Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Curr Opin Biotechnol ; 85: 103051, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103520

RESUMO

N-acetyl-L-aspartic acid (NAA) is a prominent amino acid derivative primarily associated with vertebrate brain metabolism. This review delineates the critical role of NAA across various cell types and its significance in pathophysiological contexts, including Canavan disease and cancer metabolism. Although traditionally linked with myelination and aspartoacylase-driven carbon donation, its significance as a carbon source for myelination remains debated. Evidence suggests that intact NAA might substantially impact cellular signaling, particularly processes such as histone acetylation. Beyond the brain, NAA metabolism's relevance is evident in diverse tissues, such as adipocytes, immune cells, and notably, cancer cells. In several cancer types, there is an observed upregulation of NAA synthesis accompanied by a simultaneous downregulation of its degradation. This pattern highlights the potential signaling role of intact NAA in disease.


Assuntos
Doença de Canavan , Neoplasias , Humanos , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Doença de Canavan/metabolismo , Carbono/metabolismo , Neoplasias/metabolismo
2.
Sci Rep ; 11(1): 3231, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547378

RESUMO

This study evaluates the genetic spectrum of leukodystrophies and leukoencephalopathies in Iran. 152 children, aged from 1 day to 15 years, were genetically tested for leukodystrophies and leukoencephalopathies based on clinical and neuroradiological findings from 2016 to 2019. Patients with a suggestive specific leukodystrophy, e. g. metachromatic leukodystrophy, Canavan disease, Tay-Sachs disease were tested for mutations in single genes (108; 71%) while patients with less suggestive findings were evaluated by NGS. 108 of 152(71%) had MRI patterns and clinical findings suggestive of a known leukodystrophy. In total, 114(75%) affected individuals had (likely) pathogenic variants which included 38 novel variants. 35 different types of leukodystrophies and genetic leukoencephalopathies were identified. The more common identified disorders included metachromatic leukodystrophy (19 of 152; 13%), Canavan disease (12; 8%), Tay-Sachs disease (11; 7%), megalencephalic leukodystrophy with subcortical cysts (7; 5%), X-linked adrenoleukodystrophy (8; 5%), Pelizaeus-Merzbacher-like disease type 1 (8; 5%), Sandhoff disease (6; 4%), Krabbe disease (5; 3%), and vanishing white matter disease (4; 3%). Whole exome sequencing (WES) revealed 90% leukodystrophies and genetic leukoencephalopathies. The total diagnosis rate was 75%. This unique study presents a national genetic data of leukodystrophies; it may provide clues to the genetic pool of neighboring countries. Patients with clinical and neuroradiological evidence of a genetic leukoencephalopathy should undergo a genetic analysis to reach a definitive diagnosis. This will allow a diagnosis at earlier stages of the disease, reduce the burden of uncertainty and costs, and will provide the basis for genetic counseling and family planning.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Leucodistrofia Metacromática/genética , Leucoencefalopatias/genética , Adolescente , Doença de Canavan/epidemiologia , Doença de Canavan/genética , Criança , Pré-Escolar , Feminino , Testes Genéticos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/epidemiologia , Humanos , Lactente , Recém-Nascido , Irã (Geográfico)/epidemiologia , Leucodistrofia de Células Globoides/epidemiologia , Leucodistrofia de Células Globoides/genética , Leucodistrofia Metacromática/epidemiologia , Leucoencefalopatias/epidemiologia , Masculino , Mutação
3.
BMC Med Genet ; 21(1): 216, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138774

RESUMO

BACKGROUND: To determine the carrier frequency and pathogenic variants of common genetic disorders in the north Indian population by using next generation sequencing (NGS). METHODS: After pre-test counselling, 200 unrelated individuals (including 88 couples) were screened for pathogenic variants in 88 genes by NGS technology. The variants were classified as per American College of Medical Genetics criteria. Pathogenic and likely pathogenic variants were subjected to thorough literature-based curation in addition to the regular filters. Variants of unknown significance were not reported. Individuals were counselled explaining the implications of the results, and cascade screening was advised when necessary. RESULTS: Of the 200 participants, 52 (26%) were found to be carrier of one or more disorders. Twelve individuals were identified to be carriers for congenital deafness, giving a carrier frequency of one in 17 for one of the four genes tested (SLC26A4, GJB2, TMPRSS3 and TMC1 in decreasing order). Nine individuals were observed to be carriers for cystic fibrosis, with a frequency of one in 22. Three individuals were detected to be carriers for Pompe disease (frequency one in 67). None of the 88 couples screened were found to be carriers for the same disorder. The pathogenic variants observed in many disorders (such as deafness, cystic fibrosis, Pompe disease, Canavan disease, primary hyperoxaluria, junctional epidermolysis bullosa, galactosemia, medium chain acyl CoA deficiency etc.) were different from those commonly observed in the West. CONCLUSION: A higher carrier frequency for genetic deafness, cystic fibrosis and Pompe disease was unexpected, and contrary to the generally held view about their prevalence in Asian Indians. In spite of the small sample size, this study would suggest that population-based carrier screening panels for India would differ from those in the West, and need to be selected with due care. Testing should comprise the study of all the coding exons with its boundaries in the genes through NGS, as all the variants are not well characterized. Only study of entire coding regions in the genes will detect carriers with adequate efficiency, in order to reduce the burden of genetic disorders in India and other resource poor countries.


Assuntos
Acil-CoA Desidrogenase/deficiência , Doença de Canavan/genética , Fibrose Cística/genética , Epidermólise Bolhosa Juncional/genética , Galactosemias/genética , Doença de Depósito de Glicogênio Tipo II/genética , Perda Auditiva Neurossensorial/genética , Hiperoxalúria Primária/genética , Erros Inatos do Metabolismo Lipídico/genética , Acil-CoA Desidrogenase/genética , Adulto , Doença de Canavan/epidemiologia , Conexina 26 , Conexinas/genética , Fibrose Cística/epidemiologia , Epidermólise Bolhosa Juncional/epidemiologia , Feminino , Galactosemias/epidemiologia , Expressão Gênica , Triagem de Portadores Genéticos/estatística & dados numéricos , Aconselhamento Genético , Doença de Depósito de Glicogênio Tipo II/epidemiologia , Perda Auditiva Neurossensorial/epidemiologia , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hiperoxalúria Primária/epidemiologia , Índia/epidemiologia , Erros Inatos do Metabolismo Lipídico/epidemiologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Serina Endopeptidases/genética , Transportadores de Sulfato/genética
5.
Mol Genet Metab ; 126(1): 64-76, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446350

RESUMO

Resveratrol (RSV) is a small compound first identified as an activator of sirtuin 1 (SIRT1), a key factor in mediating the effects of caloric restriction. Since then, RSV received great attention for its widespread beneficial effects on health and in connection to many diseases. RSV improves the metabolism and the mitochondrial function, and more recently it was shown to restore fatty acid ß-oxidation (FAO) capacities in patient fibroblasts harboring mutations with residual enzyme activity. Many of RSV's beneficial effects are mediated by the transcriptional coactivator PGC-1α, a direct target of SIRT1 and a master regulator of the mitochondrial fatty acid oxidation. Despite numerous studies RSV's mechanism of action is still not completely elucidated. Our aim was to investigate the effects of RSV on gene regulation on a wide scale, possibly to detect novel genes whose up-regulation by RSV may be of interest with respect to disease treatment. We performed Next Generation Sequencing of RNA on normal fibroblasts treated with RSV. To investigate whether the effects of RSV are mediated through SIRT1 we expanded the analysis to include SIRT1-knockdown fibroblasts. We identified the aspartoacylase (ASPA) gene, mutated in Canavan disease, to be strongly up-regulated by RSV in several cell lines, including Canavan disease fibroblasts. We further link RSV to the up-regulation of other genes involved in myelination including the glial specific transcription factors POU3F1, POU3F2, and myelin basic protein (MBP). We also observe a strong up-regulation by RSV of the riboflavin transporter gene SLC52a1. Mutations in SLC52a1 cause transient multiple acyl-CoA dehydrogenase deficiency (MADD). Our analysis of alternative splicing identified novel metabolically important genes affected by RSV, among which is particularly interesting the α subunit of the stimulatory G protein (Gsα), which regulates the cellular levels of cAMP through adenylyl cyclase. We conclude that in fibroblasts RSV stimulates the PGC-1α and p53 pathways, and up-regulates genes affecting the glucose metabolism, mitochondrial ß-oxidation, and mitochondrial biogenesis. We further confirm that RSV might be a relevant treatment in the correction of FAO deficiencies and we suggest that treatment in other metabolic disorders including Canavan disease and MADD might be also beneficial.


Assuntos
Doença de Canavan/diagnóstico , Fibroblastos/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Resveratrol/farmacologia , Amidoidrolases/genética , Doença de Canavan/tratamento farmacológico , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Genes p53 , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Proteína Básica da Mielina/genética , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Receptores Acoplados a Proteínas G/genética , Análise de Sequência de RNA , Sirtuína 1/genética , Fatores de Transcrição/genética , Regulação para Cima
6.
Mol Ther ; 26(3): 793-800, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29456021

RESUMO

Canavan disease, a leukodystrophy caused by loss-of-function ASPA mutations, is characterized by brain dysmyelination, vacuolation, and astrogliosis ("spongiform leukodystrophy"). ASPA encodes aspartoacylase, an oligodendroglial enzyme that cleaves the abundant brain amino acid N-acetyl-L-aspartate (NAA) to L-aspartate and acetate. Aspartoacylase deficiency results in a 50% or greater elevation in brain NAA concentration ([NAAB]). Prior studies showed that homozygous constitutive knockout of Nat8l, the gene encoding the neuronal NAA synthesizing enzyme N-acetyltransferase 8-like, prevents aspartoacylase-deficient mice from developing spongiform leukodystrophy. We now report that brain Nat8l knockdown elicited by intracerebroventricular/intracisternal administration of an adeno-associated viral vector carrying a short hairpin Nat8l inhibitory RNA to neonatal aspartoacylase-deficient AspaNur7/Nur7 mice lowers [NAAB] and suppresses development of spongiform leukodystrophy.


Assuntos
Acetiltransferases/genética , Amidoidrolases/deficiência , Doença de Canavan/genética , Doença de Canavan/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doença de Canavan/patologia , Doença de Canavan/fisiopatologia , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Camundongos , Camundongos Knockout , Atividade Motora , Neurônios/metabolismo , RNA Mensageiro/genética , Transdução Genética
7.
Acta Neuropathol ; 135(1): 95-113, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29116375

RESUMO

N-Acetylaspartate (NAA) is the second most abundant organic metabolite in the brain, but its physiological significance remains enigmatic. Toxic NAA accumulation appears to be the key factor for neurological decline in Canavan disease-a fatal neurometabolic disorder caused by deficiency in the NAA-degrading enzyme aspartoacylase. To date clinical outcome of gene replacement therapy for this spongiform leukodystrophy has not met expectations. To identify the target tissue and cells for maximum anticipated treatment benefit, we employed comprehensive phenotyping of novel mouse models to assess cell type-specific consequences of NAA depletion or elevation. We show that NAA-deficiency causes neurological deficits affecting unconscious defensive reactions aimed at protecting the body from external threat. This finding suggests, while NAA reduction is pivotal to treat Canavan disease, abrogating NAA synthesis should be avoided. At the other end of the spectrum, while predicting pathological severity in Canavan disease mice, increased brain NAA levels are not neurotoxic per se. In fact, in transgenic mice overexpressing the NAA synthesising enzyme Nat8l in neurons, supra-physiological NAA levels were uncoupled from neurological deficits. In contrast, elimination of aspartoacylase expression exclusively in oligodendrocytes elicited Canavan disease like pathology. Although conditional aspartoacylase deletion in oligodendrocytes abolished expression in the entire CNS, the remaining aspartoacylase in peripheral organs was sufficient to lower NAA levels, delay disease onset and ameliorate histopathology. However, comparable endpoints of the conditional and complete aspartoacylase knockout indicate that optimal Canavan disease gene replacement therapies should restore aspartoacylase expression in oligodendrocytes. On the basis of these findings we executed an ASPA gene replacement therapy targeting oligodendrocytes in Canavan disease mice resulting in reversal of pre-existing CNS pathology and lasting neurological benefits. This finding signifies the first successful post-symptomatic treatment of a white matter disorder using an adeno-associated virus vector tailored towards oligodendroglial-restricted transgene expression.


Assuntos
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Encéfalo/patologia , Doença de Canavan/metabolismo , Doença de Canavan/terapia , Acetiltransferases/metabolismo , Amidoidrolases/administração & dosagem , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Doença de Canavan/patologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Terapia Genética , Humanos , Masculino , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fenótipo , RNA Mensageiro/metabolismo
8.
JCI Insight ; 2(3): e90807, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28194442

RESUMO

Canavan disease (CD) is a debilitating and lethal leukodystrophy caused by mutations in the aspartoacylase (ASPA) gene and the resulting defect in N-acetylaspartate (NAA) metabolism in the CNS and peripheral tissues. Recombinant adeno-associated virus (rAAV) has the ability to cross the blood-brain barrier and widely transduce the CNS. We developed a rAAV-based and optimized gene replacement therapy, which achieves early, complete, and sustained rescue of the lethal disease phenotype in CD mice. Our treatment results in a super-mouse phenotype, increasing motor performance of treated CD mice beyond that of WT control mice. We demonstrate that this rescue is oligodendrocyte independent, and that gene correction in astrocytes is sufficient, suggesting that the establishment of an astrocyte-based alternative metabolic sink for NAA is a key mechanism for efficacious disease rescue and the super-mouse phenotype. Importantly, the use of clinically translatable high-field imaging tools enables the noninvasive monitoring and prediction of therapeutic outcomes for CD and might enable further investigation of NAA-related cognitive function.


Assuntos
Amidoidrolases/genética , Doença de Canavan/terapia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Amidoidrolases/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Barreira Hematoencefálica/metabolismo , Doença de Canavan/genética , Doença de Canavan/metabolismo , Sistema Nervoso Central , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Camundongos , Oligodendroglia/metabolismo
9.
Neurobiol Dis ; 96: 323-334, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717881

RESUMO

Breakdown of neuro-glial N-acetyl-aspartate (NAA) metabolism results in the failure of developmental myelination, manifest in the congenital pediatric leukodystrophy Canavan disease caused by mutations to the sole NAA catabolizing enzyme aspartoacylase. Canavan disease is a major point of focus for efforts to define NAA function, with available evidence suggesting NAA serves as an acetyl donor for fatty acid synthesis during myelination. Elevated NAA is a diagnostic hallmark of Canavan disease, which contrasts with a broad spectrum of alternative neurodegenerative contexts in which levels of NAA are inversely proportional to pathological progression. Recently generated data in the nur7 mouse model of Canavan disease suggests loss of aspartoacylase function results in compromised energetic integrity prior to oligodendrocyte death, abnormalities in myelin content, spongiform degeneration, and motor deficit. The present study utilized a next-generation "oligotropic" adeno-associated virus vector (AAV-Olig001) to quantitatively assess the impact of aspartoacylase reconstitution on developmental myelination. AAV-Olig001-aspartoacylase promoted normalization of NAA, increased bioavailable acetyl-CoA, and restored energetic balance within a window of postnatal development preceding gross histopathology and deteriorating motor function. Long-term effects included increased oligodendrocyte numbers, a global increase in myelination, reversal of vacuolation, and rescue of motor function. Effects on brain energy observed following AAV-Olig001-aspartoacylase gene therapy are shown to be consistent with a metabolic profile observed in mild cases of Canavan disease, implicating NAA in the maintenance of energetic integrity during myelination via oligodendroglial aspartoacylase.


Assuntos
Amidoidrolases/metabolismo , Ácido Aspártico/análogos & derivados , Encéfalo/enzimologia , Doença de Canavan/patologia , Bainha de Mielina/fisiologia , Oligodendroglia/enzimologia , Amidoidrolases/genética , Animais , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas Relacionadas à Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/patologia , Doença de Canavan/complicações , Doença de Canavan/diagnóstico por imagem , Doença de Canavan/genética , Criança , Pré-Escolar , Dependovirus/genética , Progressão da Doença , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Transtornos dos Movimentos/etiologia , Proteína Básica da Mielina/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/genética
10.
Mol Ther ; 24(6): 1030-1041, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27039844

RESUMO

Aspartoacylase (AspA) gene mutations cause the pediatric lethal neurodegenerative Canavan disease (CD). There is emerging promise of successful gene therapy for CD using recombinant adeno-associated viruses (rAAVs). Here, we report an intracerebroventricularly delivered AspA gene therapy regime using three serotypes of rAAVs at a 20-fold reduced dose than previously described in AspA(-/-) mice, a bona-fide mouse model of CD. Interestingly, central nervous system (CNS)-restricted therapy prolonged survival over systemic therapy in CD mice but failed to sustain motor functions seen in systemically treated mice. Importantly, we reveal through histological and functional examination of untreated CD mice that AspA deficiency in peripheral tissues causes morphological and functional abnormalities in this heretofore CNS-defined disorder. We demonstrate for the first time that AspA deficiency, possibly through excessive N-acetyl aspartic acid accumulation, elicits both a peripheral and CNS immune response in CD mice. Our data establish a role for peripheral tissues in CD pathology and serve to aid the development of more efficacious and sustained gene therapy for this disease.


Assuntos
Amidoidrolases/genética , Doença de Canavan/terapia , Sistema Nervoso Central/patologia , Terapia Genética/métodos , Animais , Doença de Canavan/genética , Doença de Canavan/patologia , Sistema Nervoso Central/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Humanos , Camundongos , Especificidade de Órgãos , Análise de Sobrevida , Resultado do Tratamento
11.
J Inherit Metab Dis ; 38(5): 983-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25647544

RESUMO

A 3-year-old boy was admitted with psychomotor delay, spasticity, progressive visual loss, nystagmus, macrocephaly, and epileptic seizures for diagnostics. Cranial magnetic resonance imaging (MRI) revealed leukodystrophy and multicystic changes. Urine excretion of N-acetylaspartic acid was grossly increased, suggesting Canavan disease. Mutation screening of the ASPA gene confirmed this diagnosis. The underlying enzymatic defect causes accumulation of N-acetylaspartic acid and subsequent progressive myelin degeneration with characteristic spongy degeneration of the subcortical white matter, normally only seen histologically. We describe this case to show that spongy degeneration in Canavan disease may also be present macroscopically in the form of multiple beaded periventricular cysts on cranial MRI.


Assuntos
Encefalopatias/diagnóstico , Doença de Canavan/diagnóstico , Cistos do Sistema Nervoso Central/diagnóstico , Crânio/patologia , Amidoidrolases/genética , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/patologia , Encefalopatias/etiologia , Encefalopatias/patologia , Doença de Canavan/complicações , Doença de Canavan/patologia , Cistos do Sistema Nervoso Central/complicações , Cistos do Sistema Nervoso Central/patologia , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética , Masculino
12.
J Inherit Metab Dis ; 37(3): 369-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24288037

RESUMO

The inherited pediatric leukodystrophy Canavan disease is characterized by dysmyelination and severe spongiform degeneration, and is currently refractory to treatment. A definitive understanding of core disease mechanisms is lacking, but pathology is believed to result at least in part compromised fatty acid synthesis during myelination. Recent evidence generated in an animal model suggests that the breakdown of N-acetylaspartate metabolism in CD results in a heightened coupling of fatty acid synthesis to oligodendrocyte oxidative metabolism during the early stages of myelination, thereby causing acute oxidative stress. We present here the results of a dietary intervention designed to support oxidative integrity during developmental myelination in the nur7 mouse model of Canavan disease. Provision of the odd carbon triglyceride triheptanoin to neonatal nur7 mice reduced oxidative stress, promoted long-term oligodendrocyte survival, and increased myelin in the brain. Improvements in oligodendrocyte survival and myelination were associated with a highly significant reduction in spongiform degeneration and improved motor function in triheptanoin treated mice. Initiation of triheptanoin treatment in older animals resulted in markedly more modest effects on these same pathological indices, indicating a window of therapeutic intervention that corresponds with developmental myelination. These results support the targeting of oxidative integrity at early stages of Canavan disease, and provide a foundation for the clinical development of a non-invasive dietary triheptanoin treatment regimen.


Assuntos
Amidoidrolases/genética , Doença de Canavan/terapia , Bainha de Mielina/fisiologia , Oligodendroglia/patologia , Triglicerídeos/administração & dosagem , Trifosfato de Adenosina/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Doença de Canavan/patologia , Doença de Canavan/fisiopatologia , Modelos Animais de Doenças , Camundongos
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 33(9): 1357-61, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24067220

RESUMO

OBJECTIVE: To investigate the relationship between heroin spongiform leucoencephalopathy and respiratory chain complex I deficiency. METHODS: The activity of respiratory chain complex I in peripheral white blood cell mitochondria was compared between 36 cases of heroin spongiform leucoencephalopathy and 36 healthy subjects using enzyme-linked immunosorbent assay (ELISA). RESULTS: The activity of respiratory chain complex I was 5.6∓2.4 U/ml in patients with heroin spongiform leucoencephalopathy, significantly higher than that in the normal subjects (4.2∓2.1 U/ml, t=2.634, P<0.05). CONCLUSION: In patients with heroin spongiform leucoencephalopathy, mitochondrial dysfunction results in energy metabolism disorder to cause extensive demyelination of the cerebral white matter. Respiratory chain complex I deficiency of the mitochondria plays a significant role in the pathogenesis of heroin spongiform leucoencephalopathy.


Assuntos
Doença de Canavan/metabolismo , Dependência de Heroína/metabolismo , Doenças Mitocondriais/metabolismo , Adulto , Doença de Canavan/etiologia , Doença de Canavan/patologia , Estudos de Casos e Controles , Transporte de Elétrons , Feminino , Dependência de Heroína/complicações , Dependência de Heroína/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Mol Ther ; 21(12): 2136-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23817205

RESUMO

Canavan's disease (CD) is a fatal pediatric leukodystrophy caused by mutations in aspartoacylase (AspA) gene. Currently, there is no effective treatment for CD; however, gene therapy is an attractive approach to ameliorate the disease. Here, we studied progressive neuropathology and gene therapy in short-lived (≤ 1 month) AspA(-/-) mice, a bona-fide animal model for the severest form of CD. Single intravenous (IV) injections of several primate-derived recombinant adeno-associated viruses (rAAVs) as late as postnatal day 20 (P20) completely rescued their early lethality and alleviated the major disease symptoms, extending survival in P0-injected rAAV9 and rAAVrh8 groups to as long as 2 years thus far. We successfully used microRNA (miRNA)-mediated post-transcriptional detargeting for the first time to restrict therapeutic rAAV expression in the central nervous system (CNS) and minimize potentially deleterious effects of transgene overexpression in peripheral tissues. rAAV treatment globally improved CNS myelination, although some abnormalities persisted in the content and distribution of myelin-specific and -enriched lipids. We demonstrate that systemically delivered and CNS-restricted rAAVs can serve as efficacious and sustained gene therapeutics in a model of a severe neurodegenerative disorder even when administered as late as P20.


Assuntos
Amidoidrolases/genética , Doença de Canavan/terapia , Sistema Nervoso Central/patologia , Dependovirus/genética , Amidoidrolases/deficiência , Amidoidrolases/metabolismo , Animais , Animais Recém-Nascidos , Doença de Canavan/patologia , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Terapia Genética , Vetores Genéticos , Humanos , Injeções Intravenosas , Camundongos , MicroRNAs/genética , Especificidade de Órgãos , Difração de Raios X
15.
PLoS One ; 8(6): e65646, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799030

RESUMO

Recombinant adeno-associated virus (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in adult rodents have shown that the use of cell type-specific promoters is sufficient to target AAV-mediated transgene expression to glia. However, neurological disorders caused by glial pathology usually have an early onset. Therefore, modelling and treatment of these conditions require expanding the concept of targeted glial transgene expression by promoter selectivity for gene delivery to the immature CNS. Here, we have investigated the AAV-mediated green fluorescent protein (GFP) expression driven by the myelin basic protein (MBP) or glial fibrillary acidic protein (GFAP) promoters in the developing mouse brain. Generally, the extent of transgene expression after infusion at immature stages was widespread and higher than in adults. The GFAP promoter-driven GFP expression was found to be highly specific for astrocytes following vector infusion to the brain of neonates and adults. In contrast, the selectivity of the MBP promoter for oligodendrocytes was poor following neonatal AAV delivery, but excellent after vector injection at postnatal day 10. To extend these findings obtained in naïve mice to a disease model, we performed P10 infusions of AAV-MBP-GFP in aspartoacylase (ASPA)-deficient mouse mutants presenting with early onset oligodendrocyte pathology. Spread of GFP expression and selectivity for oligodendrocytes in ASPA-mutants was comparable with our observations in normal animals. Our data suggest that direct AAV infusion to the developing postnatal brain, utilising cellular promoters, results in targeted and long-term transgene expression in glia. This approach will be relevant for disease modelling and gene therapy for the treatment of glial pathology.


Assuntos
Astrócitos/metabolismo , Dependovirus/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Básica da Mielina/genética , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas , Fatores Etários , Animais , Animais Recém-Nascidos , Astrócitos/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Doença de Canavan/patologia , Doença de Canavan/terapia , Células Cultivadas , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Camundongos Endogâmicos C57BL , Oligodendroglia/virologia , Especificidade de Órgãos , Transgenes
16.
J Virol ; 87(15): 8372-87, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23698308

RESUMO

The envelope protein (Env) from the CasBrE murine leukemia virus (MLV) can cause acute spongiform neurodegeneration analogous to that induced by prions. Upon central nervous system (CNS) infection, Env is expressed as multiple isoforms owing to differential asparagine (N)-linked glycosylation. Because N-glycosylation can affect protein folding, stability, and quality control, we explored whether unique CasBrE Env glycosylation features could influence neurovirulence. CasBrE Env possesses 6/8 consensus MLV glycosylation sites (gs) but is missing gs3 and gs5 and contains a putative site (gs*). Twenty-nine mutants were generated by modifying these three sites, individually or in combination, to mimic the amino acid sequence in the nonneurovirulent Friend 57 MLV. Three basic viral phenotypes were observed: replication defective (dead; titer < 1 focus-forming unit [FFU]/ml), replication compromised (RC) (titer = 10(2) to 10(5) FFU/ml); and wild-type-like (WTL) (titer > 10(5) FFU/ml). Env protein was undetectable in dead mutants, while RC and WTL mutants showed variations in Env expression, processing, virus incorporation, virus entry, and virus spread. The newly introduced gs3 and gs5 sites were glycosylated, whereas gs* was not. Six WTL mutants tested in mice showed no clear attenuation in disease onset or severity versus controls. Furthermore, three RC viruses tested by neural stem cell (NSC)-mediated brainstem dissemination also induced acute spongiosis. Thus, while unique N-glycosylation affected structural features of Env involved in protein stability, proteolytic processing, and virus assembly and entry, these changes had minimal impact on CasBrE Env neurotoxicity. These findings suggest that the Env protein domains responsible for spongiogenesis represent highly stable elements upon which the more variable viral functional domains have evolved.


Assuntos
Produtos do Gene env/metabolismo , Vírus da Leucemia Murina/fisiologia , Vírus da Leucemia Murina/patogenicidade , Processamento de Proteína Pós-Traducional , Animais , Doença de Canavan/patologia , Doença de Canavan/virologia , Análise Mutacional de DNA , Produtos do Gene env/genética , Glicosilação , Vírus da Leucemia Murina/genética , Camundongos , Virulência , Replicação Viral
18.
Int J Med Sci ; 10(3): 299-306, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23423584

RESUMO

OBJECTIVE: To investigate whether microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy (HSLE). METHODS: The brain tissues were collected from 4 HSLE patients and 5 controls and then fixed in 4% paraformaldehyde. The frontal lobe, corpus callosum and cerebellum were separated. The expressions of myelin base protein (MBP) and CD34 were detected by immunohistochemistry. TUNEL staining was applied to detect cell apoptosis. The correlation between microvascular changes and pathological vacuoles was evaluated. RESULTS: No obvious abnormalities were found in the brain of controls. Immunohistochemistry for MBP showed the collapse and fracture of myelin sheath and vacuole formation in the subcortical white matter, corpus callosum, and cerebellar white matter of HSLE patients. TUNEL staining showed the number of apoptotic cells in the cerebellar white matter and corpus callosum of HSLE patients was significantly higher than that in controls (F = 389.451, P < 0.001). Masson's trichrome staining revealed vacuolar degeneration in the cerebral white matter of HSLE patients, and the vacuoles were distributed around the microvessels. Immunohistochemistry revealed CD34 positive cells were seldom found besides the vessels in the cerebellar white matter and corpus callosum of HSLE patients, but a variety of CD34 positive cells was found in the vascular wall of controls (F = 838.500, P < 0.001). CONCLUSION: Apoptosis of oligodendrocytes may be related to the HSLE. Cerebral vascular injury and microcirculation dysfunction are involved in the pathogenesis of HSLE. The interrelation between apoptosis of oligodendrocytes and the microvascular damage are required to be studied in future investigations.


Assuntos
Antígenos CD34/metabolismo , Doença de Canavan/fisiopatologia , Traumatismo Cerebrovascular/fisiopatologia , Dependência de Heroína/fisiopatologia , Microvasos/patologia , Proteína Básica da Mielina/metabolismo , Adulto , Apoptose , Doença de Canavan/induzido quimicamente , Doença de Canavan/metabolismo , Cerebelo/irrigação sanguínea , Cerebelo/metabolismo , Cerebelo/patologia , Traumatismo Cerebrovascular/metabolismo , Corpo Caloso/irrigação sanguínea , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Feminino , Lobo Frontal/irrigação sanguínea , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Heroína/toxicidade , Dependência de Heroína/metabolismo , Humanos , Masculino , Microvasos/metabolismo , Pessoa de Meia-Idade , Oligodendroglia/metabolismo , Oligodendroglia/patologia
19.
Sci Transl Med ; 4(165): 165ra163, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23253610

RESUMO

Canavan disease is a hereditary leukodystrophy caused by mutations in the aspartoacylase gene (ASPA), leading to loss of enzyme activity and increased concentrations of the substrate N-acetyl-aspartate (NAA) in the brain. Accumulation of NAA results in spongiform degeneration of white matter and severe impairment of psychomotor development. The goal of this prospective cohort study was to assess long-term safety and preliminary efficacy measures after gene therapy with an adeno-associated viral vector carrying the ASPA gene (AAV2-ASPA). Using noninvasive magnetic resonance imaging and standardized clinical rating scales, we observed Canavan disease in 28 patients, with a subset of 13 patients being treated with AAV2-ASPA. Each patient received 9 × 10(11) vector genomes via intraparenchymal delivery at six brain infusion sites. Safety data collected over a minimum 5-year follow-up period showed a lack of long-term adverse events related to the AAV2 vector. Posttreatment effects were analyzed using a generalized linear mixed model, which showed changes in predefined surrogate markers of disease progression and clinical assessment subscores. AAV2-ASPA gene therapy resulted in a decrease in elevated NAA in the brain and slowed progression of brain atrophy, with some improvement in seizure frequency and with stabilization of overall clinical status.


Assuntos
Doença de Canavan/terapia , Terapia Genética , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Doença de Canavan/metabolismo , Criança , Pré-Escolar , Humanos , Lactente , Estudos Prospectivos
20.
Sci China Life Sci ; 55(12): 1109-19, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23233226

RESUMO

In this work, the most detrimental missense mutations of aspartoacylase that cause Canavan's disease were identified computationally and the substrate binding efficiencies of those missense mutations were analyzed. Out of 30 missense mutations, I-Mutant 2.0, SIFT and PolyPhen programs identified 22 variants that were less stable, deleterious and damaging respectively. Subsequently, modeling of these 22 variants was performed to understand the change in their conformations with respect to the native aspartoacylase by computing their root mean squared deviation (RMSD). Furthermore, the native protein and the 22 mutants were docked with the substrate NAA (N-Acetyl-Aspartic acid) to explain the substrate binding efficiencies of those detrimental missense mutations. Among the 22 mutants, the docking studies identified that 15 mutants caused lower binding affinity for NAA than the native protein. Finally, normal mode analysis determined that the loss of binding affinity of these 15 mutants was caused by altered flexibility in the amino acids that bind to NAA compared with the native protein. Thus, the present study showed that the majority of the substrate-binding amino acids in those 15 mutants displayed loss of flexibility, which could be the theoretical explanation of decreased binding affinity between the mutant aspartoacylases and NAA.


Assuntos
Amidoidrolases/genética , Doença de Canavan/genética , Mutação de Sentido Incorreto , Amidoidrolases/química , Doença de Canavan/enzimologia , Humanos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA