Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Inherit Metab Dis ; 47(1): 93-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37421310

RESUMO

Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.


Assuntos
Carcinoma Hepatocelular , Doença de Depósito de Glicogênio Tipo II , Doença de Depósito de Glicogênio Tipo I , Doença de Depósito de Glicogênio , Neoplasias Hepáticas , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/terapia , Doença de Depósito de Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Doença de Depósito de Glicogênio Tipo I/complicações , Fígado/metabolismo , Glicogênio/metabolismo , Terapia Genética/métodos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia
2.
FASEB J ; 37(11): e23216, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779422

RESUMO

Glycogen storage disease type Ib (GSD-Ib) is an autosomal recessive disorder caused by a deficiency in the glucose-6-phosphate (G6P) transporter (G6PT) that is responsible for transporting G6P into the endoplasmic reticulum. GSD-Ib is characterized by disturbances in glucose homeostasis, neutropenia, and neutrophil dysfunction. Although some studies have explored neutrophils abnormalities in GSD-Ib, investigations regarding monocytes/macrophages remain limited so far. In this study, we examined the impact of G6PT deficiency on monocyte-to-macrophage differentiation using bone marrow-derived monocytes from G6pt-/- mice as well as G6PT-deficient human THP-1 monocytes. Our findings revealed that G6PT-deficient monocytes exhibited immature differentiation into macrophages. Notably, the impaired differentiation observed in G6PT-deficient monocytes seemed to be associated with abnormal glucose metabolism, characterized by enhanced glucose consumption through glycolysis, even under quiescent conditions with oxidative phosphorylation. Furthermore, we observed a reduced secretion of inflammatory cytokines in G6PT-deficient THP-1 monocytes during the inflammatory response, despite their elevated glucose consumption. In conclusion, this study sheds light on the significance of G6PT in monocyte-to-macrophage differentiation and underscores its importance in maintaining glucose homeostasis and supporting immune response in GSD-Ib. These findings may contribute to a better understanding of the pathogenesis of GSD-Ib and potentially pave the way for the development of targeted therapeutic interventions.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Animais , Camundongos , Humanos , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/metabolismo , Doença de Depósito de Glicogênio Tipo I/terapia , Glucose-6-Fosfatase/metabolismo , Glucose/metabolismo , Macrófagos/metabolismo
3.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788110

RESUMO

Glycogen storage disease type 1a (GSD1a) is caused by a congenital deficiency of glucose-6-phosphatase-α (G6Pase-α, encoded by G6PC), which is primarily associated with life-threatening hypoglycemia. Although strict dietary management substantially improves life expectancy, patients still experience intermittent hypoglycemia and develop hepatic complications. Emerging therapies utilizing new modalities such as adeno-associated virus and mRNA with lipid nanoparticles are under development for GSD1a but potentially require complicated glycemic management throughout life. Here, we present an oligonucleotide-based therapy to produce intact G6Pase-α from a pathogenic human variant, G6PC c.648G>T, the most prevalent variant in East Asia causing aberrant splicing of G6PC. DS-4108b, a splice-switching oligonucleotide, was designed to correct this aberrant splicing, especially in liver. We generated a mouse strain with homozygous knockin of this variant that well reflected the pathophysiology of patients with GSD1a. DS-4108b recovered hepatic G6Pase activity through splicing correction and prevented hypoglycemia and various hepatic abnormalities in the mice. Moreover, DS-4108b had long-lasting efficacy of more than 12 weeks in mice that received a single dose and had favorable pharmacokinetics and tolerability in mice and monkeys. These findings together indicate that this oligonucleotide-based therapy could provide a sustainable and curative therapeutic option under easy disease management for GSD1a patients with G6PC c.648G>T.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Hipoglicemia , Humanos , Camundongos , Animais , Oligonucleotídeos/genética , Camundongos Knockout , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Doença de Depósito de Glicogênio Tipo I/complicações , Fígado/patologia , Glucose-6-Fosfatase/genética , Hipoglicemia/genética , Hipoglicemia/prevenção & controle
4.
Clin Nephrol ; 99(4): 197-202, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871226

RESUMO

Type 1 glycogen storage disease (GSDI) is a rare autosomal recessive disorder caused by glucose-6-phosphatase (G6Pase) deficiency. We discuss a case of a 29-year-old gentleman who had GSDI with metabolic complications of hypoglycemia, hypertriglyceridemia, hyperuricemia, and short stature. He also suffered from advanced chronic kidney disease, nephrotic range proteinuria, and hepatic adenomas. He presented with acute pneumonia and refractory metabolic acidosis despite treatment with isotonic bicarbonate infusion, reversal of hypoglycemia, and lactic acidosis. He eventually required kidney replacement therapy. The case report highlights the multiple contributing mechanisms and challenges to managing refractory metabolic acidosis in a patient with GSDI. Important considerations for dialysis initiation, decision for long-term dialysis modality and kidney transplantation for patients with GSDI are also discussed in this case report.


Assuntos
Acidose , Doença de Depósito de Glicogênio Tipo I , Hipoglicemia , Insuficiência Renal Crônica , Masculino , Humanos , Adulto , Diálise Renal/efeitos adversos , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Doença de Depósito de Glicogênio Tipo I/terapia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Hipoglicemia/complicações , Hipoglicemia/terapia
5.
Arq. gastroenterol ; 58(1): 87-92, Jan.-Mar. 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1248988

RESUMO

ABSTRACT BACKGROUND Glycogen storage disease (GSD) type 1b is a multisystemic disease in which immune and infectious complications are present, in addition to the well-known metabolic manifestations of GSD. Treatment with granulocyte-colony stimulating factor (G-CSF) is often indicated in the management of neutropenia and inflammatory bowel disease. OBJECTIVE To report on the demographics, genotype, clinical presentation, management, and complications of pediatric patients with glycogen storage disease type 1b (GSD 1b), with special attention to immune-related complications. METHODS Retrospective case series of seven patients with GSD 1b diagnosed and followed at a tertiary university hospital in Brazil, from July/2000 until July/2016. RESULTS Mean age at referral was fourteen months. Diagnosis of GSD 1b was based on clinical and laboratory findings and supported by genetic studies in five cases. All patients presented suffered from neutropenia, managed with G-CSF - specifically Filgrastim. Hospitalizations for infections were frequent. Two patients developed inflammatory bowel disease. Six patients remained alive, one died at age 14 years and 9 months. The mean age at the end of the follow-up was 11.5 years. Compliance to treatment was suboptimal: poor compliance to medications, starch and dietetic management of GSD were documented, and outpatient appointments were frequently missed. CONCLUSION Managing GSD 1b is challenging not only for the chronic and multisystemic nature of this disease, but also for the additional demands related dietary restrictions, use of multiple medications and the need for frequent follow-up visits; furthermore in Brazil, the difficulties are increased in a scenario where we frequently care for patients with unfavorable socioeconomic status and with irregular supply of medications in the public health system.


RESUMO CONTEXTO Glicogenose (GSD) tipo 1b é uma doença multissistêmica em que complicações imunológicas e infecciosas estão presentes, além das manifestações metabólicas bem conhecidas da GSD. O tratamento com fator estimulador de colônias de granulócitos (G-CSF) é frequentemente indicado no tratamento da neutropenia e doença inflamatória intestinal. OBJETIVO Relatar sobre a dados demográficos, genótipo, apresentação clínica, manejo e complicações de pacientes pediátricos com GSD tipo 1b (GSD 1b), com atenção especial às complicações relacionadas ao sistema imunológico. MÉTODOS Série de casos retrospectiva de sete pacientes com GSD 1b diagnosticados e acompanhados em um hospital universitário terciário no Brasil, de julho/2000 a julho/2016. RESULTADOS A idade média no encaminhamento foi de 14 meses. O diagnóstico de GSD 1b foi baseado em achados clínicos e laboratoriais e apoiado por estudos genéticos em cinco casos. Todos os pacientes apresentaram neutropenia, tratada com G-CSF - especificamente Filgrastim. As hospitalizações por infecções foram frequentes. Dois pacientes desenvolveram doença inflamatória intestinal. Seis pacientes permanecem vivos, um morreu aos 14 anos e 9 meses de idade. A média de idade ao final do acompanhamento foi de 11,5 anos. A adesão ao tratamento foi sub-ótima: má adesão aos medicamentos, amido e manejo dietético de GSD foram documentados, e consultas ambulatoriais foram frequentemente perdidas. CONCLUSÃO O manejo da GSD 1b é um desafio, não apenas pela natureza crônica e multissistêmica desta doença, mas também pelas demandas adicionais relacionadas a restrições dietéticas, uso de múltiplos medicamentos e a necessidade de consultas de acompanhamento frequentes; no Brasil, isso ainda é dificultado em um cenário em que frequentemente atendemos pacientes com situação socioeconômica desfavorável e com oferta irregular de medicamentos no sistema público de saúde.


Assuntos
Humanos , Criança , Adolescente , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/terapia , Neutropenia , Brasil , Estudos Retrospectivos , Fator Estimulador de Colônias de Granulócitos
6.
J Inherit Metab Dis ; 44(1): 118-128, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32474930

RESUMO

Glycogen storage disease type Ia (GSD-Ia) is an inherited metabolic disease caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) which plays a critical role in blood glucose homeostasis by catalyzing the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate in the terminal step of glycogenolysis and gluconeogenesis. Patients with GSD-Ia manifest life-threatening fasting hypoglycemia along with the excessive accumulation of hepatic glycogen and triglycerides which results in hepatomegaly and a risk of long-term complications such as hepatocellular adenoma and carcinoma (HCA/HCC). The etiology of HCA/HCC development in GSD-Ia, however, is unknown. Recent studies have shown that the livers in model animals of GSD-Ia display impairment of autophagy, a cellular recycling process which is critical for energy metabolism and cellular homeostasis. However, molecular mechanisms of autophagy impairment and its involvement in pathogenesis in GSD-Ia are still under investigation. Here, we summarize the latest advances for signaling pathways implicated in hepatic autophagy impairment and the roles of autophagy in hepatic tumorigenesis in GSD-Ia. In addition, recent evidence has illustrated that autophagy plays an important role in hepatic metabolism and liver-directed gene therapy mediated by recombinant adeno-associated virus (rAAV). Therefore, we highlight the possible role of hepatic autophagy in metabolic control and rAAV-mediated gene therapy for GSD-Ia. In this review, we also provide potential therapeutic strategies for GSD-Ia on the basis of molecular mechanisms underlying hepatic autophagy impairment in GSD-Ia.


Assuntos
Autofagia , Carcinoma Hepatocelular/prevenção & controle , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Neoplasias Hepáticas/prevenção & controle , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/enzimologia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/enzimologia , Homeostase , Humanos , Fígado/enzimologia , Neoplasias Hepáticas/enzimologia , Camundongos , Camundongos Knockout , Transdução de Sinais
7.
Mol Ther ; 29(4): 1602-1610, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33359667

RESUMO

Glycogen storage disease type Ia (GSD-Ia), deficient in glucose-6-phosphatase-α (G6PC), is characterized by impaired glucose homeostasis and a hallmark of fasting hypoglycemia. We have developed a recombinant adeno-associated virus (rAAV) vector-mediated gene therapy for GSD-Ia that is currently in a phase I/II clinical trial. While therapeutic expression of the episomal rAAV-G6PC clinical vector is stable in mice, the long-term durability of expression in humans is currently being established. Here we evaluated CRISPR/Cas9-based in vivo genome editing technology to correct a prevalent pathogenic human variant, G6PC-p.R83C. We have generated a homozygous G6pc-R83C mouse strain and shown that the G6pc-R83C mice manifest impaired glucose homeostasis and frequent hypoglycemic seizures, mimicking the pathophysiology of GSD-Ia patients. We then used a CRISPR/Cas9-based gene editing system to treat newborn G6pc-R83C mice and showed that the treated mice grew normally to age 16 weeks without hypoglycemia seizures. The treated G6pc-R83C mice, expressing ≥ 3% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, displayed normalized blood metabolites, and could sustain 24 h of fasting. Taken together, we have developed a second-generation therapy in which in vivo correction of a pathogenic G6PC-p.R83C variant in its native genetic locus could lead to potentially permanent, durable, long-term correction of the GSD-Ia phenotype.


Assuntos
Edição de Genes , Terapia Genética , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Animais , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Glucose/genética , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Doença de Depósito de Glicogênio Tipo I/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos
8.
Biochem Biophys Res Commun ; 527(3): 824-830, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32430177

RESUMO

The current phase I/II clinical trial for human glycogen storage disease type-Ia (GSD-Ia) (NCT03517085) uses a recombinant adeno-associated virus (rAAV) vector expressing a codon-optimized human glucose-6-phosphatase-α (G6Pase-α or G6PC). DNA sequence changes introduced by codon-optimization can negatively impact gene expression. We therefore generated a novel variant in which a single amino acid change, S298C, is introduced into the native human G6PC sequence. Short term gene transfer study in G6pc-/- mice showed that the rAAV-G6PC-S298C vector is 3-fold more efficacious than the native rAAV-G6PC vector. We have shown previously that restoring 3% of normal hepatic G6Pase-α activity in G6pc-/- mice prevents hepatocellular adenoma/carcinoma (HCA/HCC) development and that mice harboring <3% of normal hepatic G6Pase-α activity are at risk of tumor development. We have also shown that G6Pase-α deficiency leads to hepatic autophagy impairment that can contribute to hepatocarcinogenesis. We now undertake a long-term (66-week) preclinical characterization of the rAAV-G6PC-S298C vector in GSD-Ia gene therapy. We show that the increased efficacy of rAAV-G6PC-S298C has enabled the G6pc-/- mice treated with a lower dose of this vector to survive long-term. We further show that mice expressing ≥3% of normal hepatic G6Pase-α activity do not develop hepatic tumors or autophagy impairment but mice expressing <3% of normal hepatic G6Pase-α activity display impaired hepatic autophagy with one developing HCA/HCC nodules. Our study shows that the rAAV-G6PC-S298C vector provides equal or greater efficacy to the codon optimization approach, offering a valuable alternative vector for clinical translation in human GSD-Ia.


Assuntos
Terapia Genética , Vetores Genéticos/uso terapêutico , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Mutação Puntual , Animais , Autofagia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos
9.
Hum Gene Ther ; 30(10): 1263-1273, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31319709

RESUMO

Glycogen storage diseases (GSDs) type I (GSDI) and type III (GSDIII), the most frequent hepatic GSDs, are due to defects in glycogen metabolism, mainly in the liver. In addition to hypoglycemia and liver pathology, renal, myeloid, or muscle complications affect GSDI and GSDIII patients. Currently, patient management is based on dietary treatment preventing severe hypoglycemia and increasing the lifespan of patients. However, most of the patients develop long-term pathologies. In the past years, gene therapy for GSDI has generated proof of concept for hepatic GSDs. This resulted in a recent clinical trial of adeno-associated virus (AAV)-based gene replacement for GSDIa. However, the current limitations of AAV-mediated gene transfer still represent a challenge for successful gene therapy in GSDI and GSDIII. Indeed, transgene loss over time was observed in GSDI liver, possibly due to the degeneration of hepatocytes underlying the physiopathology of both GSDI and GSDIII and leading to hepatic tumor development. Moreover, multitissue targeting requires high vector doses to target nonpermissive tissues such as muscle and kidney. Interestingly, recent pharmacological interventions or dietary regimen aiming at the amelioration of the hepatocyte abnormalities before the administration of gene therapy demonstrated improved efficacy in GSDs. In this review, we describe the advances in gene therapy and the limitations to be overcome to achieve efficient and safe gene transfer in GSDs.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo III/terapia , Doença de Depósito de Glicogênio Tipo I/terapia , Hipoglicemia/terapia , Animais , Ensaios Clínicos como Assunto , Dependovirus/metabolismo , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicogênio/biossíntese , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/patologia , Doença de Depósito de Glicogênio Tipo III/enzimologia , Doença de Depósito de Glicogênio Tipo III/genética , Doença de Depósito de Glicogênio Tipo III/patologia , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Hipoglicemia/enzimologia , Hipoglicemia/genética , Hipoglicemia/patologia , Fígado/enzimologia , Fígado/patologia , Transgenes
10.
J Inherit Metab Dis ; 42(3): 470-479, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30714174

RESUMO

Glycogen storage disease type-Ia (GSD-Ia), caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), is characterized by impaired glucose homeostasis with a hallmark hypoglycemia, following a short fast. We have shown that G6pc-deficient (G6pc-/-) mice treated with recombinant adeno-associated virus (rAAV) vectors expressing either wild-type (WT) (rAAV-hG6PC-WT) or codon-optimized (co) (rAAV-co-hG6PC) human (h) G6Pase-α maintain glucose homeostasis if they restore ≥3% of normal hepatic G6Pase-α activity. The co vector, which has a higher potency, is currently being used in a phase I/II clinical trial for human GSD-Ia (NCT03517085). While routinely used in clinical therapies, co vectors may not always be optimal. Codon-optimization can impact RNA secondary structure, change RNA/DNA protein-binding sites, affect protein conformation and function, and alter posttranscriptional modifications that may reduce potency or efficacy. We therefore sought to develop alternative approaches to increase the potency of the G6PC gene transfer vectors. Using an evolutionary sequence analysis, we identified a Ser-298 to Cys-298 substitution naturally found in canine, mouse, rat, and several primate G6Pase-α isozymes, that when incorporated into the WT hG6Pase-α sequence, markedly enhanced enzymatic activity. Using G6pc-/- mice, we show that the efficacy of the rAAV-hG6PC-S298C vector was 3-fold higher than that of the rAAV-hG6PC-WT vector. The rAAV-hG6PC-S298C vector with increased efficacy, that minimizes the potential problems associated with codon-optimization, offers a valuable vector for clinical translation in human GSD-Ia.


Assuntos
Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Cães , Vetores Genéticos/administração & dosagem , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Homeostase , Humanos , Fígado/enzimologia , Camundongos , Camundongos Knockout , Ratos
11.
J Inherit Metab Dis ; 42(3): 459-469, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30637773

RESUMO

Hepatocellular adenoma/carcinoma (HCA/HCC) is a long-term complication of glycogen storage disease type-Ia (GSD-Ia), which is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in gluconeogenesis. Currently, there is no therapy to address HCA/HCC in GSD-Ia. We have previously shown that a recombinant adeno-associated virus (rAAV) vector-mediated G6PC gene transfer to 2-week-old G6pc-/- mice prevents HCA development. However, it remains unclear whether G6PC gene transfer at the tumor developing stage of GSD-Ia can prevent tumor initiation or abrogate the pre-existing tumors. Using liver-specific G6pc-knockout (L-G6pc-/-) mice that develop HCA/HCC, we now show that treating the mice at the tumor-developing stage with rAAV-G6PC restores hepatic G6Pase-α expression, normalizes glucose homeostasis, and prevents de novo HCA/HCC development. The rAAV-G6PC treatment also normalizes defective hepatic autophagy and corrects metabolic abnormalities in the nontumor liver tissues of both tumor-free and tumor-bearing mice. However, gene therapy cannot restore G6Pase-α expression in the HCA/HCC lesions and fails to abrogate any pre-existing tumors. We show that the expression of 11 ß-hydroxysteroid dehydrogenase type-1 that mediates local glucocorticoid activation is downregulated in HCA/HCC lesions, leading to impairment in glucocorticoid signaling critical for gluconeogenesis activation. This suggests that local glucocorticoid action downregulation in the HCA/HCC lesions may suppress gene therapy mediated G6Pase-α restoration. Collectively, our data show that rAAV-mediated gene therapy can prevent de novo HCA/HCC development in L-G6pc-/- mice at the tumor developing stage, but it cannot reduce any pre-existing tumor burden.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Neoplasias Hepáticas/prevenção & controle , Animais , Carcinoma Hepatocelular/enzimologia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/enzimologia , Homeostase , Humanos , Fígado/enzimologia , Neoplasias Hepáticas/enzimologia , Camundongos , Camundongos Knockout
12.
J Inherit Metab Dis ; 41(6): 965-976, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30043186

RESUMO

BACKGROUND: Glycogen storage disease type Ia (GSD Ia) in dogs closely resembles human GSD Ia. Untreated patients with GSD Ia develop complications associated with glucose-6-phosphatase (G6Pase) deficiency. Survival of human patients on intensive nutritional management has improved; however, long-term complications persist including renal failure, nephrolithiasis, hepatocellular adenomas (HCA), and a high risk for hepatocellular carcinoma (HCC). Affected dogs fail to thrive with dietary therapy alone. Treatment with gene replacement therapy using adeno-associated viral vectors (AAV) expressing G6Pase has greatly prolonged life and prevented hypoglycemia in affected dogs. However, long-term complications have not been described to date. METHODS: Five GSD Ia-affected dogs treated with AAV-G6Pase were evaluated. Dogs were euthanized due to reaching humane endpoints related to liver and/or kidney involvement, at 4 to 8 years of life. Necropsies were performed and tissues were analyzed. RESULTS: Four dogs had liver tumors consistent with HCA and HCC. Three dogs developed renal failure, but all dogs exhibited progressive kidney disease histologically. Urolithiasis was detected in two dogs; uroliths were composed of calcium oxalate and calcium phosphate. One affected and one carrier dog had polycystic ovarian disease. Bone mineral density was not significantly affected. CONCLUSIONS: Here, we show that the canine GSD Ia model demonstrates similar long-term complications as GSD Ia patients in spite of gene replacement therapy. Further development of gene therapy is needed to develop a more effective treatment to prevent long-term complications of GSD Ia.


Assuntos
Carcinoma Hepatocelular/etiologia , Terapia Genética , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/terapia , Neoplasias Hepáticas/etiologia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Cães , Feminino , Vetores Genéticos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hipoglicemia/genética , Hipoglicemia/metabolismo , Fígado/patologia , Masculino
13.
J Inherit Metab Dis ; 41(6): 977-984, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29802554

RESUMO

BACKGROUND: Viral mediated gene therapy has progressed after overcoming early failures, and gene therapy has now been approved for several conditions in Europe and the USA. Glycogen storage disease (GSD) type Ia, caused by a deficiency of glucose-6-phosphatase-α, has been viewed as an outstanding candidate for gene therapy. This follow-up report describes the long-term outcome for the naturally occurring GSD-Ia dogs treated with rAAV-GPE-hG6PC-mediated gene therapy. METHODS: A total of seven dogs were treated with rAAV-GPE-hG6PC-mediated gene therapy. The first four dogs were treated at birth, and three dogs were treated between 2 and 6 months of age to assess the efficacy and safety in animals with mature livers. Blood and urine samples, radiographic studies, histological evaluation, and biodistribution were assessed. RESULTS: Gene therapy improved survival in the GSD-Ia dogs. With treatment, the biochemical studies normalized for the duration of the study (up to 7 years). None of the rAAV-GPE-hG6PC-treated dogs had focal hepatic lesions or renal abnormalities. Dogs treated at birth required a second dose of rAAV after 2-4 months; gene therapy after hepatic maturation resulted in improved efficacy after a single dose. CONCLUSION: rAAV-GPE-hG6PC treatment in GSD-Ia dogs was found to be safe and efficacious. GSD-Ia is an attractive target for human gene therapy since it is a monogenic disorder with limited tissue involvement. Blood glucose and lactate monitoring can be used to assess effectiveness and as a biomarker of success. GSD-Ia can also serve as a model for other hepatic monogenic disorders.


Assuntos
Terapia Genética/métodos , Doença de Depósito de Glicogênio Tipo I/terapia , Animais , Glicemia/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Cães , Europa (Continente) , Vetores Genéticos , Glucose-6-Fosfatase/genética , Hipoglicemia/genética , Hipoglicemia/metabolismo , Rim/metabolismo , Fígado/metabolismo
14.
J Inherit Metab Dis ; 41(6): 1007-1014, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29663270

RESUMO

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the ubiquitously expressed glucose-6-phosphate (G6P) transporter (G6PT or SLC37A4). The primary function of G6PT is to translocate G6P from the cytoplasm into the lumen of the endoplasmic reticulum (ER). Inside the ER, G6P is hydrolyzed to glucose and phosphate by either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α) or the ubiquitously expressed G6Pase-ß. A deficiency in G6Pase-α causes GSD type Ia (GSD-Ia) and a deficiency in G6Pase-ß causes GSD-I-related syndrome (GSD-Irs). In gluconeogenic organs, functional coupling of G6PT and G6Pase-α is required to maintain interprandial blood glucose homeostasis. In myeloid tissues, functional coupling of G6PT and G6Pase-ß is required to maintain neutrophil homeostasis. Accordingly, GSD-Ib is a metabolic and immune disorder, manifesting impaired glucose homeostasis, neutropenia, and neutrophil dysfunction. A G6pt knockout mouse model is being exploited to delineate the pathophysiology of GSD-Ib and develop new clinical treatment options, including gene therapy. The safety and efficacy of several G6PT-expressing recombinant adeno-associated virus pseudotype 2/8 vectors have been examined in murine GSD-Ib. The results demonstrate that the liver-directed gene transfer and expression safely corrects metabolic abnormalities and prevents hepatocellular adenoma (HCA) development. However, a second vector system may be required to correct myeloid and renal dysfunction in GSD-Ib. These findings are paving the way to a safe and efficacious gene therapy for entering clinical trials.


Assuntos
Glicemia/análise , Terapia Genética , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Animais , Antiporters/genética , Dependovirus/genética , Vetores Genéticos , Homeostase , Humanos , Camundongos , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Mutação
15.
Hum Mol Genet ; 26(22): 4395-4405, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28973635

RESUMO

Glycogen storage disease type-Ib (GSD-Ib), deficient in the glucose-6-phosphate transporter (G6PT), is characterized by impaired glucose homeostasis, myeloid dysfunction, and long-term risk of hepatocellular adenoma (HCA). We examined the efficacy of G6PT gene therapy in G6pt-/- mice using recombinant adeno-associated virus (rAAV) vectors, directed by either the G6PC or the G6PT promoter/enhancer. Both vectors corrected hepatic G6PT deficiency in murine GSD-Ib but the G6PC promoter/enhancer was more efficacious. Over a 78-week study, using dose titration of the rAAV vectors, we showed that G6pt-/- mice expressing 3-62% of normal hepatic G6PT activity exhibited a normalized liver phenotype. Two of the 12 mice expressing < 6% of normal hepatic G6PT activity developed HCA. All treated mice were leaner and more sensitive to insulin than wild-type mice. Mice expressing 3-22% of normal hepatic G6PT activity exhibited higher insulin sensitivity than mice expressing 44-62%. The levels of insulin sensitivity correlated with the magnitudes of hepatic carbohydrate response element binding protein signaling activation. In summary, we established the threshold of hepatic G6PT activity required to prevent tumor formation and showed that mice expressing 3-62% of normal hepatic G6PT activity maintained glucose homeostasis and were protected against age-related obesity and insulin resistance.


Assuntos
Terapia Genética/métodos , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Animais , Antiporters/genética , Antiporters/metabolismo , Modelos Animais de Doenças , Vetores Genéticos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfato/genética , Glucose-6-Fosfato/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Homeostase , Humanos , Resistência à Insulina , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Regiões Promotoras Genéticas
16.
Pediatr Diabetes ; 18(5): 327-331, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28568353

RESUMO

Prior to 1971, type Ia glycogen storage disease was marked by life-threatening hypoglycemia, lactic acidosis, severe failure to thrive, and developmental delay. With the introduction of continuous feeds in the 1970s and cornstarch in the 1980s, the prognosis improved, but complications almost universally developed. Changes in the management of type Ia glycogen storage disease have resulted in improved metabolic control, and this manuscript reviews the increasing evidence that complications can be delayed or prevented with optimal metabolic control as previously was seen in diabetes.


Assuntos
Doença de Depósito de Glicogênio Tipo I/terapia , Medicina de Precisão , Insuficiência Renal/prevenção & controle , Adenoma/complicações , Adenoma/prevenção & controle , Adulto , Criança , Terapia Combinada , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Humanos , Hipoglicemia/complicações , Hipoglicemia/prevenção & controle , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/prevenção & controle , Nefrocalcinose/complicações , Nefrocalcinose/prevenção & controle , Nefrolitíase/complicações , Nefrolitíase/prevenção & controle , Osteoporose/complicações , Osteoporose/prevenção & controle , Prognóstico , Insuficiência Renal/complicações
17.
Hum Mol Genet ; 26(10): 1890-1899, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334808

RESUMO

Glycogen storage disease type Ia (GSD-Ia) is characterized by impaired glucose homeostasis and long-term risks of hepatocellular adenoma (HCA) and carcinoma (HCC). We have shown that the non-tumor-bearing (NT), recombinant adeno-associated virus (rAAV) vector-treated GSD-Ia mice (AAV-NT mice) expressing a wide range (0.9-63%) of normal hepatic glucose-6-phosphatase-α activity maintain glucose homeostasis and display physiologic features mimicking animals living under calorie restriction (CR). We now show that in AAV-NT mice, the signaling pathways of the CR mediators, AMP-activated protein kinase (AMPK) and sirtuin-1 are activated. AMPK/sirtuin-1 inhibit the activity of STAT3 (signal transducer and activator of transcription 3) and NFκB (nuclear factor κB), the pro-inflammatory and cancer-promoting transcription factors. Sirtuin-1 also inhibits cancer metastasis via increasing the expression of E-cadherin, a tumor suppressor, and decreasing the expression of mesenchymal markers. Consistently, in AAV-NT mice, hepatic levels of active STAT3 and NFκB-p65 were reduced as were expression of mesenchymal markers, STAT3 targets, NFκB targets and ß-catenin targets, all of which were consistent with the promotion of tumorigenesis. AAV-NT mice also expressed increased levels of E-cadherin and fibroblast growth factor 21 (FGF21), targets of sirtuin-1, and ß-klotho, which can acts as a tumor suppressor. Importantly, treating AAV-NT mice with a sirtuin-1 inhibitor markedly reversed many of the observed anti-inflammatory/anti-tumorigenic signaling pathways. In summary, activation of hepatic AMPK/sirtuin-1 and FGF21/ß-klotho signaling pathways combined with down-regulation of STAT3/NFκB-mediated inflammatory and tumorigenic signaling pathways can explain the absence of hepatic tumors in AAV-NT mice.


Assuntos
Glucose-6-Fosfatase/metabolismo , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Caderinas/genética , Carcinogênese/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Expressão Gênica , Terapia Genética , Vetores Genéticos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Inflamação/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , NF-kappa B , Fator de Transcrição STAT3 , Transdução de Sinais , Sirtuína 1/metabolismo , beta Catenina/genética
18.
Mol Genet Metab ; 120(3): 229-234, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28096054

RESUMO

Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA) and carcinoma (HCC), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). We have previously shown that G6pc-/- mice receiving gene transfer mediated by rAAV-G6PC, a recombinant adeno-associated virus (rAAV) vector expressing G6Pase-α, and expressing 3-63% of normal hepatic G6Pase-α activity maintain glucose homeostasis and do not develop HCA/HCC. However, the threshold of hepatic G6Pase-α activity required to prevent tumor formation remained unknown. In this study, we constructed rAAV-co-G6PC, a rAAV vector expressing a codon-optimized (co) G6Pase-α and showed that rAAV-co-G6PC was more efficacious than rAAV-G6PC in directing hepatic G6Pase-α expression. Over an 88-week study, we showed that both rAAV-G6PC- and rAAV-co-G6PC-treated G6pc-/- mice expressing 3-33% of normal hepatic G6Pase-α activity (AAV mice) maintained glucose homeostasis, lacked HCA/HCC, and were protected against age-related obesity and insulin resistance. Of the eleven rAAV-G6PC/rAAV-co-G6PC-treated G6pc-/- mice harboring 0.9-2.4% of normal hepatic G6Pase-α activity (AAV-low mice), 3 expressing 0.9-1.3% of normal hepatic G6Pase-α activity developed HCA/HCC, while 8 did not (AAV-low-NT). Finally, we showed that the AAV-low-NT mice exhibited a phenotype indistinguishable from that of AAV mice expressing ≥3% of normal hepatic G6Pase-α activity. The results establish the threshold of hepatic G6Pase-α activity required to prevent HCA/HCC and show that GSD-Ia mice harboring <2% of normal hepatic G6Pase-α activity are at risk of tumor development.


Assuntos
Adenoma de Células Hepáticas/prevenção & controle , Carcinoma Hepatocelular/prevenção & controle , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Neoplasias Hepáticas/prevenção & controle , Adenoma de Células Hepáticas/enzimologia , Animais , Carcinoma Hepatocelular/enzimologia , Dependovirus/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Vetores Genéticos/administração & dosagem , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/enzimologia , Homeostase , Humanos , Fígado/enzimologia , Neoplasias Hepáticas/enzimologia , Camundongos
19.
Mol Ther ; 24(4): 697-706, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865405

RESUMO

Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P < 0.04). Furthermore, transgene integration has been confirmed by sequencing in the majority of the mice treated with both vectors. Targeted alleles were 4.6-fold more common in livers of mice with GSD Ia, as compared with normal littermates, at 8 months following vector administration (P < 0.02). This suggests a selective advantage for vector-transduced hepatocytes following ZFN-mediated integration of the G6Pase vector. A short-term experiment also showed that 3-month-old mice receiving the ZFN had significantly-improved biochemical correction, in comparison with mice that received the donor vector alone. These data suggest that the use of ZFNs to drive integration of G6Pase at a safe harbor locus might improve vector persistence and efficacy, and lower mortality in GSD Ia.


Assuntos
Endonucleases/metabolismo , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , RNA não Traduzido/genética , Animais , Modelos Animais de Doenças , Endonucleases/química , Vetores Genéticos/administração & dosagem , Doença de Depósito de Glicogênio Tipo I/genética , Camundongos , Análise de Sobrevida , Resultado do Tratamento , Dedos de Zinco
20.
Curr Gene Ther ; 15(4): 338-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26122079

RESUMO

Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of ß2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available.


Assuntos
Terapia Genética/métodos , Doença de Depósito de Glicogênio/terapia , Animais , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Doença de Depósito de Glicogênio Tipo II/terapia , Humanos , Sirolimo/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA