Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
Vet Ital ; 59(3)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39298117

RESUMO

Pure, potent and efficacious vaccines could help in the control of Newcastle disease (ND). The present study was designed to evaluate the thermo-stability of a live-attenuated ND virus vaccine containing the Mukteswar strain and to genetically characterize the seed virus. Moreover, the presence of extraneous agents (Fowl adenovirus, Mycoplasma, Salmonella Pullorum, and Salmonella Gallinarum) was assessed using polymerase chain reactions (PCR) optimized for detection in a panel. The vaccine was evaluated for its potency and efficacy after storage at 4°C, 25°C and 37°C for 36, 48, 96 and 144 hours. A total of 100 commercial broiler chickens were randomly divided into six groups and immunized with the vaccine stored at specified temperatures for the given times. Blood samples were collected on days 0, 7, 14, 21 and 28 post-vaccination, sera were separated and antibody titers were assessed using hemagglutination inhibition (HI) assay. The data were analyzed by two-way analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). Reverse-transcription  PCR targeting the F gene of Newcastle disease virus (NDV) and subsequent sequence analysis confirmed the presence of NDV in the vaccine seed (deposited to GenBank Acc. Nos. MK310260 and MK310261). Phylogenetic analysis revealed a close resemblance of the vaccine virus with other Avian Avulaviruses (NDV class II Genotype III viruses and more specifically with NDV Mukteswar vaccine strains), yet it was distinct from NDV class II Pakistani field isolates, which grouped into genotype XIII.2.1. The PCR testing confirmed that the vaccine was free from extraneous agents. The present study's findings propose an alternative rapid PCR-based method to evaluate the purity of NDV live vaccines. Together these data suggest that the tested vaccine is pure, potent and efficacious, yet continuous maintenance of the cold chain for vaccine storage is recommended to maintain its potency and efficacy.


Assuntos
Galinhas , Doença de Newcastle , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Atenuadas , Vacinas Virais , Animais , Vacinas Virais/imunologia , Vírus da Doença de Newcastle/imunologia , Vacinas Atenuadas/imunologia , Doença de Newcastle/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Armazenamento de Medicamentos , Eficácia de Vacinas
2.
Viruses ; 16(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39205223

RESUMO

Newcastle disease (ND) is caused by virulent strains of avian paramyxovirus type 1, also known as Newcastle disease virus (NDV). Despite vaccination, the frequency of reported outbreaks in Ethiopia has increased. From January to June 2022, an active outbreak investigation was conducted in six commercial chicken farms across areas of central Ethiopia to identify the circulating NDV strains. Thirty pooled tissue specimens were collected from chickens suspected of being infected with NDV. A questionnaire survey of farm owners and veterinarians was also carried out to collect information on the farms and the outbreak status. NDV was isolated using specific-pathogen-free (SPF)-embryonated chicken eggs and detected using haemagglutination and the reverse transcriptase-polymerase chain reaction (RT-PCR). The genotype and virulence of field NDV isolates were determined using phylogenetic analysis of fusion (F) protein gene sequences and the mean death time (MDT) test in SPF-embryonated chicken eggs. The questionnaire results revealed that ND caused morbidity (23.1%), mortality (16.3%), case fatality (70.8%), and significant economic losses. Eleven of thirty tissue specimens tested positive for NDV using haemagglutination and RT-PCR. The MDT testing and sequence analysis revealed the presence of virulent NDV classified as genotype VII of class II velogenic pathotype and distinct from locally used vaccine strains (genotype II). The amino acid sequences of the current virulent NDV fusion protein cleavage site motif revealed 112RRQKR↓F117, unlike the locally used avirulent vaccine strains (112GRQGR↓L117). The epidemiological data, MDT results, cleavage site sequence, and phylogenetic analysis all indicated that the present NDV isolates were virulent. The four NDV sequences were deposited in GenBank with accession numbers F gene (PP726912-15) and M gene (PP726916-19). The genetic difference between avirulent vaccine strains and circulating virulent NDV could explain the low level of protection provided by locally used vaccines. Further studies are needed to better understand the circulating NDV genotypes in different production systems.


Assuntos
Galinhas , Surtos de Doenças , Genótipo , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/patogenicidade , Galinhas/virologia , Etiópia/epidemiologia , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Virulência , Fazendas , Proteínas Virais de Fusão/genética
3.
Arch Razi Inst ; 79(1): 102-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39192956

RESUMO

Newcastle disease virus (NVD) from the Paramyxoviridae family is a single-stranded negative-sense RNA virus. This infection can affect both domestic poultry and almost all other bird species. It has been considered a very severe difficulty for the poultry industry all over the world. Even though it remains a potential threat to poultry industries, this virus is a powerful oncolytic virus as well. In this study, a process was accomplished to achieve concentrated and highly purified NDV V4 strain particles. Downstream processing of Newcastle virus strain V4 was characterized by amplifying virus in embryonated chicken eggs. Through a sequence of steps, harvesting allantoic fluid, clarification by centrifuge, concentration by ultrafiltration, and size exclusion separation, the reduced volume and pure virus particles were considered for the amount of ovalbumin, hemagglutinin activity, transmission electron microscopy (TEM), electrophoresis, and additionally immunogenicity of prepared antigens. The results presented a high recovery of HA activity in concentrated and purified virus with the removal of ovalbumin and the typical morphology based on TEM. Sepharose CL-4B was determined as the best media among all used resins to purify the virus. Prepared formulations as vaccines demonstrated positive hemagglutinin inhibition for 6 months and stability for 2 years. Strong evidence from organized studies supports the effectiveness of this method in concentrating and purifying intact NDV, which could be valuable in vaccine research, antiserum preparation, or even as an alternative oncotic agent to traditional methods. Despite further studies being conducted, this method can be utilized particularly on a semi-industrial scale to produce various vaccine components.


Assuntos
Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/imunologia , Animais , Embrião de Galinha , Doença de Newcastle/prevenção & controle , Doença de Newcastle/virologia , Doença de Newcastle/imunologia , Vacinas Virais/imunologia , Galinhas , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/prevenção & controle
4.
Avian Pathol ; 53(6): 533-539, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38836447

RESUMO

Infectious laryngotracheitis (ILT) poses a significant threat to the poultry industry, and vaccines play an important role in protection. However, due to the increasing scale of poultry production, there is an urgent need to develop vaccines that are suitable for convenient immunization methods such as spraying. Previous studies have shown that Newcastle disease virus (NDV)-ILT vaccines administered via intranasal and intraocular routes to commercial chickens carrying maternally-derived antibodies (MDAs) are still protective against ILT. In this study, a recombinant NDV (rNDV) was generated to express infectious laryngotracheitis virus (ILTV) glycoprotein B (gB), named rLS-gB, based on a full-length cDNA clone of the LaSota strain. The protective effect of different doses of rLS-gB administered by spray vaccination to commercial chickens at 1 d of age (doa) was evaluated. The chickens were exposed to 160-µm aerosol particles for 10 min for spray vaccination, and no adverse reactions were observed after vaccination. Despite the presence of anti-NDV MDAs and anti-ILTV MDAs in chickens, the ILTV- and NDV-specific antibody titres were significantly greater in the vaccinated groups than in the unvaccinated group. After challenge with a virulent ILTV strain, no clinical signs were observed in the 107 EID50/ml group compared to the other groups. Furthermore, vaccination with 107 EID50/ml rLS-gB significantly reduced the ILTV viral load and ameliorated gross and microscopic lesions in the trachea of chickens. Overall, these results suggested that rLS-gB is a safe and efficient candidate spray vaccine for ILT and is especially suitable for scaled chicken farms.


Assuntos
Anticorpos Antivirais , Galinhas , Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Vírus da Doença de Newcastle , Doenças das Aves Domésticas , Vacinação , Vacinas Virais , Animais , Galinhas/virologia , Galinhas/imunologia , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Herpesvirus Galináceo 1/imunologia , Vacinação/veterinária , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Anticorpos Antivirais/sangue , Imunidade Materno-Adquirida , Doença de Newcastle/prevenção & controle , Doença de Newcastle/virologia , Doença de Newcastle/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Aerossóis , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem
5.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932177

RESUMO

Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy.


Assuntos
Vetores Genéticos , Neoplasias , Vírus da Doença de Newcastle , Terapia Viral Oncolítica , Vírus Oncolíticos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Animais , Humanos , Vetores Genéticos/genética , Neoplasias/terapia , Neoplasias/imunologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Terapia Genética/métodos , Vacinas Virais/imunologia , Vacinas Virais/genética , Doença de Newcastle/prevenção & controle , Doença de Newcastle/terapia , Doença de Newcastle/virologia , Doença de Newcastle/imunologia , Desenvolvimento de Vacinas/métodos
6.
Virus Genes ; 60(4): 385-392, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38739246

RESUMO

The Newcastle disease virus (NDV) affects wild and domesticated bird species, including commercial poultry. Although the diversity of NDV in domestic chickens is well documented, limited information is available about Newcastle disease (ND) outbreaks in other bird species. We report an annotated sequence of NDV/Vulture/Borjuri/01/22, an avirulent strain of NDV reported from Borjuri, Northeast India, in Himalayan Griffon vulture. The complete genome is 15,186 bases long with a fusion protein (F) cleavage site 112GRQGR↓L117. The phylogenetic analysis based on the F protein gene and the whole genome sequence revealed that the isolate from the vulture belongs to genotype II, sharing significant homology with vaccine strain LaSota. The study highlights the possible spillover of the virus from domestic to wild species through the food chain.


Assuntos
Genoma Viral , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/classificação , Animais , Doença de Newcastle/virologia , Doença de Newcastle/transmissão , Genoma Viral/genética , Índia , Genótipo , Sequenciamento Completo do Genoma , Proteínas Virais de Fusão/genética
7.
J Virol ; 98(5): e0001624, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38563732

RESUMO

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Assuntos
Calcineurina , Cálcio , Imunidade Inata , Vírus da Doença de Newcastle , Proteínas Serina-Treonina Quinases , Replicação Viral , Animais , Humanos , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Células HEK293 , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/imunologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
8.
Open Vet J ; 14(1): 398-406, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633149

RESUMO

Background: The use of traditional medicine against viral diseases in animal production has been practiced worldwide. Herbal extracts possess organic substances that would improve chicken body performance. Aim: The current study was designed to evaluate the effect of either thyme or ginseng oil in regard to their immune-modulatory, antiviral, and growth promoter properties. Methods: Two hundred and forty-one-day-old broiler chicks were allocated into eight equal groups as the following: group 1; nonvaccinated and nontreated and group 2; Newcastle disease virus (NDV) vaccinated and nontreated. Birds of groups 3 and 4 were treated with thyme oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 5 and 6 were treated with ginseng oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 7 and 8 were treated with a combination of ginseng oil (100 mg/l of drinking water) and thyme oil (100 mg/l of drinking water) for 12 hours/day. On the 35th day of life, birds in all the experimental groups were given 0.1 ml of a virulent genotype VIId NDV strain suspension containing 106.3 EID50/ml intramuscularly. Results: Administration of ginseng and thyme oils each alone or simultaneously to birds either vaccinated or nonvaccinated elicited a significant improvement in body performance parameters. Administration of thyme and ginseng each alone or concurrently to vaccinated birds (Gp 4, 6, and 8) induced a higher hemagglutination inhibition (HI) titer of 6, 7.3, and 6.3 log2 at 21 days of age, 6.7, 7.6, and 7 log2, at 28 days of age and 7, 8, and 6.8 log2 at 35 days of age, respectively. Challenge with vNDV genotype VII led to an increase in the NDV-specific HI-Ab titers 10 days post challenge in all the experimental groups. In addition, thyme, ginseng oils, or a combination of them improved the protection from mortality in vaccinated birds; by 100%, 100%, and 90%, respectively, compared with 80% protection from mortality in vaccinated-only birds post-NDV challenge. Moreover, NDV-vaccinated birds treated either with thyme; ginseng or their combination showed negative detection of the virus in both tracheal and cloacal swabs and nonvaccinated groups that received oils showed improvement in vNDV shedding in tracheal and cloacal swabs. Conclusion: It could be concluded that the administration of thyme and ginseng essential oils to broilers can improve productive performance parameters, stimulate humoral immunity against, and protect from vNDV infection.


Assuntos
Água Potável , Doença de Newcastle , Panax , Óleos de Plantas , Timol , Thymus (Planta) , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Anticorpos Antivirais , Óleos
9.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334327

RESUMO

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Assuntos
Macrófagos , Doença de Newcastle , Vírus da Doença de Newcastle , Transdução de Sinais , Internalização do Vírus , Animais , Endocitose , Gangliosídeos/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
10.
Vet Res ; 55(1): 16, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317245

RESUMO

Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.


Assuntos
Avulavirus , Doenças dos Bovinos , Doença de Newcastle , Doenças dos Roedores , Rotavirus , Vacinas Virais , Animais , Bovinos , Humanos , Camundongos , Vírus da Doença de Newcastle/genética , Galinhas , Anticorpos Antivirais , Vetores Genéticos , Avulavirus/genética , Proteínas Virais/genética , Vacinas de Produtos Inativados , Imunidade
11.
Microb Pathog ; 188: 106542, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199445

RESUMO

Oil-based inactivated ND vaccines are a commonly used control strategy for this endemic disease in Egypt. One of the major limitations of these inactivated vaccines is the time taken to develop a protective response in vaccinated birds. In the present study, we aimed to formulate an inactivated oil-based ND vaccine incorporated with lipopolysaccharide (LPS) that stimulates the early onset innate response to inactivated vaccines via proinflammatory cytokine production. Five groups of 21-day old SPF chicks were reared in isolators and were treated as follows: G1: Montanoid ISA71 adjuvanted NDV vaccinated group, G2: LPS and Montanoid ISA71 adjuvanted NDV vaccinated group, G3: LPS and Montanoid ISA71 with phosphate buffer saline received group and two non-vaccinated control groups. NDV specific antibodies and cell mediated immune responses were evaluated by hemagglutination inhibition and lymphocyte proliferation tests, respectively. Transcriptional responses of the TLR4, IFN-γ and IL-2 genes were analyzed in peripheral blood mononuclear cells (PBMCs) following vaccination by qRT-PCR. Protection % was determined after challenge with a lethal strain of NDV 106 EID50/0.5 ml. Viral shedding was assessed on oropharyngeal swabs by qRT-PCR and infectivity titration on SPF-ECE. The results revealed that the incorporation of LPS with ISA71 in the oil-based ND vaccine induced a synergistic response confirmed by significant humoral and lymphoproliferative responses with a significant increase in Th1 cytokine transcripts. The simultaneous use of both adjuvants in G2 demonstrated complete protection and a significant reduction in viral shedding compared to the ISA71-adjuvated ND vaccine in G1, which conferred 90 % protection.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/genética , Lipopolissacarídeos , Citocinas , Leucócitos Mononucleares , Galinhas , Adjuvantes Imunológicos , Vacinas de Produtos Inativados , Anticorpos Antivirais , Eliminação de Partículas Virais , Doenças das Aves Domésticas/prevenção & controle
12.
Int Immunopharmacol ; 126: 111296, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38041958

RESUMO

BACKGROUND: Cervical cancer is one of the most common malignancies in women, and its treatment has many side effects. Therefore, in this research, the effects of the LaSota strain of oncolytic Newcastle disease virus vaccine on cervical intraepithelial neoplasia (CIN) patients were investigated. METHODS: 15 patients who met the inclusion criteria and diagnosed as CIN II and CIN III were included in the study. The vaccine was injected inside the cervix (neoplasia site) at increasing doses during 21 days, and they were evaluated for adverse events. NDV antibody titer was measured in 90 days and the levels of ki-67 and p16 proteins were studied by immunohistochemistry. Also, the levels of some important inflammatory cytokines in the serum of CIN patients were measured and finally the patients were evaluated according to the final outcomes and the reduction of tumor lesions. RESULTS: Only in the first dose of vaccine some patients showed flu-like symptoms. The accumulation of NDV antibodies started on the 7th day of the study and increased until the 90th day. Administration of LaSota vaccine had no significant effect on the expressions of Ki-67 and p16 proteins. Nevertheless, a decrease in the serum levels of Il-1ß was observed in patients after the administration of the vaccine, but the serum levels of both Il-2 and INF-γ upregulated significantly. Also, vaccine administration had no significant effect in reducing CIN grades and lesions. CONCLUSIONS: In general, we concluded that LaSota strain of NDV vaccine has no therapeutic effectiveness in CIN patients.


Assuntos
Doença de Newcastle , Displasia do Colo do Útero , Vacinas Virais , Animais , Humanos , Feminino , Vírus da Doença de Newcastle , Doença de Newcastle/prevenção & controle , Antígeno Ki-67 , Estudos de Coortes , Displasia do Colo do Útero/metabolismo , Anticorpos Antivirais , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo
13.
Braz. j. biol ; 84: e250607, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355881

RESUMO

Abstract Newcastle disease (ND) is an infectious, highly contagious and lethal disease of avian species. It is considered that ducks are natural reservoir or carrier for Newcastle disease virus (NDV) and are resistant against different strains of NDV. Current study was designed to evaluate the pathogenesis of Newcastle disease in domestic ducks through histopathology, immunohistochemistry (IHC) and serum biochemical changes. For this purpose, eighty ducks were reared for 42 days and divided in two groups A and B. Ducks in group A were challenged with (NDV) at rate of 0.1 ml of ELD50 (virus titer 107.32/100µl) on second week of age, whereas Group B was control negative. Splenomegaly, atrophy of thymus and necrotic lesion in kidney were observed on 9th day of post infection. Hepatic degeneration and mononuclear cell infiltration were noticed in proventriculus and intestine in challenged ducks. Viral antigen detected in lungs, intestine, proventriculus and lymphoid organs of infected ducks through IHC. Albumin and total protein values were significantly low in infected groups A as compared to control group B. ALT, AST, and ALP values were significantly high in infected group A. On 5th and 7th day of post infection oropharyngeal swabs were negative for NDV and cloacal swabs were positive for NDV through Reverse transcriptase polymerase chain reaction. It is concluded that ducks are susceptible to NDV and virulent strain of NDV caused disease in ducks.


Resumo A doença de Newcastle (DN) é uma doença infecciosa, altamente contagiosa e letal de espécies aviárias. Considera-se que os patos são reservatórios ou portadores naturais do vírus da doença de Newcastle (VDN) e são resistentes a diferentes cepas de VDN. O presente estudo foi desenvolvido para avaliar a patogênese da DN em patos domésticos por meio de histopatologia, imuno-histoquímica (IHQ) e alterações bioquímicas séricas. Para este propósito, 80 patos foram criados por 42 dias e divididos em dois grupos A e B. Os patos do grupo A foram submetidos ao VDN a uma taxa de 0,1 ml de ELD50 (título viral de 107,32 / 100 µl) na segunda semana de idade, enquanto o Grupo B foi controle negativo. Esplenomegalia, atrofia do timo e lesão necrótica no rim foram observadas no 9º dia pós-infecção. Degeneração hepática e infiltração de células mononucleares foram observadas no proventrículo e intestino em patos infectados. Antígeno viral foi detectado em pulmões, intestino, proventrículo e órgãos linfoides de patos infectados por IHQ. Os valores de albumina e proteína total foram significativamente baixos no grupo A infectado em comparação com o grupo B. Os valores de ALT, AST e ALP foram significativamente altos no grupo A. No 5º e no 7º dia após a infecção, os esfregaços orofaríngeos foram negativos para VDN, enquanto os esfregaços cloacais foram positivos para VDN por meio da reação em cadeia da polimerase via transcriptase reversa. Conclui-se que os patos são suscetíveis ao VDN e à cepa virulenta de VDN que causou doenças em patos.


Assuntos
Animais , Vírus da Doença de Newcastle , Patos , Doença de Newcastle/diagnóstico
14.
Virology ; 590: 109957, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100982

RESUMO

Newcastle disease virus (NDV) is an oncolytic virus which selectively replicates in cancer cells without harming normal cells. Autophagy is a cellular mechanism that breaks down unused cytoplasmic constituents into nutrients. In previous studies, autophagy enhanced NDV-induced oncolysis in lung cancer and glioma cells. However, the effect of autophagy inhibition on NDV-induced oncolysis in breast cancer cells remains unknown. This study aimed to examine the effect of autophagy inhibition on NDV-induced oncolysis in human breast cancer cells, MCF7. To inhibit autophagy, we knocked down the expression of the autophagy protein beclin-1 (BECN1) by short interfering RNA (siRNA). The cells were infected with the recombinant NDV strain AF2240 expressing green fluorescent protein. We found that NDV induced autophagy and knockdown of BECN1 significantly reduced the NDV-induced autophagy in MCF7 cells. Importantly, BECN1 knockdown significantly suppressed cell death by inhibiting viral replication, as observed at 24 h post infection. Overall, our data suggest that autophagy inhibition may not be a suitable strategy to enhance NDV oncolytic efficacy against breast cancer.


Assuntos
Neoplasias da Mama , Doença de Newcastle , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Humanos , Feminino , Vírus da Doença de Newcastle/genética , Linhagem Celular Tumoral , Morte Celular , Vírus Oncolíticos/genética , Replicação Viral , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo
15.
Vet Microbiol ; 289: 109949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128444

RESUMO

Newcastle disease (ND) is a highly pathogenic, contagious, and fatal infectious disease in poultry caused by the Newcastle disease virus (NDV). The PI3K/AKT signaling pathway is a phosphorylation cascade that participates in regulating several cellular functions. Viruses reportedly regulate the course of infection through the PI3K/AKT axis. Here, we aimed to analyze the pathogenesis of NDV infection mediated by the PI3K/AKT signaling pathway activation. We found that NDV infection can phosphorylate AKT to activate the PI3K/AKT axis both in vitro and in vivo. Flow cytometry and Caspase-3 activity assay showed that NDV infection could inhibit cell apoptosis. The activation or inhibition of the PI3K/AKT signaling pathway activity significantly inhibited or promoted NDV-mediated apoptosis. Furthermore, inhibition of cell apoptosis significantly promoted NDV replication. Overall, our results showed that NDV infection activates the PI3K/AKT signaling pathway and inhibits cell apoptosis, thus promoting viral replication. In this context, the reduced expression of PHLPP2 protein mediated by NDV infection could be inhibited by MG132. PHLPP2 expression reversely and positively regulated NDV replication and cell apoptosis, respectively. These results indicated that NDV infection-mediated activation of the PI3K/AKT signaling pathway and the inhibition of apoptosis depend on the ubiquitin-proteasome degradation of the PHLPP2 protein. Co-IP and indirect immunofluorescence results showed that NDV V protein could interact with PHLPP2 protein, indicating that NDV targeted PHLPP2 protein degradation through V protein to activate the PI3K/AKT signaling pathway. This study deepens our understanding of the molecular mechanisms of NDV infection, providing a theoretical basis for ND prevention and control.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Apoptose , Replicação Viral
16.
BMC Vet Res ; 19(1): 196, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805566

RESUMO

BACKGROUND: Newcastle disease (ND) is a major threat to the poultry industry, leading to significant economic losses. The current ND vaccines, usually based on active or attenuated strains, are only partially effective and can cause adverse effects post-vaccination. Therefore, the development of safer and more efficient vaccines is necessary. Epitopes represent the antigenic portion of the pathogen and their identification and use for immunization could lead to safer and more effective vaccines. However, the prediction of protective epitopes for a pathogen is a major challenge, especially taking into account the immune system of the target species. RESULTS: In this study, we utilized an artificial intelligence algorithm to predict ND virus (NDV) peptides that exhibit high affinity to the chicken MHC-I complex. We selected the peptides that are conserved across different NDV genotypes and absent in the chicken proteome. From the filtered peptides, we synthesized the five peptides with the highest affinities for the L, HN, and F proteins of NDV. We evaluated these peptides in-vitro for their ability to elicit cell-mediated immunity, which was measured by the lymphocyte proliferation in spleen cells of chickens previously immunized with NDV. CONCLUSIONS: Our study identified five peptides with high affinity to MHC-I that have the potential to serve as protective epitopes and could be utilized for the development of multi-epitope NDV vaccines. This approach can provide a safer and more efficient method for NDV immunization.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Epitopos , Inteligência Artificial , Anticorpos Antivirais , Peptídeos
17.
Poult Sci ; 102(9): 102855, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390546

RESUMO

Newcastle disease virus (NDV) is an RNA virus taking poultry as the host, and the Newcastle disease (ND) caused by NDV is one of the diseases with serious damage to the health of poultry. Mx encoding by myxovirus resistance gene, induced by type I interferon (IFN), has a wide range of antiviral and GTPase activities in human, mice, and other species via inhibition virus replication. However, the antiviral ability of chicken Mx is still a controversial issue. To explore the effect of chicken Mx post-NDV infection, Mx-knockout DF-1 cells were constructed via CRISPR/Cas9 gene editing system. The number of copies of NDV was detected by RT-qPCR, and the mRNA expression levels of IRF-7, IFN-α, IFN-ß, TNF-α, p21, p27, and Bak in DF-1 cells were analyzed after NDV infection. Compared with control cells, virus titers were much higher in Mx-knockout DF-1 cells post-NDV infection. The deficiency of Mx aggravated the cell pathological features post-NDV infection, and promoted the expression levels of IRF-7, IFN-α, IFN-ß, and pro-inflammatory cytokine TNF-α in host cells. In addition, cells with Mx deficiency could alleviate the harm from virus by enhancing the expression of p21, p27, and Bak, which related to cell proliferation apoptosis. In conclusion, Mx played an important role in antivirus invasion. In the absence of Mx, cells could alleviate the harm from virus infection via retarding cell proliferation and enhancing cell apoptosis.


Assuntos
Doença de Newcastle , Animais , Camundongos , Humanos , Galinhas , Vírus da Doença de Newcastle , Fator de Necrose Tumoral alfa , Antivirais/farmacologia , Linhagem Celular , Imunidade , Fibroblastos , Replicação Viral
18.
J Gen Virol ; 104(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37185260

RESUMO

Recombinant Newcastle disease virus (rNDV) strains engineered to express foreign genes from an additional transcription unit (ATU) are considered as candidate live-attenuated vector vaccines for human and veterinary use. Early during the COVID-19 pandemic we and others generated COVID-19 vaccine candidates based on rNDV expressing a partial or complete SARS-CoV-2 spike (S) protein. In our studies, a number of the rNDV constructs did not show high S expression levels in cell culture or seroconversion in immunized hamsters. Sanger sequencing showed the presence of frequent A-to-G transitions characteristic of adenosine deaminase acting on RNA (ADAR). Subsequent whole genome rNDV sequencing revealed that this biased hypermutation was exclusively localized in the ATU expressing the spike gene, and was related to deamination of adenosines in the negative strand viral genome RNA. The biased hypermutation was found both after virus rescue in chicken cell line DF-1 followed by passaging in embryonated chicken eggs, and after direct virus rescue and subsequent passaging in Vero E6 cells. Levels of biased hypermutation were higher in constructs containing codon-optimized as compared to native S gene sequences, suggesting potential association with increased GC content. These data show that deep sequencing of candidate recombinant vector vaccine constructs in different phases of development is of crucial importance in the development of NDV-based vaccines.


Assuntos
COVID-19 , Doença de Newcastle , Vacinas Virais , Animais , Humanos , Vírus da Doença de Newcastle/genética , Vacinas contra COVID-19 , Pandemias , SARS-CoV-2/genética , Galinhas , Vacinas Sintéticas , RNA
19.
Sci Rep ; 13(1): 7323, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147328

RESUMO

Bladder cancer cells can acquire persistent infection of oncolytic Newcastle disease virus (NDV) but the molecular mechanism(s) remain unelucidated. This poses a major barrier to the effective clinical translation of oncolytic NDV virotherapy of cancers. To improve our understanding of the molecular mechanism(s) associated with the development of NDV persistent infection in bladder cancer, we used mRNA expression profiles of persistently infected bladder cancer cells to construct PPI networks. Based on paths and modules in the PPI network, the bridges were found mainly in the upregulated mRNA-pathways of p53 signalling, ECM-receptor interaction, and TGF-beta signalling and downregulated mRNA-pathways of antigen processing and presentation, protein processing in endoplasmic reticulum, completement and coagulation cascades in persistent TCCSUPPi cells. In persistent EJ28Pi cells, connections were identified mainly through upregulated mRNA-pathways of renal carcinoma, viral carcinogenesis, Ras signalling and cell cycle and the downregulated mRNA-pathways of Wnt signalling, HTLV-I infection and pathways in cancers. These connections were mainly dependent on RPL8-HSPA1A/HSPA4 in TCCSUPPi cells and EP300, PTPN11, RAC1-TP53, SP1, CCND1 and XPO1 in EJ28Pi cells. Oncomine validation showed that the top hub genes identified in the networks that include RPL8, THBS1, F2 from TCCSUPPi and TP53 and RAC1 from EJ28Pi are involved in the development and progression of bladder cancer. Protein-drug interaction networks identified several putative drug targets that could be used to disrupt the linkages between the modules and prevent bladder cancer cells from acquiring NDV persistent infection. This novel PPI network analysis of differentially expressed mRNAs of NDV persistently infected bladder cancer cell lines provide an insight into the molecular mechanisms of NDV persistency of infection in bladder cancers and the future screening of drugs that can be used together with NDV to enhance its oncolytic efficacy.


Assuntos
Doença de Newcastle , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias da Bexiga Urinária , Animais , Humanos , Vírus da Doença de Newcastle/genética , Transcriptoma , Linhagem Celular Tumoral , Infecção Persistente , Vírus Oncolíticos/genética , Neoplasias da Bexiga Urinária/genética , RNA Mensageiro/genética
20.
Microbiol Spectr ; 11(3): e0402422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036344

RESUMO

When it comes to the prevention of clinical signs and mortality associated with infection of the Newcastle disease virus (NDV), vaccination has been very effective. However, recent evidence has proven that more highly virulent strains are emerging that bypass existing immune protection and pose a serious threat to the global poultry industry. Here, a novel rescued adenovirus 5-coexpressed chicken granulocyte monocyte colony-stimulating factor (ChGM-CSF) bio-adjuvant and C22-hemagglutinin-neuraminidase (HN) boosted chickens' immunological genetic resistance and thus improved the immunological effectiveness of the critical new-generation vaccine in vitro and in vivo. Accordingly, the hemagglutination inhibition (HI) titers (log2) of the recombinant adenovirus (rAdv)-ChGM-CSF-HN-immunized chickens had greater, more persistent, and longer-lasting NDV-specific antibodies than the La Sota and rAdv-HN-inoculated birds. Moreover, humoral and adaptive immunological conditions were shown to be in harmony after rAdv-ChGM-CSF-HN inoculation and uniformly enhanced the expression of alpha interferon (IFN-α), IFN-ß, IFN-γ, interleukin-1ß (IL-1ß), IL-2, IL-16, IL-18, and IL-22. Postchallenge, the control challenge (CC), wild-type adenovirus (wtAdv), and rAdv-ChGM-CSF groups developed unique NDV clinical manifestations, significant viral shedding, high tissue viral loads, gross and microscopic lesions, and 100% mortality within 7 days. The La Sota, rAdv-HN, and rAdv-ChGM-CSF-HN groups were healthy and had 100% survival rates. The rAdv-ChGM-CSF-HN group swiftly regulated and stopped viral shedding and had lower tissue viral loads than all groups at 5 days postchallenge (dpc). Thus, the antiviral activity of ChGM-CSF offered robust immune protection in the face of challenge and reduced viral replication convincingly. Our advance innovation concepts, combining ChGM-CSF with a field-circulating strain epitope, could lead to the development of a safe, genotype-matched, universal transgenic vaccine that could eradicate the disease globally, reducing poverty and food insecurity. IMPORTANCE We studied the biological characterization of the developed functional synthetic recombinant adenoviruses, which showed a high degree of safety, thermostability, and genetic stability for up to 20 passages. It was demonstrated through both in vitro and in vivo testing that the immunogenicity of the proposed vaccine, which uses the T2A peptide from the Thosea asigna virus capsid protein supported by glycine and serine, helps with efficiency to generate a multicistronic vector, enables expression of two functional proteins in rAdv-ChGM-CSF-HN, and is superior to that of comparable vaccines. Additionally, adenovirus can be used to produce vaccines matching the virulent field-circulating strain epitope. Because there is no preexisting human adenoviral immunity detected in animals, the potency of adenoviral vaccines looks promising. Also, it ensures that the living vector does not carry the resistance gene that codes for the kanamycin antibiotic. Accordingly, a human recombinant adenoviral vaccine that has undergone biological improvements is beneficial and important.


Assuntos
Infecções por Adenoviridae , Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Humanos , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Neuraminidase , Hemaglutininas , Doença de Newcastle/prevenção & controle , Adenoviridae , Antivirais , Monócitos , Vacinas Virais/genética , Vacinas Sintéticas , Genótipo , Anticorpos Antivirais , Fatores Estimuladores de Colônias/genética , Granulócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA