morin could reduce the production of Aß, Tubulin-associated unit (Tau), and Phosphorylated tubulin-associated unit (p-Tau), down-regulate the expression of relevant inflammatory factors, reduce hippocampal cell apoptosis in rats. There was a significant increase in the activity of adenosine triphosphatase, catalase, total superoxide dismutase, and the content of glutathione in the brain tissue. However, the content of malondialdehyde, inducible nitric oxide synthase, and the activity of acetylcholinesterase were decreased in the brain tissue. These two flavonols can regulate the imbalance of monoamine and amino acid neurotransmitter levels. In conclusion, Myricetin or morin can effectively improve learning and memory dysfunction in AD rats induced by Aß1-42/Al3+ through anti-oxidative stress and anti-apoptotic features.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Flavonas , Flavonoides , Fármacos Neuroprotetores , Fragmentos de Peptídeos , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Ratos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Fragmentos de Peptídeos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Masculino , Ratos Sprague-Dawley , Cloreto de Alumínio/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Estresse Oxidativo/efeitos dos fármacos
4.
J Ethnopharmacol ; 328: 117993, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423408

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is a multi-factorial degenerative disease, and multi-targeted therapies targeting multiple pathogenic mechanisms should be explored. Shenghui decoction (SHD) is an ancient traditional Chinese medicine (TCM) formula used clinically to alleviate AD. However, the precise mechanism of action of SHD as a therapeutic agent for AD remains unclear. AIM OF THE STUDY: This study investigated the neuroprotective properties and potential mechanisms of action of SHD in mitigating AD-like symptoms induced by AlCl3 in a zebrafish model. MATERIALS AND METHODS: Active components of SHD were detected using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Zebrafish were exposed to AlCl3 (200 µg/L) for 30 days to establish an AD zebrafish model. AlCl3-exposed zebrafish were treated with SHD or donepezil. Behavioral tests were used to assess learning and memory, locomotor activity, and AD-related anxiety and aggression in AlCl3-exposed zebrafish. Nissl staining and transmission electron microscopy were used to evaluate histological alterations in brain neurons. The concentrations of pro-inflammatory cytokines (tumor necrosis factor-α, TNF-α; interleukin-1ß, IL-1ß) were quantified using Enzyme-linked immunosorbent assay (ELISA). Markers of oxidative stress and cholinergic activity (acetylcholinesterase, AChE) were detected using biochemical assays. Western blotting and immunofluorescence were used to detect the protein expression levels of Aß, p-tau, PSD-95, synaptophysin, TLR4, phosphorylation of NF-κB p65, p38, and JNK. RESULTS: Fifteen SHD compounds were identified by UPLC-MS/MS analysis. SHD improved AlCl3-induced dyskinesia, learning and memory impairment, anxiety-like behavior, and aggressive behavior in zebrafish. AlCl3-exposed zebrafish showed AD-like pathology, overexpression of Aß, hyperphosphorylated tau protein, marked neuronal damage, decreased expression of synaptic proteins, synaptophysin, and PSD-95, and impairment of synaptic structural plasticity. These effects were reversed by the SHD treatment. We also observed that SHD ameliorated oxidative stress and decreased AChE activity and inflammatory cytokine levels. These effects are similar to those observed for donepezil. Meanwhile, SHD could decrease the protein expression of TLR4 and inhibit phosphorylation of NF-κB, JNK, and p38 MAPK. These results demonstrate that SHD has the potential to exert neuroprotective effects, which may be partly mediated via inhibition of the JNK/p38 MAPK signaling pathway. CONCLUSIONS: Our findings revealed the therapeutic mechanism of SHD in mitigating AD progression and suggested that SHD is a potent neuroprotectant that contributes to the future development of TCM modernization and broader clinical applications.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peixe-Zebra , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/química , Donepezila/uso terapêutico , Sinaptofisina/metabolismo , NF-kappa B/metabolismo , Acetilcolinesterase/metabolismo , Cromatografia Líquida , Receptor 4 Toll-Like/metabolismo , Espectrometria de Massas em Tandem , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Environ Int ; 185: 108512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412566

RESUMO

BACKGROUND: Sporadic Alzheimer's disease (AD) occurs in 99% of all cases and can be influenced by air pollution such as diesel emissions and more recently, an iron oxide particle, magnetite, detected in the brains of AD patients. However, a mechanistic link between air pollutants and AD development remains elusive. AIM: To study the development of AD-relevant pathological effects induced by air pollutant particle exposures and their mechanistic links, in wild-type and AD-predisposed models. METHODS: C57BL/6 (n = 37) and APP/PS1 transgenic (n = 38) mice (age 13 weeks) were exposed to model pollutant iron-based particle (Fe0-Fe3O4, dTEM = 493 ± 133 nm), hydrocarbon-based diesel combustion particle (43 ± 9 nm) and magnetite (Fe3O4, 153 ± 43 nm) particles (66 µg/20 µL/third day) for 4 months, and were assessed for behavioural changes, neuronal cell loss, amyloid-beta (Aß) plaque, immune response and oxidative stress-biomarkers. Neuroblastoma SHSY5Y (differentiated) cells were exposed to the particles (100 µg/ml) for 24 h, with assessments on immune response biomarkers and reactive oxygen species generation. RESULTS: Pollutant particle-exposure led to increased anxiety and stress levels in wild-type mice and short-term memory impairment in AD-prone mice. Neuronal cell loss was shown in the hippocampal and somatosensory cortex, with increased detection of Aß plaque, the latter only in the AD-predisposed mice, with the wild-type not genetically disposed to form the plaque. The particle exposures however, increased AD-relevant immune system responses, including inflammation, in both strains of mice. Exposures also stimulated oxidative stress, although only observed in wild-type mice. The in vitro studies complemented the immune response and oxidative stress observations. CONCLUSIONS: This study provides insights into the mechanistic links between inflammation and oxidative stress to pollutant particle-induced AD pathologies, with magnetite apparently inducing the most pathological effects. No exacerbation of the effects was observed in the AD-predisposed model when compared to the wild-type, indicating a particle-induced neurodegeneration that is independent of disease state.


Assuntos
Poluentes Atmosféricos , Doença de Alzheimer , Humanos , Camundongos , Animais , Lactente , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Poluentes Atmosféricos/toxicidade , Óxido Ferroso-Férrico/toxicidade , Camundongos Endogâmicos C57BL , Peptídeos beta-Amiloides/toxicidade , Inflamação , Placa Amiloide , Biomarcadores , Modelos Animais de Doenças
6.
Inflammopharmacology ; 32(2): 1545-1573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308793

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a prominent cause of dementia, resulting in neurodegeneration and memory impairment. This condition imposes a considerable public health burden on both patients and their families due to the patients' functional impairments as well as the psychological and financial constraints. It has been well demonstrated that its aetiology involves proteinopathy, mitochondriopathies, and enhanced reactive oxygen species (ROS) generation, which are some of the key features of AD brains that further result in oxidative stress, excitotoxicity, autophagy, and mitochondrial dysfunction. OBJECTIVE: The current investigation was created with the aim of elucidating the neurological defence mechanism of trans,trans-Farnesol (TF) against intracerebroventricular-streptozotocin (ICV-STZ)-induced Alzheimer-like symptoms and related pathologies in rodents. MATERIALS AND METHODS: The current investigation involved male SD rats receiving TF (25-100 mg/kg, per oral) consecutively for 21 days in ICV-STZ-treated animals. An in silico study was carried out to explore the possible interaction between TF and NADH dehydrogenase and succinate dehydrogenase. Further, various behavioural (Morris water maze and novel object recognition test), biochemical (oxidants and anti-oxidant markers), activities of mitochondrial enzyme complexes and acetylcholinesterase (AChE), pro-inflammatory (tumor necrosis factor-alpha; TNF-α) levels, and histopathological studies were evaluated in specific brain regions. RESULTS: Rats administered ICV-STZ followed by treatment with TF (25, 50, and 100 mg/kg) for 21 days had significantly better mental performance (reduced escape latency to access platform, extended time spent in target quadrant, and improved differential index) in the Morris water maze test and new object recognition test models when compared to control (ICV-STZ)-treated groups. Further, TF treatment significantly restored redox proportion, anti-oxidant levels, regained mitochondrial capacities, attenuated altered AChE action, levels of TNF-α, and histopathological alterations in certain brain regions in comparison with control. In in silico analysis, TF caused greater interaction with NADH dehydrogenase and succinate dehydrogenase. CONCLUSION: The current work demonstrates the neuroprotective ability of TF in an experimental model with AD-like pathologies. The study further suggests that the neuroprotective impacts of TF may be related to its effects on TNF-α levels, oxidative stress pathways, and mitochondrial complex capabilities.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Masculino , Humanos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Farneseno Álcool/efeitos adversos , Estreptozocina/farmacologia , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Acetilcolinesterase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NADH Desidrogenase/metabolismo , NADH Desidrogenase/farmacologia , NADH Desidrogenase/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Estresse Oxidativo , Aprendizagem em Labirinto , Modelos Animais de Doenças
7.
J Biochem Mol Toxicol ; 38(3): e23660, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356323

RESUMO

The most widespread neurodegenerative disorder, Alzheimer's disease (AD) is marked by severe behavioral abnormalities, cognitive and functional impairments. It is inextricably linked with the deposition of amyloid ß (Aß) plaques and tau protein in the brain. Loss of white matter, neurons, synapses, and reactive microgliosis are also frequently observed in patients of AD. Although the causative mechanisms behind the neuropathological alterations in AD are not fully understood, they are likely influenced by hereditary and environmental factors. The etiology and pathogenesis of AD are significantly influenced by the cells of the central nervous system, namely, glial cells and neurons, which are directly engaged in the transmission of electrical signals and the processing of information. Emerging evidence suggests that exposure to organophosphate pesticides (OPPs) can trigger inflammatory responses in glial cells, leading to various cascades of events that contribute to neuroinflammation, neuronal damage, and ultimately, AD pathogenesis. Furthermore, there are striking similarities between the biomarkers associated with AD and OPPs, including neuroinflammation, oxidative stress, dysregulation of microRNA, and accumulation of toxic protein aggregates, such as amyloid ß. These shared markers suggest a potential mechanistic link between OPP exposure and AD pathology. In this review, we attempt to address the role of OPPs on altered cell physiology of the brain cells leading to neuroinflammation, mitochondrial dysfunction, and oxidative stress linked with AD pathogenesis.


Assuntos
Doença de Alzheimer , Praguicidas , Humanos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Organofosfatos/metabolismo , Praguicidas/toxicidade , Praguicidas/metabolismo
8.
J Chem Neuroanat ; 136: 102390, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38228242

RESUMO

Physalis alkekengi L. var. franchetii (Mast.) Makino (PA), a traditional Chinese medicine, is utilised for treating dermatitis, sore throat, dysuria, and cough. This research aimed to identify the main constituents in the four extracted portions from the calyces of PA (PAC) utilising ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The Alzheimer's disease (AD) mice model was induced by D-galactose (D-gal) combined with aluminium chloride (AlCl3). Subsequent investigation into the underlying mechanisms involved behavioural and histopathological observations. The results demonstrated that four extracted portions of PAC (PACE) significantly enhanced memory and learning abilities in the Morris water maze. The concentrations of Aß, tau and p-tau in brain tissue exhibited a significant decrease relative to the model group. Moreover, the four PACE treatment groups increased the glutathione (GSH) and superoxide dismutase (SOD) levels, while concurrently reducing malondialdehyde (MDA), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) levels. In summary, the current study demonstrates that the four PACE formulations exhibit beneficial anti-AD properties, with the most pronounced efficacy observed in the EA group. Additionally, PAC shows potential in mitigating neuroinflammation and oxidative damage by inhibiting the TLR4/NF-κB signalling pathway. This research lays a theoretical groundwork for the future clinical development and utilisation of PAC in treating AD.


Assuntos
Doença de Alzheimer , Physalis , Camundongos , Animais , Physalis/química , Doença de Alzheimer/induzido quimicamente , Espectrometria de Massas
9.
J Ethnopharmacol ; 323: 117708, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38181932

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fraxinus excelsior L. (FE), commonly known as the ash, belongs to the Oleaceae family and has shown several pharmacological and biological properties, such as antioxidant, immunomodulatory, neuroprotective, and anti-inflammatory effects. It has also attracted the most attention toward neuroinflammation. Moreover, FE bark and leaves have been used to treat neurological disorders, aging, neuropathic pain, urinary complaints, and articular pain in traditional and ethnomedicine. Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder resulting from the involvement of amyloid-beta, metal-induced oxidative stress, and neuroinflammation. AIM OF THE STUDY: The objective of the current study was to assess the neuroprotective effects of hydromethanolic extract from FE bark in an AlCl3-induced rat model of AD. MATERIALS AND METHODS: The maceration process was utilized to prepare the hydromethanolic extract of FE bark, and characterized by LC-MS/MS. To assess the anti-AD effects of the FE extract, rats were categorized into five different groups, AlCl3; normal control; FE-treated groups at 50, 100, and 200 mg/kg. Passive avoidance learning test, Y-maze, open field, and elevated plus maze behavioral tests were evaluated on days 7 and 14 to analyze the cognitive impairments. Zymography analysis, biochemical tests, and histopathological changes were also followed in different groups. RESULTS: LC-MS/MS analysis indicated the presence of coumarins, including isofraxidin7-O-diglucoside in the methanolic extract of FE as a new isofraxidin derivative in this genus. FE significantly improved memory and cognitive function, maintained weight, prevented neuronal damages, and preserved the hippocampus's histological features, as demonstrated by behavioral tests and histopathological analysis. FE increased anti-inflammatory MMP-2 activity, whereas it decreased that of inflammatory MMP-9. Moreover, FE increased plasma antioxidant capacity by enhancing CAT and GSH while decreasing nitrite levels in the serum of treated groups. In comparison between the treated groups, the rats that received high doses of the FE extract (200 mg/kg) showed the highest therapeutic effect. CONCLUSION: FE rich in coumarins could be an effective anti-AD adjunct agent, passing through antioxidant and anti-inflammatory pathways. These results encourage further studies for the development of this extract as a promising agent in preventing, managing, or treating AD and related diseases.


Assuntos
Doença de Alzheimer , Fraxinus , Fármacos Neuroprotetores , Ratos , Animais , Cloreto de Alumínio/farmacologia , Cloreto de Alumínio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fraxinus/metabolismo , Doenças Neuroinflamatórias , Casca de Planta/metabolismo , Cromatografia Líquida , Ratos Wistar , Modelos Animais de Doenças , Espectrometria de Massas em Tandem , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cumarínicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
10.
J Trace Elem Med Biol ; 82: 127352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070385

RESUMO

BACKGROUND: One of the hypotheses that leads to an increased incidence of Alzheimer's disease (AD) is the accumulation of aluminum in the brain's frontal cortex. The present study aimed to evaluate the therapeutic role of a novel bithiophene derivative at two doses against AlCl3-induced AD in a rat model. METHODOLOGY: Adult male rats were divided into six groups, 18 rats each. Group 1: naïve animals, group 2: animals received a daily oral administration of bithiophene dissolved in DMSO (1 mg/kg) for 30 days every other day, groups 3-6: animals received a daily oral administration of AlCl3 (100 mg/kg/day) for 45 consecutive days. Groups 4 and 5 received an oral administration of low or high dose of the bithiophene (0.5 or 1 mg/kg, respectively). Group 6; Animals were treated with a daily oral dose of memantine (20 mg/kg) for 30 consecutive days. MAIN FINDINGS: Al disturbed the antioxidant milieu, elevated the lipid peroxidation, and depleted the antioxidants. It also disturbed the synaptic neurotransmission by elevating the activities of acetylcholine esterase and monoamine oxidase resulting in the depletion of dopamine and serotonin and accumulation of glutamate and norepinephrine. Al also deteriorated the expression of genes involved in apoptosis and the production of amyloid-ß plaques as well as phosphorylation of tau. The new bithiophene at the low dose reversed most of the previous deleterious effects of aluminum in the cerebral cortex and was in many instances superior to the reference drug; memantine. CONCLUSION: Taking together, the bithiophene modulated the AD etiology through antioxidant activity, prevention of neuronal and synaptic loss, and probably mitigating the formation of amyloid-ß plaques and phosphorylation of tau.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Alumínio/efeitos adversos , Cloreto de Alumínio/farmacologia , Memantina/efeitos adversos , Ratos Wistar , Peptídeos beta-Amiloides/metabolismo , Transmissão Sináptica , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo
11.
Brain Res ; 1823: 148704, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38052316

RESUMO

Alzheimer's disease (AD) is a chronic, progressive neurodegenerative condition marked by cognitive impairment. Although coconut oil has been shown to be potentially beneficial in reducing AD-related cognitive deficits, information on its mechanism of action is limited. Thus, we investigated the effects of coconut oil on spatial cognitive ability and non-cognitive functions in a rat model of AD induced by G-galactose (D-GAL) and aluminum chloride (AlCl3), and examined the changes in synaptic transmission, cholinergic activity, neurotrophic factors and oxidative stress in this process. The AD model was established by administering D-GAL and AlCl3 for 90 days, while also supplementing with coconut oil during this time. Cognitive and non-cognitive abilities of the rats were evaluated at the end of the 90-day supplementation period. In addition, biochemical markers related to the pathogenesis of the AD were measures in the hippocampus tissue. Exposure to D-GAL/AlCl3 resulted in a reduction in locomotor activity, an elevation in anxiety-like behavior, and an impairment of spatial learning and memory (P < 0.05). The aforementioned behavioral disturbances were observed to coincide with increased oxidative stress and cholinergic impairment, as well as reduced synaptic transmission and levels of neurotrophins in the hippocampus (P < 0.05). Interestingly, treatment with coconut oil attenuated all the neuropathological changes mentioned above (P < 0.05). These findings suggest that coconut oil shows protective effects against cognitive and non-cognitive impairment, AD pathology markers, oxidative stress, synaptic transmission, and cholinergic function in a D-GAL/AlCl3-induced AD rat model.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Fármacos Neuroprotetores , Ratos , Animais , Óleo de Coco/farmacologia , Cloreto de Alumínio/efeitos adversos , Transtornos Cognitivos/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Hipocampo , Estresse Oxidativo , Colinérgicos/farmacologia , Modelos Animais de Doenças , Galactose/toxicidade , Fármacos Neuroprotetores/uso terapêutico
12.
J Biochem Mol Toxicol ; 38(1): e23580, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37961937

RESUMO

Alzheimer's disease (AD) is one of the major devastating neurodegenerative disorders associated with the gradual decline of an individual's memory, cognition, and ability to carry out day-to-day activities. In the present study, the neuroprotective ability of α-bisabolol ß-d-fucopyranoside (ABFP) was assessed via measurement of antioxidant parameters like lipid peroxidation, glutathione peroxidation, glutathione, protein carbonyl content assays, and caspase-3 activity estimation. Moreover, the acute toxicity of ABFP was estimated in the zebrafish larval model. The results showed that ABFP exhibits little to no toxicity at lower concentrations in the acute toxicity test. ABFP-pretreated and scopolamine-exposed fish exhibited more exploratory behavior in the behavior assay than scopolamine-only induced groups. Additionally, the results of antioxidant enzyme assays revealed reduced oxidative stress and damage in ABFP-treated fish, while enzyme activity experiments carried out with brain homogenate from ABFP-treated fish showed decreased acetylcholinesterase enzyme activity. Overall, it can be concluded that ABFP has the potential to be a promising agent for the treatment of AD in the future.


Assuntos
Doença de Alzheimer , Sesquiterpenos Monocíclicos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Escopolamina/efeitos adversos , Antioxidantes/metabolismo , Acetilcolinesterase/metabolismo , Carbonilação Proteica , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Doença de Alzheimer/induzido quimicamente , Glutationa/metabolismo
13.
J Appl Toxicol ; 44(4): 609-622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37989595

RESUMO

Alzheimer's disease (AD) is a progressive neurological disorder that affects various cognitive functions, behavior, and personality. AD is thought to be caused by a combination of genetic and environmental factors, including exposure to aluminum (Al). Virgin coconut oil (VCO) may have potential as a natural neuroprotectant against AD. Aim of this study was to determine neuroprotective effects of VCO on Al-induced neurotoxicity in an in vitro AD model. SH-SY5Y cells were initially cultured in normal growth medium and then differentiated by reducing fetal bovine serum content and adding retinoic acid (RA). Later, brain-derived neurotrophic factor (BDNF) was added along with RA. The differentiation process was completed on the seventh day. Study groups (n = 3) were designed as control group, VCO group, Al group, Al-VCO group, Alzheimer model (AD) group, AD + Al-exposed group (AD+Al), AD + VCO applied group (AD + VCO) and AD + Al-exposed + VCO applied group (AD + Al + VCO). Specific markers of AD (hyperphosphorylated Tau protein, amyloid beta 1-40 peptide, and amyloid precursor protein) were measured in all groups. In addition, oxidative stress parameters (total antioxidant capacity, lipid peroxidase, protein carbonyl, and reactive oxygen species) and neurotransmitter-related parameters (dopamine, dopamine transporter acetylcholine, and synuclein alpha levels, acetylcholinesterase activity) were measured comparatively in the study groups. VCO reduced amyloid beta and hyperphosphorylated Tau protein levels in the study groups. In addition, oxidative stress levels decreased, and neurotransmitter parameters improved with VCO. Our study shows that VCO may have potential therapeutic effects in Alzheimer's disease and further experiments are needed to determine its efficacy.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Óleo de Coco/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Alumínio/toxicidade , Peptídeos beta-Amiloides/toxicidade , Acetilcolinesterase/metabolismo , Neurotransmissores
14.
J Ethnopharmacol ; 319(Pt 3): 117359, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37924999

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Woohwangchungsimwon (WCW) is a traditional medicine used in East Asian countries to treat central nervous system disorders. Reported pharmacological properties include antioxidant effects, enhanced learning and memory, and protection against ischemic neuronal cell death, supporting its use in treating neurodegenerative diseases like Alzheimer's disease (AD). AIM OF THE STUDY: The study aims to assess the effects of co-treatment with WCW and donepezil on cognitive functions and serum metabolic profiles in a scopolamine-induced AD model. MATERIALS AND METHODS: Cell viability and reactive oxygen species (ROS) levels were measured in amyloid ß-peptide25-35 (Aß25-35)-induced SH-SY5Y cells. An AD model was established in ICR mice by intraperitoneal scopolamine administration. Animals underwent the step-through passive avoidance test (PAT) and Morris water maze (MWM) test. Hippocampal tissues were collected to examine specific protein expression. Serum metabolic profiles were analyzed using nuclear magnetic resonance (NMR) spectroscopy. RESULTS: Co-treatment with WCW and donepezil increased cell viability and reduced ROS production in Aß25-35-induced SH-SY5Y cells compared to that with donepezil treatment alone. Co-treatment improved cognitive functions and was comparable to donepezil treatment alone in the PAT and MWM tests. Pathways related to tyrosine, phenylalanine, and tryptophan biosynthesis, phenylalanine metabolism, and cysteine and methionine metabolism were altered by co-treatment. Levels of tyrosine and methionine, major serum metabolites in these pathways, were significantly reduced after co-treatment. CONCLUSIONS: Co-treatment with WCW and donepezil shows promise as a therapeutic strategy for AD and is comparable to donepezil alone in improving cognitive function. Reduced tyrosine and methionine levels after co-treatment may enhance cognitive function by mitigating hypertyrosinemia and hyperhomocysteinemia, known risk factors for AD. The serum metabolic profiles obtained in this study can serve as a foundation for developing other bioactive compounds using a scopolamine-induced mouse model.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Camundongos , Animais , Camundongos Endogâmicos ICR , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Donepezila , Peptídeos beta-Amiloides , Espécies Reativas de Oxigênio , Cognição , Metaboloma , Metionina , Fenilalanina , Tirosina , Derivados da Escopolamina
15.
Neurosci Lett ; 818: 137570, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000774

RESUMO

One of the prominent sign of Alzheimer's disease (AD) is structural changes in the hippocampus. Recently, the new methods used to treat this disease is transcranial electrical stimulation (tES). This study evaluated the effect of four primary standards of tES, including tDCS, tACS, tRNS, and tPCS on beta-amyloid 25-35 (Aß25-35)-induced structural changes in the CA1 region of hippocampus in male rats. For this purpose, rats weighing 250-275 g were selected, the cannula was embedded reciprocally into the hippocampi. Aß25-35 (5 µg/ 2.5 ml/ day) was infused reciprocally for four continuous days.Then, animals were then given tES for 6 days.Subsequently, structural changes in the hippocampal CA1 were evaluated using the stereological method. Aß25-35 resulted in loss of neurons (P < 0.01) and decreased hippocampal volume (P < 0.05). However, the administration of tES paradigms prevented these changes. The results proposed that through the improvement of hippocampal cell number and volume, tES paradigms can retain efficiency in remediating structural impairments in AD. From this, it can be concluded that other tES paradigms besides tDCS can also be considered for the treatment of AD.


Assuntos
Doença de Alzheimer , Estimulação Transcraniana por Corrente Contínua , Ratos , Masculino , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/induzido quimicamente , Estimulação Transcraniana por Corrente Contínua/métodos , Peptídeos beta-Amiloides/farmacologia , Hipocampo , Neurônios , Modelos Animais de Doenças
16.
Int J Nanomedicine ; 18: 6797-6812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026525

RESUMO

Background: Oxidative stress induced reactive oxygen species (ROS) and aggregation of amyloid ß (Aß) in the nervous system are significant contributors to Alzheimer's disease (AD). Cerium dioxide and manganese oxide are known as to be effective and recyclable ROS scavengers with high efficiency in neuroprotection. Methods: A hollow-structured manganese-doped cerium dioxide nanoparticle (LMC) was synthesized for loading Resveratrol (LMC-RES). The LMC-RES were characterized by TEM, DLS, Zeta potential, and X-ray energy spectrum analysis. We also tested the biocompatibility of LMC-RES and the ability of LMC-RES to cross the blood-brain barrier (BBB). The antioxidant effects of LMC-RES were detected by SH-SY5Y cells. Small animal live imaging was used to detect the distribution of LMC-RES in the brain tissue of AD mice. The cognitive abilities of mice were tested by water maze and nesting experiments. The effects of LMC-RES in reducing oxidative stress and protecting neurons was also explored by histological analysis. Results: The results showed that LMC-RES had good sustained release effect and biocompatibility. The drug release rate of LMC-RES at 24 hours was 80.9 ± 2.25%. Meanwhile, LMC-RES could cross the BBB and enrich in neurons to exert antioxidant effects. In Aß-induced SH-SY5Y cells, LMC-RES could inhibits oxidative stress through the Nrf-2/HO-1 signaling pathway. In AD model mice, LMC-RES was able to reduce ROS levels, inhibit Aß-induced neurotoxicity, and protect neurons and significantly improve cognitive deficits of AD mice after drug administration. Conclusion: LMC-RES can effectively across the BBB, reduce oxidative stress, inhibit Aß aggregation, and promote the recovery of neurological function.


Assuntos
Doença de Alzheimer , Nanopartículas , Neuroblastoma , Humanos , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peptídeos beta-Amiloides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neuroproteção , Estresse Oxidativo
17.
Biomed Pharmacother ; 168: 115825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924791

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease for which there is a lack of effective therapeutic drugs. There is great potential for natural products to be used in the development of anti-AD drugs. P-coumaric acid (PCA), a small molecule phenolic acid widely distributed in the plant kingdom, has pharmacological effects such as neuroprotection, but its anti-AD mechanism has not been fully elucidated. In the current study, we investigated the mechanism of PCA intervention in the Aß25-35-induced AD model using gut microbiomics and serum metabolomics combined with in vitro and in vivo pharmacological experiments. PCA was found to ameliorate cognitive dysfunction and neuronal cell damage in Aß25-35-injected mice as measured by behavioral, pathological and biochemical indicators. 16S rDNA sequencing and serum metabolomics showed that PCA reduced the abundance of pro-inflammatory-associated microbiota (morganella, holdemanella, fusicatenibacter and serratia) in the gut, which were closely associated with metabolites of the glucose metabolism, arachidonic acid metabolism, tyrosine metabolism and phospholipid metabolism pathways in serum. Next, in vivo and in vitro pharmacological investigations revealed that PCA regulated Aß25-35-induced disruption of glucose metabolism through activation of PI3K/AKT/Glut1 signaling. Additionally, PCA ameliorated Aß25-35-induced neuroinflammation by inhibiting nuclear translocation of NF-κB and by modulating upstream MAPK signaling. In conclusion, PCA ameliorated cognitive deficits in Aß25-35-induced AD mice by regulating glucose metabolism and neuroinflammation, and the mechanism is related not only to restoring homeostasis of gut microbiota and serum metabolites, but also to PI3K/AKT/Glut1 and MAPK/NF-κB signaling.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Transportador de Glucose Tipo 1/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/patologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Glucose/metabolismo , Encéfalo
18.
Neurotox Res ; 41(6): 627-637, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37971633

RESUMO

Dysfunction in the cholinergic system and oxidative stress are closely related and play roles in Alzheimer's disease (AD). Scopolamine (Scop), which is commonly used to induce cholinergic system damage in cells and animals, also evokes oxidative stress. Our previous study indicated that the peptide (m) RVD-hemopressin (RVD) reversed the memory-impairing effect of Scop in mice by activating cannabinoid receptor 1 (CBR1), but the mechanism was unclear. In this study, we found that RVD inhibited the oxidative stress, apoptosis, decreased cell viability and downregulation of synapse-associated proteins induced by Scop in HT22 cells. The effect was associated with the BDNF/TrkB/Akt pathway, and the effects of RVD outlined above could be blocked by an antagonist of CBR1. These results suggest that RVD may be a potential drug candidate for disorders associated with damage to the cholinergic system and oxidative stress, such as AD.


Assuntos
Doença de Alzheimer , Escopolamina , Camundongos , Animais , Escopolamina/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo , Apoptose , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Colinérgicos/farmacologia
19.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4015-4026, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802769

RESUMO

The purpose of this study was to investigate the effect of aqueous extract of Corni Fructus on ß-amyloid protein 25-35(Aß_(25-35))-induced brain injury and neuroinflammation in Alzheimer's disease(AD) mice to provide an experimental basis for the treatment of AD by aqueous extract of Corni Fructus. Sixty C57BL/6J male mice were randomly divided into a sham group, a model group, a positive control group(huperizine A, 0.2 mg·kg~(-1)), a low-dose aqueous extract of Corni Fructus group(1.3 g·kg~(-1)), a medium-dose aqueous extract of Corni Fructus group(2.6 g·kg~(-1)), and a high-dose aqueous extract of Corni Fructus group(5.2 g·kg~(-1)). The AD model was induced by lateral ventricular injection of Aß_(25-35) in mice except for those in the sham group, and AD model mice were treated with corresponding drugs by gavage for 24 days. The behavioral test was performed one week before animal dissection. Hematoxylin-eosin(HE) staining was performed to observe the morphology of neurons in the hippocampal region. Flow cytometry was used to detect the apoptosis level of primary hippocampal cells in mice. ELISA kits were used to detect the levels of ß-amyloid protein 1-42(Aß_(1-42)) and phosphorylated microtubule-associated protein Tau(p-Tau) in mouse brain tissues. Immunofluorescence and Western blot were used to detect the expression of related proteins in mouse brain tissues. MTT assay was used to detect the effect of compounds in aqueous extract of Corni Fructus on Aß_(25-35)-induced N9 cell injury. Molecular docking was employed to analyze the interactions of caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-ß-D-glucopyranoside, esculetin, and(+)-lyoniresinol with ß-amyloid precursor protein(APP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). Aqueous extract of Corni Fructus could improve the learning and memory abilities of Aß_(25-35)-induced mice by increasing the duration of the autonomous activity, the rate of autonomous alternation, the preference coefficient, and the discrimination coefficient, and reduce Aß_(25-35)-induced brain injury and neuroinflammation in mice by increasing the expression levels of interleukin-10(IL-10) and B-cell lymphoma-2(Bcl-2) in brain tissues, decreasing the expression levels of Aß_(1-42), p-Tau, IL-6, TNF-α, cysteine aspartate-specific protease 3(caspase-3), cysteine aspartate-specific protease 9(caspase-9), and Bcl-2-associated X protein(Bax), and decreasing the number of activated glial cells in brain tissues. The results of cell experiments showed that esculetin and(+)-lyoniresinol could improve Aß_(25-35)-induced N9 cell injury. Molecular docking results showed that caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-ß-D-glucopyranoside, esculetin, and(+)-lyoniresinol had good binding affinity with APP and weak binding affinity with IL-6 and TNF-α. Aqueous extract of Corni Fructus could ameliorate cognitive dysfunction and brain damage in Aß_(25-35)-induced mice by reducing the number of apoptotic cells and activated glial cells in the brain and decreasing the expression level of inflammatory factors. Caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-ß-D-glucopyranoside, esculetin, and(+)-lyoniresinol may be the material basis for the anti-AD effect of aqueous extract of Corni Fructus.


Assuntos
Doença de Alzheimer , Lesões Encefálicas , Cornus , Camundongos , Masculino , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Cornus/metabolismo , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Ácido Aspártico , Cisteína/uso terapêutico , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Peptídeo Hidrolases , Modelos Animais de Doenças , Camundongos Transgênicos
20.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4046-4059, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802772

RESUMO

The present study aimed to investigate the protective effect and underlying mechanism of Platycladi Semen oil(SP) on Aß_(25-35)-induced brain injury in mice to provide a theoretical basis for the clinical treatment of Alzheimer's disease(AD). Male Kunming(KM) mice were randomly divided into a control group, a model group(brain injection of Aß_(25-35), 200 µmol·L~(-1), 0.15 µL·g~(-1)), a positive drug group(donepezil, 10 mg·kg~(-1)), and low-and high-dose SP groups(0.5 and 1 mL·kg~(-1)). Learning and memory ability, neuronal damage, levels of Aß_(1-42)/Aß_(1-40), p-Tau, related indicators of apoptosis and oxidative stress, and immune cells, and protein and mRNA expression related to the sphingosine kinase 1(SPHK1)/sphingosine-1-phosphate(S1P)/sphingosine-1-phosphate receptor 5(S1PR5) signaling pathway of mice in each group were determined. In addition, compounds in SP were analyzed by gas chromatography-mass spectrometry(GC-MS). The mechanism of SP against AD was investigated by network pharmacology, 16S rDNA gene sequencing for gut microbiota(GM), and molecular docking techniques. The results showed that SP could improve the learning and memory function of Aß_(25-35)-induced mice, reduce hippocampal neuronal damage, decrease the levels of Aß_(1-42)/Aß_(1-40), p-Tau, and indicators related to apoptosis and oxidative stress in the brain, and maintain the homeostasis of immune cells and GM. Network pharmacology and sequencing analysis for GM showed that the therapeutic effect of SP on AD was associated with the sphingolipid signaling pathway. Meanwhile,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid, the components with the highest content in SP, showed good binding activity to SPHK1 and S1PR5. Therefore, it is inferred that SP exerts anti-apoptosis and antioxidant effects by regulating GM and inhibiting SPHK1/S1P/S1PR5 pathway, thereby improving brain injury induced by Aß_(25-35) in mice. Moreover,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid may be the material basis for the anti-AD effect of SP.


Assuntos
Doença de Alzheimer , Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos , Animais , Masculino , Sêmen/metabolismo , Farmacologia em Rede , Ácido Linoleico , Simulação de Acoplamento Molecular , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA