Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
BMC Med Genomics ; 17(1): 124, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711024

RESUMO

BACKGROUND: Glycogen storage disease (GSD) is a disease caused by excessive deposition of glycogen in tissues due to genetic disorders in glycogen metabolism. Glycogen storage disease type I (GSD-I) is also known as VonGeirk disease and glucose-6-phosphatase deficiency. This disease is inherited in an autosomal recessive manner, and both sexes can be affected. The main symptoms include hypoglycaemia, hepatomegaly, acidosis, hyperlipidaemia, hyperuricaemia, hyperlactataemia, coagulopathy and developmental delay. CASE PRESENTATION: Here, we present the case of a 13-year-old female patient with GSD Ia complicated with multiple inflammatory hepatic adenomas. She presented to the hospital with hepatomegaly, hypoglycaemia, and epistaxis. By clinical manifestations and imaging and laboratory examinations, we suspected that the patient suffered from GSD I. Finally, the diagnosis was confirmed by liver pathology and whole-exome sequencing (WES). WES revealed a synonymous mutation, c.648 G > T (p.L216 = , NM_000151.4), in exon 5 and a frameshift mutation, c.262delG (p.Val88Phefs*14, NM_000151.4), in exon 2 of the G6PC gene. According to the pedigree analysis results of first-generation sequencing, heterozygous mutations of c.648 G > T and c.262delG were obtained from the patient's father and mother. Liver pathology revealed that the solid nodules were hepatocellular hyperplastic lesions, and immunohistochemical (IHC) results revealed positive expression of CD34 (incomplete vascularization), liver fatty acid binding protein (L-FABP) and C-reactive protein (CRP) in nodule hepatocytes and negative expression of ß-catenin and glutamine synthetase (GS). These findings suggest multiple inflammatory hepatocellular adenomas. PAS-stained peripheral hepatocytes that were mostly digested by PAS-D were strongly positive. This patient was finally diagnosed with GSD-Ia complicated with multiple inflammatory hepatic adenomas, briefly treated with nutritional therapy after diagnosis and then underwent living-donor liver allotransplantation. After 14 months of follow-up, the patient recovered well, liver function and blood glucose levels remained normal, and no complications occurred. CONCLUSION: The patient was diagnosed with GSD-Ia combined with multiple inflammatory hepatic adenomas and received liver transplant treatment. For childhood patients who present with hepatomegaly, growth retardation, and laboratory test abnormalities, including hypoglycaemia, hyperuricaemia, and hyperlipidaemia, a diagnosis of GSD should be considered. Gene sequencing and liver pathology play important roles in the diagnosis and typing of GSD.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Neoplasias Hepáticas , Transplante de Fígado , Humanos , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/patologia , Feminino , Adolescente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/complicações , Adenoma/genética , Adenoma/complicações , Adenoma/patologia , Adenoma de Células Hepáticas/genética , Adenoma de Células Hepáticas/complicações , Adenoma de Células Hepáticas/patologia , Inflamação/genética , Inflamação/patologia , Inflamação/complicações
2.
BMJ Case Rep ; 17(5)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782444

RESUMO

Glycogen storage disease type 1A (GSD1A), also known as Von Gierke's disease, is a rare autosomal recessive disorder affecting glycogen metabolism in the liver. It most commonly presents in infancy with hypoglycaemia and failure to thrive, but cases have been reported as undiagnosed until adulthood. A woman in her early 20s with diabetes mellitus presented with right upper quadrant pain and was found to have several haemorrhagic hepatic adenomas. This patient had insulin-dependent diabetes since a pancreatectomy at age 9 months due to continued episodes of hypoglycaemia and suspected insulinoma. During the hospital stay, the hepatic adenomas were embolised, but significant lactic acidosis and hypoglycaemia continued. Further workup revealed a chronic lactic acid level, during several hospital stays, of above 5 mmol/L. After cytology of hepatic tissue ruled out hepatocellular carcinoma, the patient was discharged and recommended to follow-up for genetic testing, which confirmed the diagnosis of GSD1A.


Assuntos
Hiperinsulinismo Congênito , Doença de Depósito de Glicogênio Tipo I , Neoplasias Hepáticas , Humanos , Feminino , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/diagnóstico , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/diagnóstico , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Adulto , Adenoma de Células Hepáticas/genética , Adenoma de Células Hepáticas/diagnóstico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Adulto Jovem , Adenoma/genética , Adenoma/diagnóstico , Adenoma/complicações , Adenoma/cirurgia , Diagnóstico Diferencial
3.
J Med Case Rep ; 18(1): 14, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212860

RESUMO

BACKGROUND: Glycogen storage disease type IX is a rare disorder that can cause a wide variety of symptoms depending on the specific deficiency of the phosphorylase kinase enzyme and the organs it affects. CASE PRESENTATION: A 4-and-a-half-year-old Caucasian girl was referred to our clinic with a liver biopsy report indicating a diagnosis of glycogen storage disease. Prior to being referred to our clinic, the patient had been under the care of pediatric gastroenterologists. The patient's initial symptoms included chronic abdominal pain, constipation, and elevated liver transaminase. With the help of the pediatric gastroenterologists, cholestasis, Wilson disease, and autoimmune hepatitis were ruled out. Given that glycogen storage diseases type I and type III are the most common, we initially managed the patient with frequent feedings and a diet that included complex carbohydrates such as a corn starch supplement and a lactose restriction. Following an unfavorable growth velocity and hepatomegaly during the follow-up period, genetic analysis was conducted, which revealed a novel mutation of the phosphorylase kinase regulatory subunit beta gene- a c.C412T (P.Q138x) mutation. As the diagnosis of glycogen storage disease type IX was confirmed, the treatment regimen was altered to a high protein diet (more than 2 g/kg/day) and a low fat diet. CONCLUSION: Given the mild and varied clinical manifestations of glycogen storage disease type IX, it is possible for the diagnosis to be overlooked. It is important to consider glycogen storage disease type IX in children who present with unexplained hepatomegaly and elevated transaminase levels. Furthermore, due to the distinct management of glycogen storage disease type IX compared with glycogen storage disease type I and glycogen storage disease type III, genetic analysis is essential for an accurate diagnosis.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Doença de Depósito de Glicogênio , Pré-Escolar , Feminino , Humanos , Dor Abdominal/etiologia , Constipação Intestinal , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/patologia , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Doença de Depósito de Glicogênio Tipo I/genética , Hepatomegalia/patologia , Irã (Geográfico) , Fígado/patologia , Mutação , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Transaminases
4.
J Inherit Metab Dis ; 47(1): 93-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37421310

RESUMO

Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.


Assuntos
Carcinoma Hepatocelular , Doença de Depósito de Glicogênio Tipo II , Doença de Depósito de Glicogênio Tipo I , Doença de Depósito de Glicogênio , Neoplasias Hepáticas , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/terapia , Doença de Depósito de Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Doença de Depósito de Glicogênio Tipo I/complicações , Fígado/metabolismo , Glicogênio/metabolismo , Terapia Genética/métodos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia
5.
PLoS One ; 18(11): e0288965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033126

RESUMO

Glycogen storage disease type I (GSD I) is a rare autosomal recessive inborn error of carbohydrate metabolism caused by the defects of glucose-6-phosphatase complex (G6PC). Disease causing variants in the G6PC gene, located on chromosome 17q21 result in glycogen storage disease type Ia (GSD Ia). Age of onset of GSD Ia ranges from 0.5 to 25 years with presenting features including hemorrhage, hepatic, physical and blood related abnormalities. The overall goal of proposed study was clinical and genetic characterization of GSD Ia cases from Pakistani population. This study included forty GSD Ia cases presenting with heterogeneous clinical profile including hypoglycemia, hepatomegaly, lactic acidosis i.e., pH less than 7.2, hyperuricemia, seizures, epistaxis, hypertriglyceridemia (more than180 mg/dl) and sometimes short stature. All coding exons and intron-exon boundaries of G6PC gene were screened to identify pathogenic variant in 20 patients based on availability of DNA samples and willingness to participate in molecular analysis. Pathogenic variant analysis was done using PCR-Sanger sequencing method and pathogenic effect predictions for identified variants were carried out using PROVEAN, MutationTaster, Polyphen 2, HOPE, Varsome, CADD, DANN, SIFT and HSF software. Overall, 21 variants were detected including 8 novel disease causing variants i.e., G6PC (NM_000151.4):c.71A>C (p.Gln24Pro), c.109G>C(p.Ala37Pro), c.133G>C(p.Val45Leu), c.49_50insT c.205G>A(p.Asp69Asn), c.244C>A(p.Gln82Lys) c.322A>C(p.Thr108Pro) and c.322A>C(p.Cys284Tyr) in the screened regions of G6PC gene. Out of 13 identified polymorphisms, 3 were identified in heterozygous condition while 10 were found in homozygous condition. This study revealed clinical presentation of GSD Ia cases from Pakistan and identification of novel disease-causing sequence variants in coding region and intron-exon boundaries of G6PC gene.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Doença de Depósito de Glicogênio Tipo I/patologia , Fígado/metabolismo , Mutação , Paquistão , População do Sul da Ásia/genética
6.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788110

RESUMO

Glycogen storage disease type 1a (GSD1a) is caused by a congenital deficiency of glucose-6-phosphatase-α (G6Pase-α, encoded by G6PC), which is primarily associated with life-threatening hypoglycemia. Although strict dietary management substantially improves life expectancy, patients still experience intermittent hypoglycemia and develop hepatic complications. Emerging therapies utilizing new modalities such as adeno-associated virus and mRNA with lipid nanoparticles are under development for GSD1a but potentially require complicated glycemic management throughout life. Here, we present an oligonucleotide-based therapy to produce intact G6Pase-α from a pathogenic human variant, G6PC c.648G>T, the most prevalent variant in East Asia causing aberrant splicing of G6PC. DS-4108b, a splice-switching oligonucleotide, was designed to correct this aberrant splicing, especially in liver. We generated a mouse strain with homozygous knockin of this variant that well reflected the pathophysiology of patients with GSD1a. DS-4108b recovered hepatic G6Pase activity through splicing correction and prevented hypoglycemia and various hepatic abnormalities in the mice. Moreover, DS-4108b had long-lasting efficacy of more than 12 weeks in mice that received a single dose and had favorable pharmacokinetics and tolerability in mice and monkeys. These findings together indicate that this oligonucleotide-based therapy could provide a sustainable and curative therapeutic option under easy disease management for GSD1a patients with G6PC c.648G>T.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Hipoglicemia , Humanos , Camundongos , Animais , Oligonucleotídeos/genética , Camundongos Knockout , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Doença de Depósito de Glicogênio Tipo I/complicações , Fígado/patologia , Glucose-6-Fosfatase/genética , Hipoglicemia/genética , Hipoglicemia/prevenção & controle
7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 230-236, 2023 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37283108

RESUMO

A 24-year-old male was admitted due to recurrent redness, swelling, fever and pain in the ankle, frequently accompanied by hungry feeling. Dual energy CT scans showed multiple small gouty stones in the posterior edge of the bilateral calcaneus and in the space between the bilateral metatarsophalangeal joints. The laboratory examination results indicated hyperlipidemia, high lactate lipids, and low fasting blood glucose. Histopathology of liver biopsy showed significant glycogen accumulation. The results of gene sequencing revealed the compound heterozygous mutations of the G6PC gene c.248G>A (p.Arg83His) and c.238T>A (p.Phe80Ile) in the proband. The c.248G>A mutation was from mother and the c.238T>A mutation was from father. The diagnosis of glycogen storage disease type Ⅰa was confirmed. After giving a high starch diet and limiting monosaccharide intake, as well as receiving uric acid and blood lipids lowering therapy, the condition of the patient was gradually stabilized. After a one-year follow-up, there were no acute episodes of gout and a significant improvement in hungry feeling in the patient.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Gota , Masculino , Humanos , Adulto Jovem , Adulto , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Doença de Depósito de Glicogênio Tipo I/genética , Gota/diagnóstico , Gota/complicações , Gota/genética , Mutação , Lipídeos
8.
Amino Acids ; 55(5): 695-708, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36944899

RESUMO

Glucose-6-phosphatase-α (G6Pase-α) catalyzes the hydrolysis of glucose-6-phosphate to glucose and functions as a key regulator in maintaining blood glucose homeostasis. Deficiency in G6Pase-α causes glycogen storage disease 1a (GSD1a), an inherited disorder characterized by life-threatening hypoglycemia and other long-term complications. We have developed a potential mRNA-based therapy for GSD1a and demonstrated that a human G6Pase-α (hG6Pase-α) variant harboring a single serine (S) to cysteine (C) substitution at the amino acid site 298 (S298C) had > twofold increase in protein expression, resulting in improved in vivo efficacy. Here, we sought to investigate the mechanisms contributing to the increased expression of the S298C variant. Mutagenesis of hG6Pase-α identified distinct protein variants at the 298 amino acid position with substantial reduction in protein expression in cultured cells. Kinetic analysis of expression and subcellular localization in mammalian cells, combined with cell-free in vitro translation assays, revealed that altered protein expression stemmed from differences in cellular protein stability rather than biosynthetic rates. Site-specific mutagenesis studies targeting other cysteines of the hG6Pase-α S298C variant suggest the observed improvements in stability are not due to additional disulfide bond formation. The glycosylation at Asparagine (N)-96 is critical in maintaining enzymatic activity and mutations at position 298 mainly affected glycosylated forms of hG6Pase-α. Finally, proteasome inhibition by lactacystin improved expression levels of unstable hG6Pase-α variants. Taken together, these data uncover a critical role for a single amino acid substitution impacting the stability of G6Pase-α and provide insights into the molecular genetics of GSD1a and protein engineering for therapeutic development.


Assuntos
Glucose-6-Fosfatase , Doença de Depósito de Glicogênio Tipo I , Animais , Humanos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Cinética , Glucose/metabolismo , Aminoácidos , Mamíferos/metabolismo
9.
Immunol Res ; 71(1): 107-111, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36129616

RESUMO

Glycogen storage disease type Ib (GSDIb) is an autosomal recessive disorder caused by mutations of SLC37A4 gene, which encodes glucose 6-phosphate translocase (G6PT). Malfunction of G6PT leads to excessive fat and glycogen in liver, kidney, and intestinal mucosa. The clinical manifestations of GSD1b include hepatomegaly, renomegaly, neutropenia, hypoglycemia, and lactic acidosis. Furthermore, the disorder may result in severe complications in long-term including inflammatory bowel disease (IBD), hepatocellular adenomas (HCA), short stature, and autoimmune disorders, which stem from neutropenia and neutrophil dysfunction. Here, we represent a novel mutation of SLC37A4 in a 5-month girl who has a history of hospitalizations several times due to recurrent infection and her early presentations were failure to thrive and tachypnea. Further investigations revealed mild atrial septal defect, mild arteriovenous malformation from left lung, esophageal reflux, Horseshoe kidney, and urinary reflux in this patient. Moreover, the lab tests showed neutropenia, immunoglobulin (Ig) G and IgA deficiency, as well as thrombocytosis. Whole exome sequencing revealed c.1245G > A P.W415 homozygous mutation in SLC37A4 gene and c.580G > A p.V1941 heterozygous mutation in PIK3CD gene. This study shows that manifestations of GSD1b may not be limited to what was previously known and it should be considered in a wider range of patients.


Assuntos
Malformações Arteriovenosas , Rim Fundido , Doença de Depósito de Glicogênio Tipo I , Neutropenia , Feminino , Humanos , Antiporters/genética , Malformações Arteriovenosas/complicações , Rim Fundido/complicações , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/complicações , Proteínas de Transporte de Monossacarídeos/genética , Mutação/genética , Neutropenia/genética , Lactente
10.
Hematology Am Soc Hematol Educ Program ; 2022(1): 658-665, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36485107

RESUMO

Severe congenital neutropenias (SCNs) are rare diseases, and to date about 30 subtypes have been described according to their genetic causes. Standard care aims to prevent infections and limit the risk of leukemic transformation; however, several subtypes may have additional organ dysfunction(s), requiring specialized care. Granulocyte colony-stimulating factor and hematopoietic stem cell transplantation are now the bedrock of standard care. Better understanding of SCN mechanisms now offers the possibility of adapted therapy for some entities. An inhibitor of sodium glucose cotransporter, an antidiabetic drug, may attenuate glycogen storage disease type Ib and glucose-6-phosphatase catalytic subunit 3 neutropenias by clearing 1,5-anhydroglucitol, the precursor of the phosphate ester responsible for these SCNs. Chemokine receptor CXCR4 inhibitors contribute to reversing the leukocyte defect in warts, hypoglobulinemia, infections, and myelokathexis syndrome. All these new approaches use oral drugs, which notably improve quality of life. Additionally, improved research into clonal evolution has highlighted some ways to potentially prevent leukemia, such as stimulating somatic genetic rescue, a physiological process that might limit the risk of leukemic transformation.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Neutropenia , Humanos , Qualidade de Vida , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Neutropenia/genética , Neutropenia/terapia , Neutropenia/congênito , Doença de Depósito de Glicogênio Tipo I/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo I/genética , Fator Estimulador de Colônias de Granulócitos/uso terapêutico
11.
BMC Med Genomics ; 15(1): 205, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167523

RESUMO

BACKGROUND: Glycogen storage disease type 1a (GSD1a) is an inborn genetic disease caused by glucose-6-phosphatase-α (G6Pase-α) deficiency and is often observed to lead to endogenous glucose production disorders manifesting as hypoglycemia, hyperuricemia, hyperlipidemia, lactic acidemia, hepatomegaly, and nephromegaly. The development of GSD1a with diabetes is relatively rare, and the underlying pathogenesis remains unclear. CASE PRESENTATION: Here we describe a case of a 25-year-old Chinese female patient with GSD1a, who developed uncontrolled type 2 diabetes mellitus (T2DM) as a young adult. The patient was diagnosed with GSD1a disease at the age of 10 and was subsequently treated with an uncooked cornstarch diet. Recently, the patient was treated in our hospital for vomiting and electrolyte imbalance and was subsequently diagnosed with T2DM. Owing to the impaired secretory function of the patient's pancreatic islets, liver dysfunction, hypothyroidism, severe hyperlipidemia, and huge hepatic adenoma, we adopted diet control, insulin therapy, and hepatic adenoma resection to alleviate this situation. The WES discovered compound heterozygous mutations at the exon 5 of G6PC gene at 17th chromosome in the patient, c.648G>T (p.L216 L, NM_000151.4, rs80356484) in her father and c.674T>C (p.L225 P, NM_000151.4, rs1555560128) in her mother. c.648G>T is a well-known splice-site mutation, which causes CTG changing to CTT at protein 216 and creates a new splicing site 91 bp downstream of the authentic splice site, though both codons encode leucine. c.674T>C is a known missense mutation that causes TGC to become CGC at protein 225, thereby changing from coding for leucine to coding for proline. CONCLUSION: We report a rare case of GSD1a with T2DM. On the basis of the pathogenesis of GSD1a, we recommend attentiveness to possible development of fasting hypoglycemia caused by GSD and postprandial hyperglycemia from diabetes. As the disease is better identified and treated, and as patients with GSD live longer, this challenge may appear more frequently. Therefore, it is necessary to have a deeper and more comprehensive understanding of the pathophysiology of the disease and explore suitable treatment options.


Assuntos
Adenoma , Diabetes Mellitus Tipo 2 , Doença de Depósito de Glicogênio Tipo I , Insulinas , Adulto , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Eletrólitos , Feminino , Glucose , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/genética , Humanos , Leucina , Prolina , Amido
12.
Transgenic Res ; 31(6): 593-606, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36006546

RESUMO

Glycogen storage disease type 1 (GSD1) is a rare hereditary monogenic disease characterized by the disturbed glucose metabolism. The most widespread variant of GSD1 is GSD1a, which is a deficiency of glucose-6-phosphatase-ɑ. Glucose-6-phosphatase-ɑ is expressed only in liver, kidney, and intestine, and these organs are primarily affected by its deficiency, and long-term complications of GSD1a include hepatic tumors and chronic liver disease. This article is a brief overview of existing animal models for GSD1a, from the first mouse model of 1996 to modern CRISPR/Cas9-generated ones. First whole-body murine models demonstrated exact metabolic symptoms of GSD1a, but the animals did not survive weaning. The protocol for glucose treatment allowed prolonged survival of affected animals, but long-term complications, such as hepatic tumorigenesis, could not be investigated. Next, organ-specific knockout models were developed, and most of the metabolic research was performed on liver glucose-6-phosphate-deficient mice. Naturally occuring mutation was also discovered in dogs. All these models are widely used to study GSD1a from metabolic and physiological standpoints and to develop possible treatments involving gene therapy. Research performed using these models helped elucidate the role of glycogen and lipid accumulation, hypoxia, mitochondrial dysfunction, and autophagy impairment in long-term complications of GSD1a, including hepatic tumorigenesis. Recently, gene replacement therapy and genome editing were tested on described models, and some of the developed approaches have reached clinical trials.


Assuntos
Glucose-6-Fosfatase , Doença de Depósito de Glicogênio Tipo I , Camundongos , Cães , Animais , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/metabolismo , Fígado/metabolismo , Modelos Animais de Doenças , Carcinogênese
13.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613675

RESUMO

Glycogen storage diseases (GSDs) represent a model of pathological accumulation of glycogen disease in the kidney that, in animal models, results in nephropathy due to abnormal autophagy and mitochondrial function. Patients with Glycogen Storage Disease 1a (GSD1a) accumulate glycogen in the kidneys and suffer a disease resembling diabetic nephropathy that can progress to renal failure. In this study, we addressed whether urine-derived epithelial cells (URECs) from patients with GSD1a maintain their biological features, and whether they can be used as a model to study the renal and metabolic phenotypes of this genetic condition. Studies were performed on cells extracted from urine samples of GSD1a and healthy subjects. URECs were characterized after the fourth passage by transmission electron microscopy and immunofluorescence. Reactive oxygen species (ROS), at different glucose concentrations, were measured by fluorescent staining. We cultured URECs from three patients with GSD1a and three healthy controls. At the fourth passage, URECs from GSD1a patients maintained their massive glycogen content. GSD1a and control cells showed the ciliary structures of renal tubular epithelium and the expression of epithelial (E-cadherin) and renal tubular cells (aquaporin 1 and 2) markers. Moreover, URECs from both groups responded to changes in glucose concentrations by modulating ROS levels. GSD1a cells were featured by a specific response to the low glucose stimulus, which is the condition that more resembles the metabolic derangement of patients with GSD1a. Through this study, we demonstrated that URECs might represent a promising experimental model to study the molecular mechanisms leading to renal damage in GSD1a, due to pathological glycogen storage.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Doença de Depósito de Glicogênio , Células Epiteliais/metabolismo , Glucose , Glicogênio , Doença de Depósito de Glicogênio Tipo I/genética , Rim/metabolismo , Fenótipo , Espécies Reativas de Oxigênio , Humanos
14.
Kobe J Med Sci ; 67(2): E71-E78, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34795158

RESUMO

Glycogen storage disease type Ia (GSDIa, OMIM #232200) is an autosomal recessive metabolic disease characterized by impaired glucose homeostasis and has a long-term complication of hepatocellular adenoma/carcinoma. GSDIa is caused by deleterious mutations in the glucose-6-phosphatase gene (G6PC). Recent studies have suggested that early treatment by gene replacement therapy may be a good solution to correct the glucose metabolism and prevent serious late complications. Early treatment of the disease needs an early disease detection system. Thus, we aimed to develop a screening system for GSDIa using dried blood spots (DBS) to detect the c.648G>T mutation in G6PC, which is a frequent mutation in the East Asian population. In this study, a total of 51 DBS samples (50 healthy controls and one patient with c.648G>T) were tested by modified competitive oligonucleotide priming PCR (mCOP-PCR). In control DBS samples, the c.648G allele was amplified at lower Cq (quantification cycle) values (<11), while the c.648T allele was amplified at higher Cq values (>14). In the patient DBS sample, the c.648T allele was amplified at a lower Cq value (<11), and the c.648G allele was amplified at a higher Cq value (>14). Based on these findings, we concluded that our mCOP-PCR system clearly differentiated the wild-type and mutant alleles, and may be applicable for screening for GSDIa with the c.648G>T mutation in G6PC.


Assuntos
Doença de Depósito de Glicogênio Tipo I/diagnóstico , Mutação/genética , Reação em Cadeia da Polimerase/métodos , Estudos de Casos e Controles , Teste em Amostras de Sangue Seco , Doença de Depósito de Glicogênio Tipo I/genética , Humanos
15.
Hepatology ; 74(5): 2491-2507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34157136

RESUMO

BACKGROUND AND AIMS: Patients with glycogen storage disease type 1a (GSD-1a) primarily present with life-threatening hypoglycemia and display severe liver disease characterized by hepatomegaly. Despite strict dietary management, long-term complications still occur, such as liver tumor development. Variations in residual glucose-6-phosphatase (G6PC1) activity likely contribute to phenotypic heterogeneity in biochemical symptoms and complications between patients. However, lack of insight into the relationship between G6PC1 activity and symptoms/complications and poor understanding of the underlying disease mechanisms pose major challenges to provide optimal health care and quality of life for GSD-1a patients. Currently available GSD-1a animal models are not suitable to systematically investigate the relationship between hepatic G6PC activity and phenotypic heterogeneity or the contribution of gene-gene interactions (GGIs) in the liver. APPROACH AND RESULTS: To meet these needs, we generated and characterized a hepatocyte-specific GSD-1a mouse model using somatic CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing. Hepatic G6pc editing reduced hepatic G6PC activity up to 98% and resulted in failure to thrive, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly, hepatic steatosis (HS), and increased liver tumor incidence. This approach was furthermore successful in simultaneously modulating hepatic G6PC and carbohydrate response element-binding protein, a transcription factor that is activated in GSD-1a and protects against HS under these conditions. Importantly, it also allowed for the modeling of a spectrum of GSD-1a phenotypes in terms of hepatic G6PC activity, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly and HS. CONCLUSIONS: In conclusion, we show that somatic CRISPR/Cas9-mediated gene editing allows for the modeling of a spectrum of hepatocyte-borne GSD-1a disease symptoms in mice and to efficiently study GGIs in the liver. This approach opens perspectives for translational research and will likely contribute to personalized treatments for GSD-1a and other genetic liver diseases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Animais de Doenças , Edição de Genes/métodos , Heterogeneidade Genética , Doença de Depósito de Glicogênio Tipo I/genética , Fenótipo , Animais , Vetores Genéticos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008754

RESUMO

Glycogen storage disease type Ia (GSDIa) is an inherited metabolic disorder caused by mutations in the enzyme glucose-6-phosphatase-α (G6Pase-α). Affected individuals develop renal and liver complications, including the development of hepatocellular adenoma/carcinoma and kidney failure. The purpose of this study was to identify potential biomarkers of the evolution of the disease in GSDIa patients. To this end, we analyzed the expression of exosomal microRNAs (Exo-miRs) in the plasma exosomes of 45 patients aged 6 to 63 years. Plasma from age-matched normal individuals were used as controls. We found that the altered expression of several Exo-miRs correlates with the pathologic state of the patients and might help to monitor the progression of the disease and the development of late GSDIa-associated complications.


Assuntos
Exossomos/genética , Doença de Depósito de Glicogênio Tipo I/genética , Nefropatias/genética , Fígado/lesões , Fígado/metabolismo , MicroRNAs/genética , Adolescente , Adulto , Fatores Etários , Animais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Exossomos/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/patologia , Humanos , Nefropatias/sangue , Nefropatias/patologia , Masculino , Camundongos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
17.
Mol Ther ; 29(4): 1602-1610, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33359667

RESUMO

Glycogen storage disease type Ia (GSD-Ia), deficient in glucose-6-phosphatase-α (G6PC), is characterized by impaired glucose homeostasis and a hallmark of fasting hypoglycemia. We have developed a recombinant adeno-associated virus (rAAV) vector-mediated gene therapy for GSD-Ia that is currently in a phase I/II clinical trial. While therapeutic expression of the episomal rAAV-G6PC clinical vector is stable in mice, the long-term durability of expression in humans is currently being established. Here we evaluated CRISPR/Cas9-based in vivo genome editing technology to correct a prevalent pathogenic human variant, G6PC-p.R83C. We have generated a homozygous G6pc-R83C mouse strain and shown that the G6pc-R83C mice manifest impaired glucose homeostasis and frequent hypoglycemic seizures, mimicking the pathophysiology of GSD-Ia patients. We then used a CRISPR/Cas9-based gene editing system to treat newborn G6pc-R83C mice and showed that the treated mice grew normally to age 16 weeks without hypoglycemia seizures. The treated G6pc-R83C mice, expressing ≥ 3% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, displayed normalized blood metabolites, and could sustain 24 h of fasting. Taken together, we have developed a second-generation therapy in which in vivo correction of a pathogenic G6PC-p.R83C variant in its native genetic locus could lead to potentially permanent, durable, long-term correction of the GSD-Ia phenotype.


Assuntos
Edição de Genes , Terapia Genética , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Animais , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Glucose/genética , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Doença de Depósito de Glicogênio Tipo I/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos
18.
Rev. Paul. Pediatr. (Ed. Port., Online) ; 39: e2020046, 2021. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1155478

RESUMO

ABSTRACT Objective: To perform anthropometric and dietary evaluation of patients with glycogenosis type Ia and Ib. Methods: This cross-sectional study is composed of a sample of 11 patients with glycogenosis divided into two subgroups according to the classification of glycogenosis (type Ia=5 and type Ib=6), aged between 4 and 20 years. The analyzed anthropometric variables were weight, height, body mass index, and measures of lean and fat body mass, which were compared with reference values. For dietary assessment, a food frequency questionnaire was used to calculate energy and macronutrients intake as well as the amount of raw cornstarch consumed. Mann-Whitney U test and Fisher's exact test were performed, considering a significance level of 5%. Results: Patients ingested raw cornstarch in the amount of 0.49 to 1.34 g/kg/dose at a frequency of six times a day, which is lower than recommended (1.75-2.50 g/kg/dose, four times a day). The amount of energy intake was, on average, 50% higher than energy requirements; however, carbohydrate intake was below the adequacy percentage in 5/11 patients. Short stature was found in 4/10 patients; obesity, in 3/11; and muscle mass deficit, in 7/11. There were no statistical differences between the subgroups. Conclusions: In patients with glycogenosis type I, there was deficit in growth and muscle mass, but no differences were found between the subgroups (Ia and Ib). Although the diet did not exceed the adequacy of carbohydrates, about 1/3 of the patients presented obesity, probably due to higher energy intake.


RESUMO Objetivo: Realizar avaliação antropométrica e dietética de pacientes com glicogenose tipos Ia e Ib. Métodos: Estudo transversal composto de uma amostra de 11 pacientes com glicogenose divididos em dois subgrupos de acordo com a classificação da glicogenose (tipo Ia=5; tipo Ib=6), com idades entre 4 e 20 anos. As variáveis antropométricas analisadas foram peso, estatura, índice de massa corporal e medidas de massa magra e gorda, que foram comparadas com valores de referência. Para avaliação dietética, foi utilizado um questionário de frequência alimentar para cálculo de ingestão de energia e macronutrientes, além da quantidade de amido cru ingerida. Realizaram-se testes U de Mann-Whitney e exato de Fisher, com nível de significância de 5%. Resultados: Os pacientes ingeriram amido cru na quantidade de 0,49 a 1,34 g/kg/dose na frequência de seis vezes ao dia, inferior à dosagem preconizada (1,75-2,50 g/kg/dose quatro vezes ao dia). A quantidade de energia consumida foi, em média, 50% a mais que as necessidades, contudo o consumo de carboidratos foi abaixo da porcentagem de adequação em 5/11 pacientes. Baixa estatura ocorreu em 4/10 pacientes, obesidade em 3/11 e déficit de massa muscular em 7/11. Não houve diferença estatística entre os subgrupos. Conclusões: Em pacientes com glicogenose tipo I, houve déficit de crescimento e de massa muscular, mas não diferença significante entre os subgrupos (Ia e Ib). Embora a dieta não tenha ultrapassado a adequação de carboidratos, 1/3 dos pacientes apresentou obesidade, provavelmente pela maior ingestão de energia.


Assuntos
Humanos , Animais , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Ingestão de Energia/fisiologia , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Avaliação Nutricional , Antropometria/métodos , Dieta/estatística & dados numéricos , Magreza , Composição Corporal , Estatura/fisiologia , Peso Corporal/fisiologia , Corpo Adiposo/fisiologia , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/mortalidade , Doença de Depósito de Glicogênio Tipo I/epidemiologia , Índice de Massa Corporal , Estudos Transversais , Inquéritos e Questionários/normas , Desenvolvimento Muscular/fisiologia , Dieta/tendências , Nanismo/epidemiologia , Necessidades Nutricionais , Obesidade/epidemiologia
19.
Dis Model Mech ; 13(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32620541

RESUMO

Most patients affected by glycogen storage disease type 1a (GSD1a), an inherited metabolic disorder caused by mutations in the enzyme glucose-6-phosphatase-α (G6Pase-α), develop renal and liver complications, including the development of hepatocellular adenoma/carcinoma. The purpose of this study was to identify potential biomarkers of the pathophysiology of the GSD1a-affected liver. To this end, we used the plasma exosomes of a murine model of GSD1a, the LS-G6pc-/- mouse, to uncover the modulation in microRNA expression associated with the disease. The microRNAs differentially expressed between LS-G6pc-/- and wild-type mice, LS-G6pc-/- mice with hepatocellular adenoma and LS-G6pc-/- mice without adenoma, and LS-G6pc-/- mice with amyloidosis and LS-G6pc-/- mice without amyloidosis were identified. Pathway analysis demonstrated that the target genes of the differentially expressed microRNA were significantly enriched for the insulin signaling pathway, glucose and lipid metabolism, Wnt/ß-catenin, telomere maintenance and hepatocellular carcinoma, and chemokine and immune regulation signaling pathways. Although some microRNAs were common to the different pathologic conditions, others were unique to the cancerous or inflammatory status of the animals. Therefore, the altered expression of several microRNAs is correlated with various pathologic liver states and might help to distinguish them during the progression of the disease and the development of late GSD1a-associated complications.


Assuntos
MicroRNA Circulante/genética , Exossomos/genética , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/genética , Inflamação/genética , Fígado/lesões , Amiloidose/genética , Animais , Biomarcadores/sangue , Hipóxia Celular , Quimiocinas/metabolismo , MicroRNA Circulante/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glucose-6-Fosfatase/metabolismo , Inflamação/sangue , Inflamação/patologia , Insulina/metabolismo , Camundongos , Modelos Biológicos , Especificidade de Órgãos , Reprodutibilidade dos Testes , Fatores de Tempo , Via de Sinalização Wnt
20.
Biochem Biophys Res Commun ; 527(3): 824-830, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32430177

RESUMO

The current phase I/II clinical trial for human glycogen storage disease type-Ia (GSD-Ia) (NCT03517085) uses a recombinant adeno-associated virus (rAAV) vector expressing a codon-optimized human glucose-6-phosphatase-α (G6Pase-α or G6PC). DNA sequence changes introduced by codon-optimization can negatively impact gene expression. We therefore generated a novel variant in which a single amino acid change, S298C, is introduced into the native human G6PC sequence. Short term gene transfer study in G6pc-/- mice showed that the rAAV-G6PC-S298C vector is 3-fold more efficacious than the native rAAV-G6PC vector. We have shown previously that restoring 3% of normal hepatic G6Pase-α activity in G6pc-/- mice prevents hepatocellular adenoma/carcinoma (HCA/HCC) development and that mice harboring <3% of normal hepatic G6Pase-α activity are at risk of tumor development. We have also shown that G6Pase-α deficiency leads to hepatic autophagy impairment that can contribute to hepatocarcinogenesis. We now undertake a long-term (66-week) preclinical characterization of the rAAV-G6PC-S298C vector in GSD-Ia gene therapy. We show that the increased efficacy of rAAV-G6PC-S298C has enabled the G6pc-/- mice treated with a lower dose of this vector to survive long-term. We further show that mice expressing ≥3% of normal hepatic G6Pase-α activity do not develop hepatic tumors or autophagy impairment but mice expressing <3% of normal hepatic G6Pase-α activity display impaired hepatic autophagy with one developing HCA/HCC nodules. Our study shows that the rAAV-G6PC-S298C vector provides equal or greater efficacy to the codon optimization approach, offering a valuable alternative vector for clinical translation in human GSD-Ia.


Assuntos
Terapia Genética , Vetores Genéticos/uso terapêutico , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Mutação Puntual , Animais , Autofagia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA